1 /* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <[email protected]> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14 #ifndef _LINUX_PERF_EVENT_H 15 #define _LINUX_PERF_EVENT_H 16 17 #include <uapi/linux/perf_event.h> 18 #include <uapi/linux/bpf_perf_event.h> 19 20 /* 21 * Kernel-internal data types and definitions: 22 */ 23 24 #ifdef CONFIG_PERF_EVENTS 25 # include <asm/perf_event.h> 26 # include <asm/local64.h> 27 #endif 28 29 struct perf_guest_info_callbacks { 30 int (*is_in_guest)(void); 31 int (*is_user_mode)(void); 32 unsigned long (*get_guest_ip)(void); 33 void (*handle_intel_pt_intr)(void); 34 }; 35 36 #ifdef CONFIG_HAVE_HW_BREAKPOINT 37 #include <asm/hw_breakpoint.h> 38 #endif 39 40 #include <linux/list.h> 41 #include <linux/mutex.h> 42 #include <linux/rculist.h> 43 #include <linux/rcupdate.h> 44 #include <linux/spinlock.h> 45 #include <linux/hrtimer.h> 46 #include <linux/fs.h> 47 #include <linux/pid_namespace.h> 48 #include <linux/workqueue.h> 49 #include <linux/ftrace.h> 50 #include <linux/cpu.h> 51 #include <linux/irq_work.h> 52 #include <linux/static_key.h> 53 #include <linux/jump_label_ratelimit.h> 54 #include <linux/atomic.h> 55 #include <linux/sysfs.h> 56 #include <linux/perf_regs.h> 57 #include <linux/cgroup.h> 58 #include <linux/refcount.h> 59 #include <asm/local.h> 60 61 struct perf_callchain_entry { 62 __u64 nr; 63 __u64 ip[0]; /* /proc/sys/kernel/perf_event_max_stack */ 64 }; 65 66 struct perf_callchain_entry_ctx { 67 struct perf_callchain_entry *entry; 68 u32 max_stack; 69 u32 nr; 70 short contexts; 71 bool contexts_maxed; 72 }; 73 74 typedef unsigned long (*perf_copy_f)(void *dst, const void *src, 75 unsigned long off, unsigned long len); 76 77 struct perf_raw_frag { 78 union { 79 struct perf_raw_frag *next; 80 unsigned long pad; 81 }; 82 perf_copy_f copy; 83 void *data; 84 u32 size; 85 } __packed; 86 87 struct perf_raw_record { 88 struct perf_raw_frag frag; 89 u32 size; 90 }; 91 92 /* 93 * branch stack layout: 94 * nr: number of taken branches stored in entries[] 95 * 96 * Note that nr can vary from sample to sample 97 * branches (to, from) are stored from most recent 98 * to least recent, i.e., entries[0] contains the most 99 * recent branch. 100 */ 101 struct perf_branch_stack { 102 __u64 nr; 103 struct perf_branch_entry entries[0]; 104 }; 105 106 struct task_struct; 107 108 /* 109 * extra PMU register associated with an event 110 */ 111 struct hw_perf_event_extra { 112 u64 config; /* register value */ 113 unsigned int reg; /* register address or index */ 114 int alloc; /* extra register already allocated */ 115 int idx; /* index in shared_regs->regs[] */ 116 }; 117 118 /** 119 * struct hw_perf_event - performance event hardware details: 120 */ 121 struct hw_perf_event { 122 #ifdef CONFIG_PERF_EVENTS 123 union { 124 struct { /* hardware */ 125 u64 config; 126 u64 last_tag; 127 unsigned long config_base; 128 unsigned long event_base; 129 int event_base_rdpmc; 130 int idx; 131 int last_cpu; 132 int flags; 133 134 struct hw_perf_event_extra extra_reg; 135 struct hw_perf_event_extra branch_reg; 136 }; 137 struct { /* software */ 138 struct hrtimer hrtimer; 139 }; 140 struct { /* tracepoint */ 141 /* for tp_event->class */ 142 struct list_head tp_list; 143 }; 144 struct { /* amd_power */ 145 u64 pwr_acc; 146 u64 ptsc; 147 }; 148 #ifdef CONFIG_HAVE_HW_BREAKPOINT 149 struct { /* breakpoint */ 150 /* 151 * Crufty hack to avoid the chicken and egg 152 * problem hw_breakpoint has with context 153 * creation and event initalization. 154 */ 155 struct arch_hw_breakpoint info; 156 struct list_head bp_list; 157 }; 158 #endif 159 struct { /* amd_iommu */ 160 u8 iommu_bank; 161 u8 iommu_cntr; 162 u16 padding; 163 u64 conf; 164 u64 conf1; 165 }; 166 }; 167 /* 168 * If the event is a per task event, this will point to the task in 169 * question. See the comment in perf_event_alloc(). 170 */ 171 struct task_struct *target; 172 173 /* 174 * PMU would store hardware filter configuration 175 * here. 176 */ 177 void *addr_filters; 178 179 /* Last sync'ed generation of filters */ 180 unsigned long addr_filters_gen; 181 182 /* 183 * hw_perf_event::state flags; used to track the PERF_EF_* state. 184 */ 185 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 186 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 187 #define PERF_HES_ARCH 0x04 188 189 int state; 190 191 /* 192 * The last observed hardware counter value, updated with a 193 * local64_cmpxchg() such that pmu::read() can be called nested. 194 */ 195 local64_t prev_count; 196 197 /* 198 * The period to start the next sample with. 199 */ 200 u64 sample_period; 201 202 /* 203 * The period we started this sample with. 204 */ 205 u64 last_period; 206 207 /* 208 * However much is left of the current period; note that this is 209 * a full 64bit value and allows for generation of periods longer 210 * than hardware might allow. 211 */ 212 local64_t period_left; 213 214 /* 215 * State for throttling the event, see __perf_event_overflow() and 216 * perf_adjust_freq_unthr_context(). 217 */ 218 u64 interrupts_seq; 219 u64 interrupts; 220 221 /* 222 * State for freq target events, see __perf_event_overflow() and 223 * perf_adjust_freq_unthr_context(). 224 */ 225 u64 freq_time_stamp; 226 u64 freq_count_stamp; 227 #endif 228 }; 229 230 struct perf_event; 231 232 /* 233 * Common implementation detail of pmu::{start,commit,cancel}_txn 234 */ 235 #define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */ 236 #define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */ 237 238 /** 239 * pmu::capabilities flags 240 */ 241 #define PERF_PMU_CAP_NO_INTERRUPT 0x01 242 #define PERF_PMU_CAP_NO_NMI 0x02 243 #define PERF_PMU_CAP_AUX_NO_SG 0x04 244 #define PERF_PMU_CAP_EXCLUSIVE 0x10 245 #define PERF_PMU_CAP_ITRACE 0x20 246 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x40 247 #define PERF_PMU_CAP_NO_EXCLUDE 0x80 248 249 /** 250 * struct pmu - generic performance monitoring unit 251 */ 252 struct pmu { 253 struct list_head entry; 254 255 struct module *module; 256 struct device *dev; 257 const struct attribute_group **attr_groups; 258 const struct attribute_group **attr_update; 259 const char *name; 260 int type; 261 262 /* 263 * various common per-pmu feature flags 264 */ 265 int capabilities; 266 267 int __percpu *pmu_disable_count; 268 struct perf_cpu_context __percpu *pmu_cpu_context; 269 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */ 270 int task_ctx_nr; 271 int hrtimer_interval_ms; 272 273 /* number of address filters this PMU can do */ 274 unsigned int nr_addr_filters; 275 276 /* 277 * Fully disable/enable this PMU, can be used to protect from the PMI 278 * as well as for lazy/batch writing of the MSRs. 279 */ 280 void (*pmu_enable) (struct pmu *pmu); /* optional */ 281 void (*pmu_disable) (struct pmu *pmu); /* optional */ 282 283 /* 284 * Try and initialize the event for this PMU. 285 * 286 * Returns: 287 * -ENOENT -- @event is not for this PMU 288 * 289 * -ENODEV -- @event is for this PMU but PMU not present 290 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable 291 * -EINVAL -- @event is for this PMU but @event is not valid 292 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported 293 * -EACCESS -- @event is for this PMU, @event is valid, but no privilidges 294 * 295 * 0 -- @event is for this PMU and valid 296 * 297 * Other error return values are allowed. 298 */ 299 int (*event_init) (struct perf_event *event); 300 301 /* 302 * Notification that the event was mapped or unmapped. Called 303 * in the context of the mapping task. 304 */ 305 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 306 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 307 308 /* 309 * Flags for ->add()/->del()/ ->start()/->stop(). There are 310 * matching hw_perf_event::state flags. 311 */ 312 #define PERF_EF_START 0x01 /* start the counter when adding */ 313 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 314 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 315 316 /* 317 * Adds/Removes a counter to/from the PMU, can be done inside a 318 * transaction, see the ->*_txn() methods. 319 * 320 * The add/del callbacks will reserve all hardware resources required 321 * to service the event, this includes any counter constraint 322 * scheduling etc. 323 * 324 * Called with IRQs disabled and the PMU disabled on the CPU the event 325 * is on. 326 * 327 * ->add() called without PERF_EF_START should result in the same state 328 * as ->add() followed by ->stop(). 329 * 330 * ->del() must always PERF_EF_UPDATE stop an event. If it calls 331 * ->stop() that must deal with already being stopped without 332 * PERF_EF_UPDATE. 333 */ 334 int (*add) (struct perf_event *event, int flags); 335 void (*del) (struct perf_event *event, int flags); 336 337 /* 338 * Starts/Stops a counter present on the PMU. 339 * 340 * The PMI handler should stop the counter when perf_event_overflow() 341 * returns !0. ->start() will be used to continue. 342 * 343 * Also used to change the sample period. 344 * 345 * Called with IRQs disabled and the PMU disabled on the CPU the event 346 * is on -- will be called from NMI context with the PMU generates 347 * NMIs. 348 * 349 * ->stop() with PERF_EF_UPDATE will read the counter and update 350 * period/count values like ->read() would. 351 * 352 * ->start() with PERF_EF_RELOAD will reprogram the the counter 353 * value, must be preceded by a ->stop() with PERF_EF_UPDATE. 354 */ 355 void (*start) (struct perf_event *event, int flags); 356 void (*stop) (struct perf_event *event, int flags); 357 358 /* 359 * Updates the counter value of the event. 360 * 361 * For sampling capable PMUs this will also update the software period 362 * hw_perf_event::period_left field. 363 */ 364 void (*read) (struct perf_event *event); 365 366 /* 367 * Group events scheduling is treated as a transaction, add 368 * group events as a whole and perform one schedulability test. 369 * If the test fails, roll back the whole group 370 * 371 * Start the transaction, after this ->add() doesn't need to 372 * do schedulability tests. 373 * 374 * Optional. 375 */ 376 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags); 377 /* 378 * If ->start_txn() disabled the ->add() schedulability test 379 * then ->commit_txn() is required to perform one. On success 380 * the transaction is closed. On error the transaction is kept 381 * open until ->cancel_txn() is called. 382 * 383 * Optional. 384 */ 385 int (*commit_txn) (struct pmu *pmu); 386 /* 387 * Will cancel the transaction, assumes ->del() is called 388 * for each successful ->add() during the transaction. 389 * 390 * Optional. 391 */ 392 void (*cancel_txn) (struct pmu *pmu); 393 394 /* 395 * Will return the value for perf_event_mmap_page::index for this event, 396 * if no implementation is provided it will default to: event->hw.idx + 1. 397 */ 398 int (*event_idx) (struct perf_event *event); /*optional */ 399 400 /* 401 * context-switches callback 402 */ 403 void (*sched_task) (struct perf_event_context *ctx, 404 bool sched_in); 405 /* 406 * PMU specific data size 407 */ 408 size_t task_ctx_size; 409 410 411 /* 412 * Set up pmu-private data structures for an AUX area 413 */ 414 void *(*setup_aux) (struct perf_event *event, void **pages, 415 int nr_pages, bool overwrite); 416 /* optional */ 417 418 /* 419 * Free pmu-private AUX data structures 420 */ 421 void (*free_aux) (void *aux); /* optional */ 422 423 /* 424 * Validate address range filters: make sure the HW supports the 425 * requested configuration and number of filters; return 0 if the 426 * supplied filters are valid, -errno otherwise. 427 * 428 * Runs in the context of the ioctl()ing process and is not serialized 429 * with the rest of the PMU callbacks. 430 */ 431 int (*addr_filters_validate) (struct list_head *filters); 432 /* optional */ 433 434 /* 435 * Synchronize address range filter configuration: 436 * translate hw-agnostic filters into hardware configuration in 437 * event::hw::addr_filters. 438 * 439 * Runs as a part of filter sync sequence that is done in ->start() 440 * callback by calling perf_event_addr_filters_sync(). 441 * 442 * May (and should) traverse event::addr_filters::list, for which its 443 * caller provides necessary serialization. 444 */ 445 void (*addr_filters_sync) (struct perf_event *event); 446 /* optional */ 447 448 /* 449 * Filter events for PMU-specific reasons. 450 */ 451 int (*filter_match) (struct perf_event *event); /* optional */ 452 453 /* 454 * Check period value for PERF_EVENT_IOC_PERIOD ioctl. 455 */ 456 int (*check_period) (struct perf_event *event, u64 value); /* optional */ 457 }; 458 459 enum perf_addr_filter_action_t { 460 PERF_ADDR_FILTER_ACTION_STOP = 0, 461 PERF_ADDR_FILTER_ACTION_START, 462 PERF_ADDR_FILTER_ACTION_FILTER, 463 }; 464 465 /** 466 * struct perf_addr_filter - address range filter definition 467 * @entry: event's filter list linkage 468 * @path: object file's path for file-based filters 469 * @offset: filter range offset 470 * @size: filter range size (size==0 means single address trigger) 471 * @action: filter/start/stop 472 * 473 * This is a hardware-agnostic filter configuration as specified by the user. 474 */ 475 struct perf_addr_filter { 476 struct list_head entry; 477 struct path path; 478 unsigned long offset; 479 unsigned long size; 480 enum perf_addr_filter_action_t action; 481 }; 482 483 /** 484 * struct perf_addr_filters_head - container for address range filters 485 * @list: list of filters for this event 486 * @lock: spinlock that serializes accesses to the @list and event's 487 * (and its children's) filter generations. 488 * @nr_file_filters: number of file-based filters 489 * 490 * A child event will use parent's @list (and therefore @lock), so they are 491 * bundled together; see perf_event_addr_filters(). 492 */ 493 struct perf_addr_filters_head { 494 struct list_head list; 495 raw_spinlock_t lock; 496 unsigned int nr_file_filters; 497 }; 498 499 struct perf_addr_filter_range { 500 unsigned long start; 501 unsigned long size; 502 }; 503 504 /** 505 * enum perf_event_state - the states of an event: 506 */ 507 enum perf_event_state { 508 PERF_EVENT_STATE_DEAD = -4, 509 PERF_EVENT_STATE_EXIT = -3, 510 PERF_EVENT_STATE_ERROR = -2, 511 PERF_EVENT_STATE_OFF = -1, 512 PERF_EVENT_STATE_INACTIVE = 0, 513 PERF_EVENT_STATE_ACTIVE = 1, 514 }; 515 516 struct file; 517 struct perf_sample_data; 518 519 typedef void (*perf_overflow_handler_t)(struct perf_event *, 520 struct perf_sample_data *, 521 struct pt_regs *regs); 522 523 /* 524 * Event capabilities. For event_caps and groups caps. 525 * 526 * PERF_EV_CAP_SOFTWARE: Is a software event. 527 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read 528 * from any CPU in the package where it is active. 529 */ 530 #define PERF_EV_CAP_SOFTWARE BIT(0) 531 #define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1) 532 533 #define SWEVENT_HLIST_BITS 8 534 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 535 536 struct swevent_hlist { 537 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 538 struct rcu_head rcu_head; 539 }; 540 541 #define PERF_ATTACH_CONTEXT 0x01 542 #define PERF_ATTACH_GROUP 0x02 543 #define PERF_ATTACH_TASK 0x04 544 #define PERF_ATTACH_TASK_DATA 0x08 545 #define PERF_ATTACH_ITRACE 0x10 546 547 struct perf_cgroup; 548 struct ring_buffer; 549 550 struct pmu_event_list { 551 raw_spinlock_t lock; 552 struct list_head list; 553 }; 554 555 #define for_each_sibling_event(sibling, event) \ 556 if ((event)->group_leader == (event)) \ 557 list_for_each_entry((sibling), &(event)->sibling_list, sibling_list) 558 559 /** 560 * struct perf_event - performance event kernel representation: 561 */ 562 struct perf_event { 563 #ifdef CONFIG_PERF_EVENTS 564 /* 565 * entry onto perf_event_context::event_list; 566 * modifications require ctx->lock 567 * RCU safe iterations. 568 */ 569 struct list_head event_entry; 570 571 /* 572 * Locked for modification by both ctx->mutex and ctx->lock; holding 573 * either sufficies for read. 574 */ 575 struct list_head sibling_list; 576 struct list_head active_list; 577 /* 578 * Node on the pinned or flexible tree located at the event context; 579 */ 580 struct rb_node group_node; 581 u64 group_index; 582 /* 583 * We need storage to track the entries in perf_pmu_migrate_context; we 584 * cannot use the event_entry because of RCU and we want to keep the 585 * group in tact which avoids us using the other two entries. 586 */ 587 struct list_head migrate_entry; 588 589 struct hlist_node hlist_entry; 590 struct list_head active_entry; 591 int nr_siblings; 592 593 /* Not serialized. Only written during event initialization. */ 594 int event_caps; 595 /* The cumulative AND of all event_caps for events in this group. */ 596 int group_caps; 597 598 struct perf_event *group_leader; 599 struct pmu *pmu; 600 void *pmu_private; 601 602 enum perf_event_state state; 603 unsigned int attach_state; 604 local64_t count; 605 atomic64_t child_count; 606 607 /* 608 * These are the total time in nanoseconds that the event 609 * has been enabled (i.e. eligible to run, and the task has 610 * been scheduled in, if this is a per-task event) 611 * and running (scheduled onto the CPU), respectively. 612 */ 613 u64 total_time_enabled; 614 u64 total_time_running; 615 u64 tstamp; 616 617 /* 618 * timestamp shadows the actual context timing but it can 619 * be safely used in NMI interrupt context. It reflects the 620 * context time as it was when the event was last scheduled in. 621 * 622 * ctx_time already accounts for ctx->timestamp. Therefore to 623 * compute ctx_time for a sample, simply add perf_clock(). 624 */ 625 u64 shadow_ctx_time; 626 627 struct perf_event_attr attr; 628 u16 header_size; 629 u16 id_header_size; 630 u16 read_size; 631 struct hw_perf_event hw; 632 633 struct perf_event_context *ctx; 634 atomic_long_t refcount; 635 636 /* 637 * These accumulate total time (in nanoseconds) that children 638 * events have been enabled and running, respectively. 639 */ 640 atomic64_t child_total_time_enabled; 641 atomic64_t child_total_time_running; 642 643 /* 644 * Protect attach/detach and child_list: 645 */ 646 struct mutex child_mutex; 647 struct list_head child_list; 648 struct perf_event *parent; 649 650 int oncpu; 651 int cpu; 652 653 struct list_head owner_entry; 654 struct task_struct *owner; 655 656 /* mmap bits */ 657 struct mutex mmap_mutex; 658 atomic_t mmap_count; 659 660 struct ring_buffer *rb; 661 struct list_head rb_entry; 662 unsigned long rcu_batches; 663 int rcu_pending; 664 665 /* poll related */ 666 wait_queue_head_t waitq; 667 struct fasync_struct *fasync; 668 669 /* delayed work for NMIs and such */ 670 int pending_wakeup; 671 int pending_kill; 672 int pending_disable; 673 struct irq_work pending; 674 675 atomic_t event_limit; 676 677 /* address range filters */ 678 struct perf_addr_filters_head addr_filters; 679 /* vma address array for file-based filders */ 680 struct perf_addr_filter_range *addr_filter_ranges; 681 unsigned long addr_filters_gen; 682 683 void (*destroy)(struct perf_event *); 684 struct rcu_head rcu_head; 685 686 struct pid_namespace *ns; 687 u64 id; 688 689 u64 (*clock)(void); 690 perf_overflow_handler_t overflow_handler; 691 void *overflow_handler_context; 692 #ifdef CONFIG_BPF_SYSCALL 693 perf_overflow_handler_t orig_overflow_handler; 694 struct bpf_prog *prog; 695 #endif 696 697 #ifdef CONFIG_EVENT_TRACING 698 struct trace_event_call *tp_event; 699 struct event_filter *filter; 700 #ifdef CONFIG_FUNCTION_TRACER 701 struct ftrace_ops ftrace_ops; 702 #endif 703 #endif 704 705 #ifdef CONFIG_CGROUP_PERF 706 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 707 #endif 708 709 struct list_head sb_list; 710 #endif /* CONFIG_PERF_EVENTS */ 711 }; 712 713 714 struct perf_event_groups { 715 struct rb_root tree; 716 u64 index; 717 }; 718 719 /** 720 * struct perf_event_context - event context structure 721 * 722 * Used as a container for task events and CPU events as well: 723 */ 724 struct perf_event_context { 725 struct pmu *pmu; 726 /* 727 * Protect the states of the events in the list, 728 * nr_active, and the list: 729 */ 730 raw_spinlock_t lock; 731 /* 732 * Protect the list of events. Locking either mutex or lock 733 * is sufficient to ensure the list doesn't change; to change 734 * the list you need to lock both the mutex and the spinlock. 735 */ 736 struct mutex mutex; 737 738 struct list_head active_ctx_list; 739 struct perf_event_groups pinned_groups; 740 struct perf_event_groups flexible_groups; 741 struct list_head event_list; 742 743 struct list_head pinned_active; 744 struct list_head flexible_active; 745 746 int nr_events; 747 int nr_active; 748 int is_active; 749 int nr_stat; 750 int nr_freq; 751 int rotate_disable; 752 /* 753 * Set when nr_events != nr_active, except tolerant to events not 754 * necessary to be active due to scheduling constraints, such as cgroups. 755 */ 756 int rotate_necessary; 757 refcount_t refcount; 758 struct task_struct *task; 759 760 /* 761 * Context clock, runs when context enabled. 762 */ 763 u64 time; 764 u64 timestamp; 765 766 /* 767 * These fields let us detect when two contexts have both 768 * been cloned (inherited) from a common ancestor. 769 */ 770 struct perf_event_context *parent_ctx; 771 u64 parent_gen; 772 u64 generation; 773 int pin_count; 774 #ifdef CONFIG_CGROUP_PERF 775 int nr_cgroups; /* cgroup evts */ 776 #endif 777 void *task_ctx_data; /* pmu specific data */ 778 struct rcu_head rcu_head; 779 }; 780 781 /* 782 * Number of contexts where an event can trigger: 783 * task, softirq, hardirq, nmi. 784 */ 785 #define PERF_NR_CONTEXTS 4 786 787 /** 788 * struct perf_event_cpu_context - per cpu event context structure 789 */ 790 struct perf_cpu_context { 791 struct perf_event_context ctx; 792 struct perf_event_context *task_ctx; 793 int active_oncpu; 794 int exclusive; 795 796 raw_spinlock_t hrtimer_lock; 797 struct hrtimer hrtimer; 798 ktime_t hrtimer_interval; 799 unsigned int hrtimer_active; 800 801 #ifdef CONFIG_CGROUP_PERF 802 struct perf_cgroup *cgrp; 803 struct list_head cgrp_cpuctx_entry; 804 #endif 805 806 struct list_head sched_cb_entry; 807 int sched_cb_usage; 808 809 int online; 810 }; 811 812 struct perf_output_handle { 813 struct perf_event *event; 814 struct ring_buffer *rb; 815 unsigned long wakeup; 816 unsigned long size; 817 u64 aux_flags; 818 union { 819 void *addr; 820 unsigned long head; 821 }; 822 int page; 823 }; 824 825 struct bpf_perf_event_data_kern { 826 bpf_user_pt_regs_t *regs; 827 struct perf_sample_data *data; 828 struct perf_event *event; 829 }; 830 831 #ifdef CONFIG_CGROUP_PERF 832 833 /* 834 * perf_cgroup_info keeps track of time_enabled for a cgroup. 835 * This is a per-cpu dynamically allocated data structure. 836 */ 837 struct perf_cgroup_info { 838 u64 time; 839 u64 timestamp; 840 }; 841 842 struct perf_cgroup { 843 struct cgroup_subsys_state css; 844 struct perf_cgroup_info __percpu *info; 845 }; 846 847 /* 848 * Must ensure cgroup is pinned (css_get) before calling 849 * this function. In other words, we cannot call this function 850 * if there is no cgroup event for the current CPU context. 851 */ 852 static inline struct perf_cgroup * 853 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx) 854 { 855 return container_of(task_css_check(task, perf_event_cgrp_id, 856 ctx ? lockdep_is_held(&ctx->lock) 857 : true), 858 struct perf_cgroup, css); 859 } 860 #endif /* CONFIG_CGROUP_PERF */ 861 862 #ifdef CONFIG_PERF_EVENTS 863 864 extern void *perf_aux_output_begin(struct perf_output_handle *handle, 865 struct perf_event *event); 866 extern void perf_aux_output_end(struct perf_output_handle *handle, 867 unsigned long size); 868 extern int perf_aux_output_skip(struct perf_output_handle *handle, 869 unsigned long size); 870 extern void *perf_get_aux(struct perf_output_handle *handle); 871 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags); 872 extern void perf_event_itrace_started(struct perf_event *event); 873 874 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); 875 extern void perf_pmu_unregister(struct pmu *pmu); 876 877 extern int perf_num_counters(void); 878 extern const char *perf_pmu_name(void); 879 extern void __perf_event_task_sched_in(struct task_struct *prev, 880 struct task_struct *task); 881 extern void __perf_event_task_sched_out(struct task_struct *prev, 882 struct task_struct *next); 883 extern int perf_event_init_task(struct task_struct *child); 884 extern void perf_event_exit_task(struct task_struct *child); 885 extern void perf_event_free_task(struct task_struct *task); 886 extern void perf_event_delayed_put(struct task_struct *task); 887 extern struct file *perf_event_get(unsigned int fd); 888 extern const struct perf_event *perf_get_event(struct file *file); 889 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event); 890 extern void perf_event_print_debug(void); 891 extern void perf_pmu_disable(struct pmu *pmu); 892 extern void perf_pmu_enable(struct pmu *pmu); 893 extern void perf_sched_cb_dec(struct pmu *pmu); 894 extern void perf_sched_cb_inc(struct pmu *pmu); 895 extern int perf_event_task_disable(void); 896 extern int perf_event_task_enable(void); 897 898 extern void perf_pmu_resched(struct pmu *pmu); 899 900 extern int perf_event_refresh(struct perf_event *event, int refresh); 901 extern void perf_event_update_userpage(struct perf_event *event); 902 extern int perf_event_release_kernel(struct perf_event *event); 903 extern struct perf_event * 904 perf_event_create_kernel_counter(struct perf_event_attr *attr, 905 int cpu, 906 struct task_struct *task, 907 perf_overflow_handler_t callback, 908 void *context); 909 extern void perf_pmu_migrate_context(struct pmu *pmu, 910 int src_cpu, int dst_cpu); 911 int perf_event_read_local(struct perf_event *event, u64 *value, 912 u64 *enabled, u64 *running); 913 extern u64 perf_event_read_value(struct perf_event *event, 914 u64 *enabled, u64 *running); 915 916 917 struct perf_sample_data { 918 /* 919 * Fields set by perf_sample_data_init(), group so as to 920 * minimize the cachelines touched. 921 */ 922 u64 addr; 923 struct perf_raw_record *raw; 924 struct perf_branch_stack *br_stack; 925 u64 period; 926 u64 weight; 927 u64 txn; 928 union perf_mem_data_src data_src; 929 930 /* 931 * The other fields, optionally {set,used} by 932 * perf_{prepare,output}_sample(). 933 */ 934 u64 type; 935 u64 ip; 936 struct { 937 u32 pid; 938 u32 tid; 939 } tid_entry; 940 u64 time; 941 u64 id; 942 u64 stream_id; 943 struct { 944 u32 cpu; 945 u32 reserved; 946 } cpu_entry; 947 struct perf_callchain_entry *callchain; 948 949 /* 950 * regs_user may point to task_pt_regs or to regs_user_copy, depending 951 * on arch details. 952 */ 953 struct perf_regs regs_user; 954 struct pt_regs regs_user_copy; 955 956 struct perf_regs regs_intr; 957 u64 stack_user_size; 958 959 u64 phys_addr; 960 } ____cacheline_aligned; 961 962 /* default value for data source */ 963 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\ 964 PERF_MEM_S(LVL, NA) |\ 965 PERF_MEM_S(SNOOP, NA) |\ 966 PERF_MEM_S(LOCK, NA) |\ 967 PERF_MEM_S(TLB, NA)) 968 969 static inline void perf_sample_data_init(struct perf_sample_data *data, 970 u64 addr, u64 period) 971 { 972 /* remaining struct members initialized in perf_prepare_sample() */ 973 data->addr = addr; 974 data->raw = NULL; 975 data->br_stack = NULL; 976 data->period = period; 977 data->weight = 0; 978 data->data_src.val = PERF_MEM_NA; 979 data->txn = 0; 980 } 981 982 extern void perf_output_sample(struct perf_output_handle *handle, 983 struct perf_event_header *header, 984 struct perf_sample_data *data, 985 struct perf_event *event); 986 extern void perf_prepare_sample(struct perf_event_header *header, 987 struct perf_sample_data *data, 988 struct perf_event *event, 989 struct pt_regs *regs); 990 991 extern int perf_event_overflow(struct perf_event *event, 992 struct perf_sample_data *data, 993 struct pt_regs *regs); 994 995 extern void perf_event_output_forward(struct perf_event *event, 996 struct perf_sample_data *data, 997 struct pt_regs *regs); 998 extern void perf_event_output_backward(struct perf_event *event, 999 struct perf_sample_data *data, 1000 struct pt_regs *regs); 1001 extern int perf_event_output(struct perf_event *event, 1002 struct perf_sample_data *data, 1003 struct pt_regs *regs); 1004 1005 static inline bool 1006 is_default_overflow_handler(struct perf_event *event) 1007 { 1008 if (likely(event->overflow_handler == perf_event_output_forward)) 1009 return true; 1010 if (unlikely(event->overflow_handler == perf_event_output_backward)) 1011 return true; 1012 return false; 1013 } 1014 1015 extern void 1016 perf_event_header__init_id(struct perf_event_header *header, 1017 struct perf_sample_data *data, 1018 struct perf_event *event); 1019 extern void 1020 perf_event__output_id_sample(struct perf_event *event, 1021 struct perf_output_handle *handle, 1022 struct perf_sample_data *sample); 1023 1024 extern void 1025 perf_log_lost_samples(struct perf_event *event, u64 lost); 1026 1027 static inline bool event_has_any_exclude_flag(struct perf_event *event) 1028 { 1029 struct perf_event_attr *attr = &event->attr; 1030 1031 return attr->exclude_idle || attr->exclude_user || 1032 attr->exclude_kernel || attr->exclude_hv || 1033 attr->exclude_guest || attr->exclude_host; 1034 } 1035 1036 static inline bool is_sampling_event(struct perf_event *event) 1037 { 1038 return event->attr.sample_period != 0; 1039 } 1040 1041 /* 1042 * Return 1 for a software event, 0 for a hardware event 1043 */ 1044 static inline int is_software_event(struct perf_event *event) 1045 { 1046 return event->event_caps & PERF_EV_CAP_SOFTWARE; 1047 } 1048 1049 /* 1050 * Return 1 for event in sw context, 0 for event in hw context 1051 */ 1052 static inline int in_software_context(struct perf_event *event) 1053 { 1054 return event->ctx->pmu->task_ctx_nr == perf_sw_context; 1055 } 1056 1057 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 1058 1059 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64); 1060 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 1061 1062 #ifndef perf_arch_fetch_caller_regs 1063 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 1064 #endif 1065 1066 /* 1067 * When generating a perf sample in-line, instead of from an interrupt / 1068 * exception, we lack a pt_regs. This is typically used from software events 1069 * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints. 1070 * 1071 * We typically don't need a full set, but (for x86) do require: 1072 * - ip for PERF_SAMPLE_IP 1073 * - cs for user_mode() tests 1074 * - sp for PERF_SAMPLE_CALLCHAIN 1075 * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs()) 1076 * 1077 * NOTE: assumes @regs is otherwise already 0 filled; this is important for 1078 * things like PERF_SAMPLE_REGS_INTR. 1079 */ 1080 static inline void perf_fetch_caller_regs(struct pt_regs *regs) 1081 { 1082 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 1083 } 1084 1085 static __always_inline void 1086 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 1087 { 1088 if (static_key_false(&perf_swevent_enabled[event_id])) 1089 __perf_sw_event(event_id, nr, regs, addr); 1090 } 1091 1092 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]); 1093 1094 /* 1095 * 'Special' version for the scheduler, it hard assumes no recursion, 1096 * which is guaranteed by us not actually scheduling inside other swevents 1097 * because those disable preemption. 1098 */ 1099 static __always_inline void 1100 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) 1101 { 1102 if (static_key_false(&perf_swevent_enabled[event_id])) { 1103 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1104 1105 perf_fetch_caller_regs(regs); 1106 ___perf_sw_event(event_id, nr, regs, addr); 1107 } 1108 } 1109 1110 extern struct static_key_false perf_sched_events; 1111 1112 static __always_inline bool 1113 perf_sw_migrate_enabled(void) 1114 { 1115 if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS])) 1116 return true; 1117 return false; 1118 } 1119 1120 static inline void perf_event_task_migrate(struct task_struct *task) 1121 { 1122 if (perf_sw_migrate_enabled()) 1123 task->sched_migrated = 1; 1124 } 1125 1126 static inline void perf_event_task_sched_in(struct task_struct *prev, 1127 struct task_struct *task) 1128 { 1129 if (static_branch_unlikely(&perf_sched_events)) 1130 __perf_event_task_sched_in(prev, task); 1131 1132 if (perf_sw_migrate_enabled() && task->sched_migrated) { 1133 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1134 1135 perf_fetch_caller_regs(regs); 1136 ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0); 1137 task->sched_migrated = 0; 1138 } 1139 } 1140 1141 static inline void perf_event_task_sched_out(struct task_struct *prev, 1142 struct task_struct *next) 1143 { 1144 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0); 1145 1146 if (static_branch_unlikely(&perf_sched_events)) 1147 __perf_event_task_sched_out(prev, next); 1148 } 1149 1150 extern void perf_event_mmap(struct vm_area_struct *vma); 1151 1152 extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, 1153 bool unregister, const char *sym); 1154 extern void perf_event_bpf_event(struct bpf_prog *prog, 1155 enum perf_bpf_event_type type, 1156 u16 flags); 1157 1158 extern struct perf_guest_info_callbacks *perf_guest_cbs; 1159 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1160 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1161 1162 extern void perf_event_exec(void); 1163 extern void perf_event_comm(struct task_struct *tsk, bool exec); 1164 extern void perf_event_namespaces(struct task_struct *tsk); 1165 extern void perf_event_fork(struct task_struct *tsk); 1166 1167 /* Callchains */ 1168 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 1169 1170 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1171 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1172 extern struct perf_callchain_entry * 1173 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user, 1174 u32 max_stack, bool crosstask, bool add_mark); 1175 extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs); 1176 extern int get_callchain_buffers(int max_stack); 1177 extern void put_callchain_buffers(void); 1178 1179 extern int sysctl_perf_event_max_stack; 1180 extern int sysctl_perf_event_max_contexts_per_stack; 1181 1182 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip) 1183 { 1184 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) { 1185 struct perf_callchain_entry *entry = ctx->entry; 1186 entry->ip[entry->nr++] = ip; 1187 ++ctx->contexts; 1188 return 0; 1189 } else { 1190 ctx->contexts_maxed = true; 1191 return -1; /* no more room, stop walking the stack */ 1192 } 1193 } 1194 1195 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip) 1196 { 1197 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) { 1198 struct perf_callchain_entry *entry = ctx->entry; 1199 entry->ip[entry->nr++] = ip; 1200 ++ctx->nr; 1201 return 0; 1202 } else { 1203 return -1; /* no more room, stop walking the stack */ 1204 } 1205 } 1206 1207 extern int sysctl_perf_event_paranoid; 1208 extern int sysctl_perf_event_mlock; 1209 extern int sysctl_perf_event_sample_rate; 1210 extern int sysctl_perf_cpu_time_max_percent; 1211 1212 extern void perf_sample_event_took(u64 sample_len_ns); 1213 1214 extern int perf_proc_update_handler(struct ctl_table *table, int write, 1215 void __user *buffer, size_t *lenp, 1216 loff_t *ppos); 1217 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 1218 void __user *buffer, size_t *lenp, 1219 loff_t *ppos); 1220 1221 int perf_event_max_stack_handler(struct ctl_table *table, int write, 1222 void __user *buffer, size_t *lenp, loff_t *ppos); 1223 1224 static inline bool perf_paranoid_tracepoint_raw(void) 1225 { 1226 return sysctl_perf_event_paranoid > -1; 1227 } 1228 1229 static inline bool perf_paranoid_cpu(void) 1230 { 1231 return sysctl_perf_event_paranoid > 0; 1232 } 1233 1234 static inline bool perf_paranoid_kernel(void) 1235 { 1236 return sysctl_perf_event_paranoid > 1; 1237 } 1238 1239 extern void perf_event_init(void); 1240 extern void perf_tp_event(u16 event_type, u64 count, void *record, 1241 int entry_size, struct pt_regs *regs, 1242 struct hlist_head *head, int rctx, 1243 struct task_struct *task); 1244 extern void perf_bp_event(struct perf_event *event, void *data); 1245 1246 #ifndef perf_misc_flags 1247 # define perf_misc_flags(regs) \ 1248 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 1249 # define perf_instruction_pointer(regs) instruction_pointer(regs) 1250 #endif 1251 #ifndef perf_arch_bpf_user_pt_regs 1252 # define perf_arch_bpf_user_pt_regs(regs) regs 1253 #endif 1254 1255 static inline bool has_branch_stack(struct perf_event *event) 1256 { 1257 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; 1258 } 1259 1260 static inline bool needs_branch_stack(struct perf_event *event) 1261 { 1262 return event->attr.branch_sample_type != 0; 1263 } 1264 1265 static inline bool has_aux(struct perf_event *event) 1266 { 1267 return event->pmu->setup_aux; 1268 } 1269 1270 static inline bool is_write_backward(struct perf_event *event) 1271 { 1272 return !!event->attr.write_backward; 1273 } 1274 1275 static inline bool has_addr_filter(struct perf_event *event) 1276 { 1277 return event->pmu->nr_addr_filters; 1278 } 1279 1280 /* 1281 * An inherited event uses parent's filters 1282 */ 1283 static inline struct perf_addr_filters_head * 1284 perf_event_addr_filters(struct perf_event *event) 1285 { 1286 struct perf_addr_filters_head *ifh = &event->addr_filters; 1287 1288 if (event->parent) 1289 ifh = &event->parent->addr_filters; 1290 1291 return ifh; 1292 } 1293 1294 extern void perf_event_addr_filters_sync(struct perf_event *event); 1295 1296 extern int perf_output_begin(struct perf_output_handle *handle, 1297 struct perf_event *event, unsigned int size); 1298 extern int perf_output_begin_forward(struct perf_output_handle *handle, 1299 struct perf_event *event, 1300 unsigned int size); 1301 extern int perf_output_begin_backward(struct perf_output_handle *handle, 1302 struct perf_event *event, 1303 unsigned int size); 1304 1305 extern void perf_output_end(struct perf_output_handle *handle); 1306 extern unsigned int perf_output_copy(struct perf_output_handle *handle, 1307 const void *buf, unsigned int len); 1308 extern unsigned int perf_output_skip(struct perf_output_handle *handle, 1309 unsigned int len); 1310 extern int perf_swevent_get_recursion_context(void); 1311 extern void perf_swevent_put_recursion_context(int rctx); 1312 extern u64 perf_swevent_set_period(struct perf_event *event); 1313 extern void perf_event_enable(struct perf_event *event); 1314 extern void perf_event_disable(struct perf_event *event); 1315 extern void perf_event_disable_local(struct perf_event *event); 1316 extern void perf_event_disable_inatomic(struct perf_event *event); 1317 extern void perf_event_task_tick(void); 1318 extern int perf_event_account_interrupt(struct perf_event *event); 1319 #else /* !CONFIG_PERF_EVENTS: */ 1320 static inline void * 1321 perf_aux_output_begin(struct perf_output_handle *handle, 1322 struct perf_event *event) { return NULL; } 1323 static inline void 1324 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size) 1325 { } 1326 static inline int 1327 perf_aux_output_skip(struct perf_output_handle *handle, 1328 unsigned long size) { return -EINVAL; } 1329 static inline void * 1330 perf_get_aux(struct perf_output_handle *handle) { return NULL; } 1331 static inline void 1332 perf_event_task_migrate(struct task_struct *task) { } 1333 static inline void 1334 perf_event_task_sched_in(struct task_struct *prev, 1335 struct task_struct *task) { } 1336 static inline void 1337 perf_event_task_sched_out(struct task_struct *prev, 1338 struct task_struct *next) { } 1339 static inline int perf_event_init_task(struct task_struct *child) { return 0; } 1340 static inline void perf_event_exit_task(struct task_struct *child) { } 1341 static inline void perf_event_free_task(struct task_struct *task) { } 1342 static inline void perf_event_delayed_put(struct task_struct *task) { } 1343 static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); } 1344 static inline const struct perf_event *perf_get_event(struct file *file) 1345 { 1346 return ERR_PTR(-EINVAL); 1347 } 1348 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 1349 { 1350 return ERR_PTR(-EINVAL); 1351 } 1352 static inline int perf_event_read_local(struct perf_event *event, u64 *value, 1353 u64 *enabled, u64 *running) 1354 { 1355 return -EINVAL; 1356 } 1357 static inline void perf_event_print_debug(void) { } 1358 static inline int perf_event_task_disable(void) { return -EINVAL; } 1359 static inline int perf_event_task_enable(void) { return -EINVAL; } 1360 static inline int perf_event_refresh(struct perf_event *event, int refresh) 1361 { 1362 return -EINVAL; 1363 } 1364 1365 static inline void 1366 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 1367 static inline void 1368 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { } 1369 static inline void 1370 perf_bp_event(struct perf_event *event, void *data) { } 1371 1372 static inline int perf_register_guest_info_callbacks 1373 (struct perf_guest_info_callbacks *callbacks) { return 0; } 1374 static inline int perf_unregister_guest_info_callbacks 1375 (struct perf_guest_info_callbacks *callbacks) { return 0; } 1376 1377 static inline void perf_event_mmap(struct vm_area_struct *vma) { } 1378 1379 typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data); 1380 static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, 1381 bool unregister, const char *sym) { } 1382 static inline void perf_event_bpf_event(struct bpf_prog *prog, 1383 enum perf_bpf_event_type type, 1384 u16 flags) { } 1385 static inline void perf_event_exec(void) { } 1386 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { } 1387 static inline void perf_event_namespaces(struct task_struct *tsk) { } 1388 static inline void perf_event_fork(struct task_struct *tsk) { } 1389 static inline void perf_event_init(void) { } 1390 static inline int perf_swevent_get_recursion_context(void) { return -1; } 1391 static inline void perf_swevent_put_recursion_context(int rctx) { } 1392 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; } 1393 static inline void perf_event_enable(struct perf_event *event) { } 1394 static inline void perf_event_disable(struct perf_event *event) { } 1395 static inline int __perf_event_disable(void *info) { return -1; } 1396 static inline void perf_event_task_tick(void) { } 1397 static inline int perf_event_release_kernel(struct perf_event *event) { return 0; } 1398 #endif 1399 1400 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) 1401 extern void perf_restore_debug_store(void); 1402 #else 1403 static inline void perf_restore_debug_store(void) { } 1404 #endif 1405 1406 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag) 1407 { 1408 return frag->pad < sizeof(u64); 1409 } 1410 1411 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 1412 1413 struct perf_pmu_events_attr { 1414 struct device_attribute attr; 1415 u64 id; 1416 const char *event_str; 1417 }; 1418 1419 struct perf_pmu_events_ht_attr { 1420 struct device_attribute attr; 1421 u64 id; 1422 const char *event_str_ht; 1423 const char *event_str_noht; 1424 }; 1425 1426 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 1427 char *page); 1428 1429 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \ 1430 static struct perf_pmu_events_attr _var = { \ 1431 .attr = __ATTR(_name, 0444, _show, NULL), \ 1432 .id = _id, \ 1433 }; 1434 1435 #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \ 1436 static struct perf_pmu_events_attr _var = { \ 1437 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \ 1438 .id = 0, \ 1439 .event_str = _str, \ 1440 }; 1441 1442 #define PMU_FORMAT_ATTR(_name, _format) \ 1443 static ssize_t \ 1444 _name##_show(struct device *dev, \ 1445 struct device_attribute *attr, \ 1446 char *page) \ 1447 { \ 1448 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ 1449 return sprintf(page, _format "\n"); \ 1450 } \ 1451 \ 1452 static struct device_attribute format_attr_##_name = __ATTR_RO(_name) 1453 1454 /* Performance counter hotplug functions */ 1455 #ifdef CONFIG_PERF_EVENTS 1456 int perf_event_init_cpu(unsigned int cpu); 1457 int perf_event_exit_cpu(unsigned int cpu); 1458 #else 1459 #define perf_event_init_cpu NULL 1460 #define perf_event_exit_cpu NULL 1461 #endif 1462 1463 #endif /* _LINUX_PERF_EVENT_H */ 1464