xref: /linux-6.15/include/linux/perf_event.h (revision 151f4e2b)
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <[email protected]>
5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16 
17 #include <uapi/linux/perf_event.h>
18 #include <uapi/linux/bpf_perf_event.h>
19 
20 /*
21  * Kernel-internal data types and definitions:
22  */
23 
24 #ifdef CONFIG_PERF_EVENTS
25 # include <asm/perf_event.h>
26 # include <asm/local64.h>
27 #endif
28 
29 struct perf_guest_info_callbacks {
30 	int				(*is_in_guest)(void);
31 	int				(*is_user_mode)(void);
32 	unsigned long			(*get_guest_ip)(void);
33 	void				(*handle_intel_pt_intr)(void);
34 };
35 
36 #ifdef CONFIG_HAVE_HW_BREAKPOINT
37 #include <asm/hw_breakpoint.h>
38 #endif
39 
40 #include <linux/list.h>
41 #include <linux/mutex.h>
42 #include <linux/rculist.h>
43 #include <linux/rcupdate.h>
44 #include <linux/spinlock.h>
45 #include <linux/hrtimer.h>
46 #include <linux/fs.h>
47 #include <linux/pid_namespace.h>
48 #include <linux/workqueue.h>
49 #include <linux/ftrace.h>
50 #include <linux/cpu.h>
51 #include <linux/irq_work.h>
52 #include <linux/static_key.h>
53 #include <linux/jump_label_ratelimit.h>
54 #include <linux/atomic.h>
55 #include <linux/sysfs.h>
56 #include <linux/perf_regs.h>
57 #include <linux/cgroup.h>
58 #include <linux/refcount.h>
59 #include <asm/local.h>
60 
61 struct perf_callchain_entry {
62 	__u64				nr;
63 	__u64				ip[0]; /* /proc/sys/kernel/perf_event_max_stack */
64 };
65 
66 struct perf_callchain_entry_ctx {
67 	struct perf_callchain_entry *entry;
68 	u32			    max_stack;
69 	u32			    nr;
70 	short			    contexts;
71 	bool			    contexts_maxed;
72 };
73 
74 typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
75 				     unsigned long off, unsigned long len);
76 
77 struct perf_raw_frag {
78 	union {
79 		struct perf_raw_frag	*next;
80 		unsigned long		pad;
81 	};
82 	perf_copy_f			copy;
83 	void				*data;
84 	u32				size;
85 } __packed;
86 
87 struct perf_raw_record {
88 	struct perf_raw_frag		frag;
89 	u32				size;
90 };
91 
92 /*
93  * branch stack layout:
94  *  nr: number of taken branches stored in entries[]
95  *
96  * Note that nr can vary from sample to sample
97  * branches (to, from) are stored from most recent
98  * to least recent, i.e., entries[0] contains the most
99  * recent branch.
100  */
101 struct perf_branch_stack {
102 	__u64				nr;
103 	struct perf_branch_entry	entries[0];
104 };
105 
106 struct task_struct;
107 
108 /*
109  * extra PMU register associated with an event
110  */
111 struct hw_perf_event_extra {
112 	u64		config;	/* register value */
113 	unsigned int	reg;	/* register address or index */
114 	int		alloc;	/* extra register already allocated */
115 	int		idx;	/* index in shared_regs->regs[] */
116 };
117 
118 /**
119  * struct hw_perf_event - performance event hardware details:
120  */
121 struct hw_perf_event {
122 #ifdef CONFIG_PERF_EVENTS
123 	union {
124 		struct { /* hardware */
125 			u64		config;
126 			u64		last_tag;
127 			unsigned long	config_base;
128 			unsigned long	event_base;
129 			int		event_base_rdpmc;
130 			int		idx;
131 			int		last_cpu;
132 			int		flags;
133 
134 			struct hw_perf_event_extra extra_reg;
135 			struct hw_perf_event_extra branch_reg;
136 		};
137 		struct { /* software */
138 			struct hrtimer	hrtimer;
139 		};
140 		struct { /* tracepoint */
141 			/* for tp_event->class */
142 			struct list_head	tp_list;
143 		};
144 		struct { /* amd_power */
145 			u64	pwr_acc;
146 			u64	ptsc;
147 		};
148 #ifdef CONFIG_HAVE_HW_BREAKPOINT
149 		struct { /* breakpoint */
150 			/*
151 			 * Crufty hack to avoid the chicken and egg
152 			 * problem hw_breakpoint has with context
153 			 * creation and event initalization.
154 			 */
155 			struct arch_hw_breakpoint	info;
156 			struct list_head		bp_list;
157 		};
158 #endif
159 		struct { /* amd_iommu */
160 			u8	iommu_bank;
161 			u8	iommu_cntr;
162 			u16	padding;
163 			u64	conf;
164 			u64	conf1;
165 		};
166 	};
167 	/*
168 	 * If the event is a per task event, this will point to the task in
169 	 * question. See the comment in perf_event_alloc().
170 	 */
171 	struct task_struct		*target;
172 
173 	/*
174 	 * PMU would store hardware filter configuration
175 	 * here.
176 	 */
177 	void				*addr_filters;
178 
179 	/* Last sync'ed generation of filters */
180 	unsigned long			addr_filters_gen;
181 
182 /*
183  * hw_perf_event::state flags; used to track the PERF_EF_* state.
184  */
185 #define PERF_HES_STOPPED	0x01 /* the counter is stopped */
186 #define PERF_HES_UPTODATE	0x02 /* event->count up-to-date */
187 #define PERF_HES_ARCH		0x04
188 
189 	int				state;
190 
191 	/*
192 	 * The last observed hardware counter value, updated with a
193 	 * local64_cmpxchg() such that pmu::read() can be called nested.
194 	 */
195 	local64_t			prev_count;
196 
197 	/*
198 	 * The period to start the next sample with.
199 	 */
200 	u64				sample_period;
201 
202 	/*
203 	 * The period we started this sample with.
204 	 */
205 	u64				last_period;
206 
207 	/*
208 	 * However much is left of the current period; note that this is
209 	 * a full 64bit value and allows for generation of periods longer
210 	 * than hardware might allow.
211 	 */
212 	local64_t			period_left;
213 
214 	/*
215 	 * State for throttling the event, see __perf_event_overflow() and
216 	 * perf_adjust_freq_unthr_context().
217 	 */
218 	u64                             interrupts_seq;
219 	u64				interrupts;
220 
221 	/*
222 	 * State for freq target events, see __perf_event_overflow() and
223 	 * perf_adjust_freq_unthr_context().
224 	 */
225 	u64				freq_time_stamp;
226 	u64				freq_count_stamp;
227 #endif
228 };
229 
230 struct perf_event;
231 
232 /*
233  * Common implementation detail of pmu::{start,commit,cancel}_txn
234  */
235 #define PERF_PMU_TXN_ADD  0x1		/* txn to add/schedule event on PMU */
236 #define PERF_PMU_TXN_READ 0x2		/* txn to read event group from PMU */
237 
238 /**
239  * pmu::capabilities flags
240  */
241 #define PERF_PMU_CAP_NO_INTERRUPT		0x01
242 #define PERF_PMU_CAP_NO_NMI			0x02
243 #define PERF_PMU_CAP_AUX_NO_SG			0x04
244 #define PERF_PMU_CAP_EXCLUSIVE			0x10
245 #define PERF_PMU_CAP_ITRACE			0x20
246 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS		0x40
247 #define PERF_PMU_CAP_NO_EXCLUDE			0x80
248 
249 /**
250  * struct pmu - generic performance monitoring unit
251  */
252 struct pmu {
253 	struct list_head		entry;
254 
255 	struct module			*module;
256 	struct device			*dev;
257 	const struct attribute_group	**attr_groups;
258 	const char			*name;
259 	int				type;
260 
261 	/*
262 	 * various common per-pmu feature flags
263 	 */
264 	int				capabilities;
265 
266 	int __percpu			*pmu_disable_count;
267 	struct perf_cpu_context __percpu *pmu_cpu_context;
268 	atomic_t			exclusive_cnt; /* < 0: cpu; > 0: tsk */
269 	int				task_ctx_nr;
270 	int				hrtimer_interval_ms;
271 
272 	/* number of address filters this PMU can do */
273 	unsigned int			nr_addr_filters;
274 
275 	/*
276 	 * Fully disable/enable this PMU, can be used to protect from the PMI
277 	 * as well as for lazy/batch writing of the MSRs.
278 	 */
279 	void (*pmu_enable)		(struct pmu *pmu); /* optional */
280 	void (*pmu_disable)		(struct pmu *pmu); /* optional */
281 
282 	/*
283 	 * Try and initialize the event for this PMU.
284 	 *
285 	 * Returns:
286 	 *  -ENOENT	-- @event is not for this PMU
287 	 *
288 	 *  -ENODEV	-- @event is for this PMU but PMU not present
289 	 *  -EBUSY	-- @event is for this PMU but PMU temporarily unavailable
290 	 *  -EINVAL	-- @event is for this PMU but @event is not valid
291 	 *  -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
292 	 *  -EACCESS	-- @event is for this PMU, @event is valid, but no privilidges
293 	 *
294 	 *  0		-- @event is for this PMU and valid
295 	 *
296 	 * Other error return values are allowed.
297 	 */
298 	int (*event_init)		(struct perf_event *event);
299 
300 	/*
301 	 * Notification that the event was mapped or unmapped.  Called
302 	 * in the context of the mapping task.
303 	 */
304 	void (*event_mapped)		(struct perf_event *event, struct mm_struct *mm); /* optional */
305 	void (*event_unmapped)		(struct perf_event *event, struct mm_struct *mm); /* optional */
306 
307 	/*
308 	 * Flags for ->add()/->del()/ ->start()/->stop(). There are
309 	 * matching hw_perf_event::state flags.
310 	 */
311 #define PERF_EF_START	0x01		/* start the counter when adding    */
312 #define PERF_EF_RELOAD	0x02		/* reload the counter when starting */
313 #define PERF_EF_UPDATE	0x04		/* update the counter when stopping */
314 
315 	/*
316 	 * Adds/Removes a counter to/from the PMU, can be done inside a
317 	 * transaction, see the ->*_txn() methods.
318 	 *
319 	 * The add/del callbacks will reserve all hardware resources required
320 	 * to service the event, this includes any counter constraint
321 	 * scheduling etc.
322 	 *
323 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
324 	 * is on.
325 	 *
326 	 * ->add() called without PERF_EF_START should result in the same state
327 	 *  as ->add() followed by ->stop().
328 	 *
329 	 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
330 	 *  ->stop() that must deal with already being stopped without
331 	 *  PERF_EF_UPDATE.
332 	 */
333 	int  (*add)			(struct perf_event *event, int flags);
334 	void (*del)			(struct perf_event *event, int flags);
335 
336 	/*
337 	 * Starts/Stops a counter present on the PMU.
338 	 *
339 	 * The PMI handler should stop the counter when perf_event_overflow()
340 	 * returns !0. ->start() will be used to continue.
341 	 *
342 	 * Also used to change the sample period.
343 	 *
344 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
345 	 * is on -- will be called from NMI context with the PMU generates
346 	 * NMIs.
347 	 *
348 	 * ->stop() with PERF_EF_UPDATE will read the counter and update
349 	 *  period/count values like ->read() would.
350 	 *
351 	 * ->start() with PERF_EF_RELOAD will reprogram the the counter
352 	 *  value, must be preceded by a ->stop() with PERF_EF_UPDATE.
353 	 */
354 	void (*start)			(struct perf_event *event, int flags);
355 	void (*stop)			(struct perf_event *event, int flags);
356 
357 	/*
358 	 * Updates the counter value of the event.
359 	 *
360 	 * For sampling capable PMUs this will also update the software period
361 	 * hw_perf_event::period_left field.
362 	 */
363 	void (*read)			(struct perf_event *event);
364 
365 	/*
366 	 * Group events scheduling is treated as a transaction, add
367 	 * group events as a whole and perform one schedulability test.
368 	 * If the test fails, roll back the whole group
369 	 *
370 	 * Start the transaction, after this ->add() doesn't need to
371 	 * do schedulability tests.
372 	 *
373 	 * Optional.
374 	 */
375 	void (*start_txn)		(struct pmu *pmu, unsigned int txn_flags);
376 	/*
377 	 * If ->start_txn() disabled the ->add() schedulability test
378 	 * then ->commit_txn() is required to perform one. On success
379 	 * the transaction is closed. On error the transaction is kept
380 	 * open until ->cancel_txn() is called.
381 	 *
382 	 * Optional.
383 	 */
384 	int  (*commit_txn)		(struct pmu *pmu);
385 	/*
386 	 * Will cancel the transaction, assumes ->del() is called
387 	 * for each successful ->add() during the transaction.
388 	 *
389 	 * Optional.
390 	 */
391 	void (*cancel_txn)		(struct pmu *pmu);
392 
393 	/*
394 	 * Will return the value for perf_event_mmap_page::index for this event,
395 	 * if no implementation is provided it will default to: event->hw.idx + 1.
396 	 */
397 	int (*event_idx)		(struct perf_event *event); /*optional */
398 
399 	/*
400 	 * context-switches callback
401 	 */
402 	void (*sched_task)		(struct perf_event_context *ctx,
403 					bool sched_in);
404 	/*
405 	 * PMU specific data size
406 	 */
407 	size_t				task_ctx_size;
408 
409 
410 	/*
411 	 * Set up pmu-private data structures for an AUX area
412 	 */
413 	void *(*setup_aux)		(struct perf_event *event, void **pages,
414 					 int nr_pages, bool overwrite);
415 					/* optional */
416 
417 	/*
418 	 * Free pmu-private AUX data structures
419 	 */
420 	void (*free_aux)		(void *aux); /* optional */
421 
422 	/*
423 	 * Validate address range filters: make sure the HW supports the
424 	 * requested configuration and number of filters; return 0 if the
425 	 * supplied filters are valid, -errno otherwise.
426 	 *
427 	 * Runs in the context of the ioctl()ing process and is not serialized
428 	 * with the rest of the PMU callbacks.
429 	 */
430 	int (*addr_filters_validate)	(struct list_head *filters);
431 					/* optional */
432 
433 	/*
434 	 * Synchronize address range filter configuration:
435 	 * translate hw-agnostic filters into hardware configuration in
436 	 * event::hw::addr_filters.
437 	 *
438 	 * Runs as a part of filter sync sequence that is done in ->start()
439 	 * callback by calling perf_event_addr_filters_sync().
440 	 *
441 	 * May (and should) traverse event::addr_filters::list, for which its
442 	 * caller provides necessary serialization.
443 	 */
444 	void (*addr_filters_sync)	(struct perf_event *event);
445 					/* optional */
446 
447 	/*
448 	 * Filter events for PMU-specific reasons.
449 	 */
450 	int (*filter_match)		(struct perf_event *event); /* optional */
451 
452 	/*
453 	 * Check period value for PERF_EVENT_IOC_PERIOD ioctl.
454 	 */
455 	int (*check_period)		(struct perf_event *event, u64 value); /* optional */
456 };
457 
458 enum perf_addr_filter_action_t {
459 	PERF_ADDR_FILTER_ACTION_STOP = 0,
460 	PERF_ADDR_FILTER_ACTION_START,
461 	PERF_ADDR_FILTER_ACTION_FILTER,
462 };
463 
464 /**
465  * struct perf_addr_filter - address range filter definition
466  * @entry:	event's filter list linkage
467  * @path:	object file's path for file-based filters
468  * @offset:	filter range offset
469  * @size:	filter range size (size==0 means single address trigger)
470  * @action:	filter/start/stop
471  *
472  * This is a hardware-agnostic filter configuration as specified by the user.
473  */
474 struct perf_addr_filter {
475 	struct list_head	entry;
476 	struct path		path;
477 	unsigned long		offset;
478 	unsigned long		size;
479 	enum perf_addr_filter_action_t	action;
480 };
481 
482 /**
483  * struct perf_addr_filters_head - container for address range filters
484  * @list:	list of filters for this event
485  * @lock:	spinlock that serializes accesses to the @list and event's
486  *		(and its children's) filter generations.
487  * @nr_file_filters:	number of file-based filters
488  *
489  * A child event will use parent's @list (and therefore @lock), so they are
490  * bundled together; see perf_event_addr_filters().
491  */
492 struct perf_addr_filters_head {
493 	struct list_head	list;
494 	raw_spinlock_t		lock;
495 	unsigned int		nr_file_filters;
496 };
497 
498 struct perf_addr_filter_range {
499 	unsigned long		start;
500 	unsigned long		size;
501 };
502 
503 /**
504  * enum perf_event_state - the states of an event:
505  */
506 enum perf_event_state {
507 	PERF_EVENT_STATE_DEAD		= -4,
508 	PERF_EVENT_STATE_EXIT		= -3,
509 	PERF_EVENT_STATE_ERROR		= -2,
510 	PERF_EVENT_STATE_OFF		= -1,
511 	PERF_EVENT_STATE_INACTIVE	=  0,
512 	PERF_EVENT_STATE_ACTIVE		=  1,
513 };
514 
515 struct file;
516 struct perf_sample_data;
517 
518 typedef void (*perf_overflow_handler_t)(struct perf_event *,
519 					struct perf_sample_data *,
520 					struct pt_regs *regs);
521 
522 /*
523  * Event capabilities. For event_caps and groups caps.
524  *
525  * PERF_EV_CAP_SOFTWARE: Is a software event.
526  * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
527  * from any CPU in the package where it is active.
528  */
529 #define PERF_EV_CAP_SOFTWARE		BIT(0)
530 #define PERF_EV_CAP_READ_ACTIVE_PKG	BIT(1)
531 
532 #define SWEVENT_HLIST_BITS		8
533 #define SWEVENT_HLIST_SIZE		(1 << SWEVENT_HLIST_BITS)
534 
535 struct swevent_hlist {
536 	struct hlist_head		heads[SWEVENT_HLIST_SIZE];
537 	struct rcu_head			rcu_head;
538 };
539 
540 #define PERF_ATTACH_CONTEXT	0x01
541 #define PERF_ATTACH_GROUP	0x02
542 #define PERF_ATTACH_TASK	0x04
543 #define PERF_ATTACH_TASK_DATA	0x08
544 #define PERF_ATTACH_ITRACE	0x10
545 
546 struct perf_cgroup;
547 struct ring_buffer;
548 
549 struct pmu_event_list {
550 	raw_spinlock_t		lock;
551 	struct list_head	list;
552 };
553 
554 #define for_each_sibling_event(sibling, event)			\
555 	if ((event)->group_leader == (event))			\
556 		list_for_each_entry((sibling), &(event)->sibling_list, sibling_list)
557 
558 /**
559  * struct perf_event - performance event kernel representation:
560  */
561 struct perf_event {
562 #ifdef CONFIG_PERF_EVENTS
563 	/*
564 	 * entry onto perf_event_context::event_list;
565 	 *   modifications require ctx->lock
566 	 *   RCU safe iterations.
567 	 */
568 	struct list_head		event_entry;
569 
570 	/*
571 	 * Locked for modification by both ctx->mutex and ctx->lock; holding
572 	 * either sufficies for read.
573 	 */
574 	struct list_head		sibling_list;
575 	struct list_head		active_list;
576 	/*
577 	 * Node on the pinned or flexible tree located at the event context;
578 	 */
579 	struct rb_node			group_node;
580 	u64				group_index;
581 	/*
582 	 * We need storage to track the entries in perf_pmu_migrate_context; we
583 	 * cannot use the event_entry because of RCU and we want to keep the
584 	 * group in tact which avoids us using the other two entries.
585 	 */
586 	struct list_head		migrate_entry;
587 
588 	struct hlist_node		hlist_entry;
589 	struct list_head		active_entry;
590 	int				nr_siblings;
591 
592 	/* Not serialized. Only written during event initialization. */
593 	int				event_caps;
594 	/* The cumulative AND of all event_caps for events in this group. */
595 	int				group_caps;
596 
597 	struct perf_event		*group_leader;
598 	struct pmu			*pmu;
599 	void				*pmu_private;
600 
601 	enum perf_event_state		state;
602 	unsigned int			attach_state;
603 	local64_t			count;
604 	atomic64_t			child_count;
605 
606 	/*
607 	 * These are the total time in nanoseconds that the event
608 	 * has been enabled (i.e. eligible to run, and the task has
609 	 * been scheduled in, if this is a per-task event)
610 	 * and running (scheduled onto the CPU), respectively.
611 	 */
612 	u64				total_time_enabled;
613 	u64				total_time_running;
614 	u64				tstamp;
615 
616 	/*
617 	 * timestamp shadows the actual context timing but it can
618 	 * be safely used in NMI interrupt context. It reflects the
619 	 * context time as it was when the event was last scheduled in.
620 	 *
621 	 * ctx_time already accounts for ctx->timestamp. Therefore to
622 	 * compute ctx_time for a sample, simply add perf_clock().
623 	 */
624 	u64				shadow_ctx_time;
625 
626 	struct perf_event_attr		attr;
627 	u16				header_size;
628 	u16				id_header_size;
629 	u16				read_size;
630 	struct hw_perf_event		hw;
631 
632 	struct perf_event_context	*ctx;
633 	atomic_long_t			refcount;
634 
635 	/*
636 	 * These accumulate total time (in nanoseconds) that children
637 	 * events have been enabled and running, respectively.
638 	 */
639 	atomic64_t			child_total_time_enabled;
640 	atomic64_t			child_total_time_running;
641 
642 	/*
643 	 * Protect attach/detach and child_list:
644 	 */
645 	struct mutex			child_mutex;
646 	struct list_head		child_list;
647 	struct perf_event		*parent;
648 
649 	int				oncpu;
650 	int				cpu;
651 
652 	struct list_head		owner_entry;
653 	struct task_struct		*owner;
654 
655 	/* mmap bits */
656 	struct mutex			mmap_mutex;
657 	atomic_t			mmap_count;
658 
659 	struct ring_buffer		*rb;
660 	struct list_head		rb_entry;
661 	unsigned long			rcu_batches;
662 	int				rcu_pending;
663 
664 	/* poll related */
665 	wait_queue_head_t		waitq;
666 	struct fasync_struct		*fasync;
667 
668 	/* delayed work for NMIs and such */
669 	int				pending_wakeup;
670 	int				pending_kill;
671 	int				pending_disable;
672 	struct irq_work			pending;
673 
674 	atomic_t			event_limit;
675 
676 	/* address range filters */
677 	struct perf_addr_filters_head	addr_filters;
678 	/* vma address array for file-based filders */
679 	struct perf_addr_filter_range	*addr_filter_ranges;
680 	unsigned long			addr_filters_gen;
681 
682 	void (*destroy)(struct perf_event *);
683 	struct rcu_head			rcu_head;
684 
685 	struct pid_namespace		*ns;
686 	u64				id;
687 
688 	u64				(*clock)(void);
689 	perf_overflow_handler_t		overflow_handler;
690 	void				*overflow_handler_context;
691 #ifdef CONFIG_BPF_SYSCALL
692 	perf_overflow_handler_t		orig_overflow_handler;
693 	struct bpf_prog			*prog;
694 #endif
695 
696 #ifdef CONFIG_EVENT_TRACING
697 	struct trace_event_call		*tp_event;
698 	struct event_filter		*filter;
699 #ifdef CONFIG_FUNCTION_TRACER
700 	struct ftrace_ops               ftrace_ops;
701 #endif
702 #endif
703 
704 #ifdef CONFIG_CGROUP_PERF
705 	struct perf_cgroup		*cgrp; /* cgroup event is attach to */
706 #endif
707 
708 	struct list_head		sb_list;
709 #endif /* CONFIG_PERF_EVENTS */
710 };
711 
712 
713 struct perf_event_groups {
714 	struct rb_root	tree;
715 	u64		index;
716 };
717 
718 /**
719  * struct perf_event_context - event context structure
720  *
721  * Used as a container for task events and CPU events as well:
722  */
723 struct perf_event_context {
724 	struct pmu			*pmu;
725 	/*
726 	 * Protect the states of the events in the list,
727 	 * nr_active, and the list:
728 	 */
729 	raw_spinlock_t			lock;
730 	/*
731 	 * Protect the list of events.  Locking either mutex or lock
732 	 * is sufficient to ensure the list doesn't change; to change
733 	 * the list you need to lock both the mutex and the spinlock.
734 	 */
735 	struct mutex			mutex;
736 
737 	struct list_head		active_ctx_list;
738 	struct perf_event_groups	pinned_groups;
739 	struct perf_event_groups	flexible_groups;
740 	struct list_head		event_list;
741 
742 	struct list_head		pinned_active;
743 	struct list_head		flexible_active;
744 
745 	int				nr_events;
746 	int				nr_active;
747 	int				is_active;
748 	int				nr_stat;
749 	int				nr_freq;
750 	int				rotate_disable;
751 	refcount_t			refcount;
752 	struct task_struct		*task;
753 
754 	/*
755 	 * Context clock, runs when context enabled.
756 	 */
757 	u64				time;
758 	u64				timestamp;
759 
760 	/*
761 	 * These fields let us detect when two contexts have both
762 	 * been cloned (inherited) from a common ancestor.
763 	 */
764 	struct perf_event_context	*parent_ctx;
765 	u64				parent_gen;
766 	u64				generation;
767 	int				pin_count;
768 #ifdef CONFIG_CGROUP_PERF
769 	int				nr_cgroups;	 /* cgroup evts */
770 #endif
771 	void				*task_ctx_data; /* pmu specific data */
772 	struct rcu_head			rcu_head;
773 };
774 
775 /*
776  * Number of contexts where an event can trigger:
777  *	task, softirq, hardirq, nmi.
778  */
779 #define PERF_NR_CONTEXTS	4
780 
781 /**
782  * struct perf_event_cpu_context - per cpu event context structure
783  */
784 struct perf_cpu_context {
785 	struct perf_event_context	ctx;
786 	struct perf_event_context	*task_ctx;
787 	int				active_oncpu;
788 	int				exclusive;
789 
790 	raw_spinlock_t			hrtimer_lock;
791 	struct hrtimer			hrtimer;
792 	ktime_t				hrtimer_interval;
793 	unsigned int			hrtimer_active;
794 
795 #ifdef CONFIG_CGROUP_PERF
796 	struct perf_cgroup		*cgrp;
797 	struct list_head		cgrp_cpuctx_entry;
798 #endif
799 
800 	struct list_head		sched_cb_entry;
801 	int				sched_cb_usage;
802 
803 	int				online;
804 };
805 
806 struct perf_output_handle {
807 	struct perf_event		*event;
808 	struct ring_buffer		*rb;
809 	unsigned long			wakeup;
810 	unsigned long			size;
811 	u64				aux_flags;
812 	union {
813 		void			*addr;
814 		unsigned long		head;
815 	};
816 	int				page;
817 };
818 
819 struct bpf_perf_event_data_kern {
820 	bpf_user_pt_regs_t *regs;
821 	struct perf_sample_data *data;
822 	struct perf_event *event;
823 };
824 
825 #ifdef CONFIG_CGROUP_PERF
826 
827 /*
828  * perf_cgroup_info keeps track of time_enabled for a cgroup.
829  * This is a per-cpu dynamically allocated data structure.
830  */
831 struct perf_cgroup_info {
832 	u64				time;
833 	u64				timestamp;
834 };
835 
836 struct perf_cgroup {
837 	struct cgroup_subsys_state	css;
838 	struct perf_cgroup_info	__percpu *info;
839 };
840 
841 /*
842  * Must ensure cgroup is pinned (css_get) before calling
843  * this function. In other words, we cannot call this function
844  * if there is no cgroup event for the current CPU context.
845  */
846 static inline struct perf_cgroup *
847 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
848 {
849 	return container_of(task_css_check(task, perf_event_cgrp_id,
850 					   ctx ? lockdep_is_held(&ctx->lock)
851 					       : true),
852 			    struct perf_cgroup, css);
853 }
854 #endif /* CONFIG_CGROUP_PERF */
855 
856 #ifdef CONFIG_PERF_EVENTS
857 
858 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
859 				   struct perf_event *event);
860 extern void perf_aux_output_end(struct perf_output_handle *handle,
861 				unsigned long size);
862 extern int perf_aux_output_skip(struct perf_output_handle *handle,
863 				unsigned long size);
864 extern void *perf_get_aux(struct perf_output_handle *handle);
865 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
866 extern void perf_event_itrace_started(struct perf_event *event);
867 
868 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
869 extern void perf_pmu_unregister(struct pmu *pmu);
870 
871 extern int perf_num_counters(void);
872 extern const char *perf_pmu_name(void);
873 extern void __perf_event_task_sched_in(struct task_struct *prev,
874 				       struct task_struct *task);
875 extern void __perf_event_task_sched_out(struct task_struct *prev,
876 					struct task_struct *next);
877 extern int perf_event_init_task(struct task_struct *child);
878 extern void perf_event_exit_task(struct task_struct *child);
879 extern void perf_event_free_task(struct task_struct *task);
880 extern void perf_event_delayed_put(struct task_struct *task);
881 extern struct file *perf_event_get(unsigned int fd);
882 extern const struct perf_event *perf_get_event(struct file *file);
883 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
884 extern void perf_event_print_debug(void);
885 extern void perf_pmu_disable(struct pmu *pmu);
886 extern void perf_pmu_enable(struct pmu *pmu);
887 extern void perf_sched_cb_dec(struct pmu *pmu);
888 extern void perf_sched_cb_inc(struct pmu *pmu);
889 extern int perf_event_task_disable(void);
890 extern int perf_event_task_enable(void);
891 
892 extern void perf_pmu_resched(struct pmu *pmu);
893 
894 extern int perf_event_refresh(struct perf_event *event, int refresh);
895 extern void perf_event_update_userpage(struct perf_event *event);
896 extern int perf_event_release_kernel(struct perf_event *event);
897 extern struct perf_event *
898 perf_event_create_kernel_counter(struct perf_event_attr *attr,
899 				int cpu,
900 				struct task_struct *task,
901 				perf_overflow_handler_t callback,
902 				void *context);
903 extern void perf_pmu_migrate_context(struct pmu *pmu,
904 				int src_cpu, int dst_cpu);
905 int perf_event_read_local(struct perf_event *event, u64 *value,
906 			  u64 *enabled, u64 *running);
907 extern u64 perf_event_read_value(struct perf_event *event,
908 				 u64 *enabled, u64 *running);
909 
910 
911 struct perf_sample_data {
912 	/*
913 	 * Fields set by perf_sample_data_init(), group so as to
914 	 * minimize the cachelines touched.
915 	 */
916 	u64				addr;
917 	struct perf_raw_record		*raw;
918 	struct perf_branch_stack	*br_stack;
919 	u64				period;
920 	u64				weight;
921 	u64				txn;
922 	union  perf_mem_data_src	data_src;
923 
924 	/*
925 	 * The other fields, optionally {set,used} by
926 	 * perf_{prepare,output}_sample().
927 	 */
928 	u64				type;
929 	u64				ip;
930 	struct {
931 		u32	pid;
932 		u32	tid;
933 	}				tid_entry;
934 	u64				time;
935 	u64				id;
936 	u64				stream_id;
937 	struct {
938 		u32	cpu;
939 		u32	reserved;
940 	}				cpu_entry;
941 	struct perf_callchain_entry	*callchain;
942 
943 	/*
944 	 * regs_user may point to task_pt_regs or to regs_user_copy, depending
945 	 * on arch details.
946 	 */
947 	struct perf_regs		regs_user;
948 	struct pt_regs			regs_user_copy;
949 
950 	struct perf_regs		regs_intr;
951 	u64				stack_user_size;
952 
953 	u64				phys_addr;
954 } ____cacheline_aligned;
955 
956 /* default value for data source */
957 #define PERF_MEM_NA (PERF_MEM_S(OP, NA)   |\
958 		    PERF_MEM_S(LVL, NA)   |\
959 		    PERF_MEM_S(SNOOP, NA) |\
960 		    PERF_MEM_S(LOCK, NA)  |\
961 		    PERF_MEM_S(TLB, NA))
962 
963 static inline void perf_sample_data_init(struct perf_sample_data *data,
964 					 u64 addr, u64 period)
965 {
966 	/* remaining struct members initialized in perf_prepare_sample() */
967 	data->addr = addr;
968 	data->raw  = NULL;
969 	data->br_stack = NULL;
970 	data->period = period;
971 	data->weight = 0;
972 	data->data_src.val = PERF_MEM_NA;
973 	data->txn = 0;
974 }
975 
976 extern void perf_output_sample(struct perf_output_handle *handle,
977 			       struct perf_event_header *header,
978 			       struct perf_sample_data *data,
979 			       struct perf_event *event);
980 extern void perf_prepare_sample(struct perf_event_header *header,
981 				struct perf_sample_data *data,
982 				struct perf_event *event,
983 				struct pt_regs *regs);
984 
985 extern int perf_event_overflow(struct perf_event *event,
986 				 struct perf_sample_data *data,
987 				 struct pt_regs *regs);
988 
989 extern void perf_event_output_forward(struct perf_event *event,
990 				     struct perf_sample_data *data,
991 				     struct pt_regs *regs);
992 extern void perf_event_output_backward(struct perf_event *event,
993 				       struct perf_sample_data *data,
994 				       struct pt_regs *regs);
995 extern int perf_event_output(struct perf_event *event,
996 			     struct perf_sample_data *data,
997 			     struct pt_regs *regs);
998 
999 static inline bool
1000 is_default_overflow_handler(struct perf_event *event)
1001 {
1002 	if (likely(event->overflow_handler == perf_event_output_forward))
1003 		return true;
1004 	if (unlikely(event->overflow_handler == perf_event_output_backward))
1005 		return true;
1006 	return false;
1007 }
1008 
1009 extern void
1010 perf_event_header__init_id(struct perf_event_header *header,
1011 			   struct perf_sample_data *data,
1012 			   struct perf_event *event);
1013 extern void
1014 perf_event__output_id_sample(struct perf_event *event,
1015 			     struct perf_output_handle *handle,
1016 			     struct perf_sample_data *sample);
1017 
1018 extern void
1019 perf_log_lost_samples(struct perf_event *event, u64 lost);
1020 
1021 static inline bool event_has_any_exclude_flag(struct perf_event *event)
1022 {
1023 	struct perf_event_attr *attr = &event->attr;
1024 
1025 	return attr->exclude_idle || attr->exclude_user ||
1026 	       attr->exclude_kernel || attr->exclude_hv ||
1027 	       attr->exclude_guest || attr->exclude_host;
1028 }
1029 
1030 static inline bool is_sampling_event(struct perf_event *event)
1031 {
1032 	return event->attr.sample_period != 0;
1033 }
1034 
1035 /*
1036  * Return 1 for a software event, 0 for a hardware event
1037  */
1038 static inline int is_software_event(struct perf_event *event)
1039 {
1040 	return event->event_caps & PERF_EV_CAP_SOFTWARE;
1041 }
1042 
1043 /*
1044  * Return 1 for event in sw context, 0 for event in hw context
1045  */
1046 static inline int in_software_context(struct perf_event *event)
1047 {
1048 	return event->ctx->pmu->task_ctx_nr == perf_sw_context;
1049 }
1050 
1051 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1052 
1053 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1054 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1055 
1056 #ifndef perf_arch_fetch_caller_regs
1057 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1058 #endif
1059 
1060 /*
1061  * When generating a perf sample in-line, instead of from an interrupt /
1062  * exception, we lack a pt_regs. This is typically used from software events
1063  * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints.
1064  *
1065  * We typically don't need a full set, but (for x86) do require:
1066  * - ip for PERF_SAMPLE_IP
1067  * - cs for user_mode() tests
1068  * - sp for PERF_SAMPLE_CALLCHAIN
1069  * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs())
1070  *
1071  * NOTE: assumes @regs is otherwise already 0 filled; this is important for
1072  * things like PERF_SAMPLE_REGS_INTR.
1073  */
1074 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1075 {
1076 	perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1077 }
1078 
1079 static __always_inline void
1080 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1081 {
1082 	if (static_key_false(&perf_swevent_enabled[event_id]))
1083 		__perf_sw_event(event_id, nr, regs, addr);
1084 }
1085 
1086 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1087 
1088 /*
1089  * 'Special' version for the scheduler, it hard assumes no recursion,
1090  * which is guaranteed by us not actually scheduling inside other swevents
1091  * because those disable preemption.
1092  */
1093 static __always_inline void
1094 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1095 {
1096 	if (static_key_false(&perf_swevent_enabled[event_id])) {
1097 		struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1098 
1099 		perf_fetch_caller_regs(regs);
1100 		___perf_sw_event(event_id, nr, regs, addr);
1101 	}
1102 }
1103 
1104 extern struct static_key_false perf_sched_events;
1105 
1106 static __always_inline bool
1107 perf_sw_migrate_enabled(void)
1108 {
1109 	if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS]))
1110 		return true;
1111 	return false;
1112 }
1113 
1114 static inline void perf_event_task_migrate(struct task_struct *task)
1115 {
1116 	if (perf_sw_migrate_enabled())
1117 		task->sched_migrated = 1;
1118 }
1119 
1120 static inline void perf_event_task_sched_in(struct task_struct *prev,
1121 					    struct task_struct *task)
1122 {
1123 	if (static_branch_unlikely(&perf_sched_events))
1124 		__perf_event_task_sched_in(prev, task);
1125 
1126 	if (perf_sw_migrate_enabled() && task->sched_migrated) {
1127 		struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1128 
1129 		perf_fetch_caller_regs(regs);
1130 		___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0);
1131 		task->sched_migrated = 0;
1132 	}
1133 }
1134 
1135 static inline void perf_event_task_sched_out(struct task_struct *prev,
1136 					     struct task_struct *next)
1137 {
1138 	perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1139 
1140 	if (static_branch_unlikely(&perf_sched_events))
1141 		__perf_event_task_sched_out(prev, next);
1142 }
1143 
1144 extern void perf_event_mmap(struct vm_area_struct *vma);
1145 
1146 extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1147 			       bool unregister, const char *sym);
1148 extern void perf_event_bpf_event(struct bpf_prog *prog,
1149 				 enum perf_bpf_event_type type,
1150 				 u16 flags);
1151 
1152 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1153 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1154 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1155 
1156 extern void perf_event_exec(void);
1157 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1158 extern void perf_event_namespaces(struct task_struct *tsk);
1159 extern void perf_event_fork(struct task_struct *tsk);
1160 
1161 /* Callchains */
1162 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1163 
1164 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1165 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1166 extern struct perf_callchain_entry *
1167 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1168 		   u32 max_stack, bool crosstask, bool add_mark);
1169 extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs);
1170 extern int get_callchain_buffers(int max_stack);
1171 extern void put_callchain_buffers(void);
1172 
1173 extern int sysctl_perf_event_max_stack;
1174 extern int sysctl_perf_event_max_contexts_per_stack;
1175 
1176 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1177 {
1178 	if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1179 		struct perf_callchain_entry *entry = ctx->entry;
1180 		entry->ip[entry->nr++] = ip;
1181 		++ctx->contexts;
1182 		return 0;
1183 	} else {
1184 		ctx->contexts_maxed = true;
1185 		return -1; /* no more room, stop walking the stack */
1186 	}
1187 }
1188 
1189 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1190 {
1191 	if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1192 		struct perf_callchain_entry *entry = ctx->entry;
1193 		entry->ip[entry->nr++] = ip;
1194 		++ctx->nr;
1195 		return 0;
1196 	} else {
1197 		return -1; /* no more room, stop walking the stack */
1198 	}
1199 }
1200 
1201 extern int sysctl_perf_event_paranoid;
1202 extern int sysctl_perf_event_mlock;
1203 extern int sysctl_perf_event_sample_rate;
1204 extern int sysctl_perf_cpu_time_max_percent;
1205 
1206 extern void perf_sample_event_took(u64 sample_len_ns);
1207 
1208 extern int perf_proc_update_handler(struct ctl_table *table, int write,
1209 		void __user *buffer, size_t *lenp,
1210 		loff_t *ppos);
1211 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1212 		void __user *buffer, size_t *lenp,
1213 		loff_t *ppos);
1214 
1215 int perf_event_max_stack_handler(struct ctl_table *table, int write,
1216 				 void __user *buffer, size_t *lenp, loff_t *ppos);
1217 
1218 static inline bool perf_paranoid_tracepoint_raw(void)
1219 {
1220 	return sysctl_perf_event_paranoid > -1;
1221 }
1222 
1223 static inline bool perf_paranoid_cpu(void)
1224 {
1225 	return sysctl_perf_event_paranoid > 0;
1226 }
1227 
1228 static inline bool perf_paranoid_kernel(void)
1229 {
1230 	return sysctl_perf_event_paranoid > 1;
1231 }
1232 
1233 extern void perf_event_init(void);
1234 extern void perf_tp_event(u16 event_type, u64 count, void *record,
1235 			  int entry_size, struct pt_regs *regs,
1236 			  struct hlist_head *head, int rctx,
1237 			  struct task_struct *task);
1238 extern void perf_bp_event(struct perf_event *event, void *data);
1239 
1240 #ifndef perf_misc_flags
1241 # define perf_misc_flags(regs) \
1242 		(user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1243 # define perf_instruction_pointer(regs)	instruction_pointer(regs)
1244 #endif
1245 #ifndef perf_arch_bpf_user_pt_regs
1246 # define perf_arch_bpf_user_pt_regs(regs) regs
1247 #endif
1248 
1249 static inline bool has_branch_stack(struct perf_event *event)
1250 {
1251 	return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1252 }
1253 
1254 static inline bool needs_branch_stack(struct perf_event *event)
1255 {
1256 	return event->attr.branch_sample_type != 0;
1257 }
1258 
1259 static inline bool has_aux(struct perf_event *event)
1260 {
1261 	return event->pmu->setup_aux;
1262 }
1263 
1264 static inline bool is_write_backward(struct perf_event *event)
1265 {
1266 	return !!event->attr.write_backward;
1267 }
1268 
1269 static inline bool has_addr_filter(struct perf_event *event)
1270 {
1271 	return event->pmu->nr_addr_filters;
1272 }
1273 
1274 /*
1275  * An inherited event uses parent's filters
1276  */
1277 static inline struct perf_addr_filters_head *
1278 perf_event_addr_filters(struct perf_event *event)
1279 {
1280 	struct perf_addr_filters_head *ifh = &event->addr_filters;
1281 
1282 	if (event->parent)
1283 		ifh = &event->parent->addr_filters;
1284 
1285 	return ifh;
1286 }
1287 
1288 extern void perf_event_addr_filters_sync(struct perf_event *event);
1289 
1290 extern int perf_output_begin(struct perf_output_handle *handle,
1291 			     struct perf_event *event, unsigned int size);
1292 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1293 				    struct perf_event *event,
1294 				    unsigned int size);
1295 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1296 				      struct perf_event *event,
1297 				      unsigned int size);
1298 
1299 extern void perf_output_end(struct perf_output_handle *handle);
1300 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1301 			     const void *buf, unsigned int len);
1302 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1303 				     unsigned int len);
1304 extern int perf_swevent_get_recursion_context(void);
1305 extern void perf_swevent_put_recursion_context(int rctx);
1306 extern u64 perf_swevent_set_period(struct perf_event *event);
1307 extern void perf_event_enable(struct perf_event *event);
1308 extern void perf_event_disable(struct perf_event *event);
1309 extern void perf_event_disable_local(struct perf_event *event);
1310 extern void perf_event_disable_inatomic(struct perf_event *event);
1311 extern void perf_event_task_tick(void);
1312 extern int perf_event_account_interrupt(struct perf_event *event);
1313 #else /* !CONFIG_PERF_EVENTS: */
1314 static inline void *
1315 perf_aux_output_begin(struct perf_output_handle *handle,
1316 		      struct perf_event *event)				{ return NULL; }
1317 static inline void
1318 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1319 									{ }
1320 static inline int
1321 perf_aux_output_skip(struct perf_output_handle *handle,
1322 		     unsigned long size)				{ return -EINVAL; }
1323 static inline void *
1324 perf_get_aux(struct perf_output_handle *handle)				{ return NULL; }
1325 static inline void
1326 perf_event_task_migrate(struct task_struct *task)			{ }
1327 static inline void
1328 perf_event_task_sched_in(struct task_struct *prev,
1329 			 struct task_struct *task)			{ }
1330 static inline void
1331 perf_event_task_sched_out(struct task_struct *prev,
1332 			  struct task_struct *next)			{ }
1333 static inline int perf_event_init_task(struct task_struct *child)	{ return 0; }
1334 static inline void perf_event_exit_task(struct task_struct *child)	{ }
1335 static inline void perf_event_free_task(struct task_struct *task)	{ }
1336 static inline void perf_event_delayed_put(struct task_struct *task)	{ }
1337 static inline struct file *perf_event_get(unsigned int fd)	{ return ERR_PTR(-EINVAL); }
1338 static inline const struct perf_event *perf_get_event(struct file *file)
1339 {
1340 	return ERR_PTR(-EINVAL);
1341 }
1342 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1343 {
1344 	return ERR_PTR(-EINVAL);
1345 }
1346 static inline int perf_event_read_local(struct perf_event *event, u64 *value,
1347 					u64 *enabled, u64 *running)
1348 {
1349 	return -EINVAL;
1350 }
1351 static inline void perf_event_print_debug(void)				{ }
1352 static inline int perf_event_task_disable(void)				{ return -EINVAL; }
1353 static inline int perf_event_task_enable(void)				{ return -EINVAL; }
1354 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1355 {
1356 	return -EINVAL;
1357 }
1358 
1359 static inline void
1360 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)	{ }
1361 static inline void
1362 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)			{ }
1363 static inline void
1364 perf_bp_event(struct perf_event *event, void *data)			{ }
1365 
1366 static inline int perf_register_guest_info_callbacks
1367 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
1368 static inline int perf_unregister_guest_info_callbacks
1369 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
1370 
1371 static inline void perf_event_mmap(struct vm_area_struct *vma)		{ }
1372 
1373 typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data);
1374 static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1375 				      bool unregister, const char *sym)	{ }
1376 static inline void perf_event_bpf_event(struct bpf_prog *prog,
1377 					enum perf_bpf_event_type type,
1378 					u16 flags)			{ }
1379 static inline void perf_event_exec(void)				{ }
1380 static inline void perf_event_comm(struct task_struct *tsk, bool exec)	{ }
1381 static inline void perf_event_namespaces(struct task_struct *tsk)	{ }
1382 static inline void perf_event_fork(struct task_struct *tsk)		{ }
1383 static inline void perf_event_init(void)				{ }
1384 static inline int  perf_swevent_get_recursion_context(void)		{ return -1; }
1385 static inline void perf_swevent_put_recursion_context(int rctx)		{ }
1386 static inline u64 perf_swevent_set_period(struct perf_event *event)	{ return 0; }
1387 static inline void perf_event_enable(struct perf_event *event)		{ }
1388 static inline void perf_event_disable(struct perf_event *event)		{ }
1389 static inline int __perf_event_disable(void *info)			{ return -1; }
1390 static inline void perf_event_task_tick(void)				{ }
1391 static inline int perf_event_release_kernel(struct perf_event *event)	{ return 0; }
1392 #endif
1393 
1394 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1395 extern void perf_restore_debug_store(void);
1396 #else
1397 static inline void perf_restore_debug_store(void)			{ }
1398 #endif
1399 
1400 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
1401 {
1402 	return frag->pad < sizeof(u64);
1403 }
1404 
1405 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1406 
1407 struct perf_pmu_events_attr {
1408 	struct device_attribute attr;
1409 	u64 id;
1410 	const char *event_str;
1411 };
1412 
1413 struct perf_pmu_events_ht_attr {
1414 	struct device_attribute			attr;
1415 	u64					id;
1416 	const char				*event_str_ht;
1417 	const char				*event_str_noht;
1418 };
1419 
1420 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1421 			      char *page);
1422 
1423 #define PMU_EVENT_ATTR(_name, _var, _id, _show)				\
1424 static struct perf_pmu_events_attr _var = {				\
1425 	.attr = __ATTR(_name, 0444, _show, NULL),			\
1426 	.id   =  _id,							\
1427 };
1428 
1429 #define PMU_EVENT_ATTR_STRING(_name, _var, _str)			    \
1430 static struct perf_pmu_events_attr _var = {				    \
1431 	.attr		= __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1432 	.id		= 0,						    \
1433 	.event_str	= _str,						    \
1434 };
1435 
1436 #define PMU_FORMAT_ATTR(_name, _format)					\
1437 static ssize_t								\
1438 _name##_show(struct device *dev,					\
1439 			       struct device_attribute *attr,		\
1440 			       char *page)				\
1441 {									\
1442 	BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE);			\
1443 	return sprintf(page, _format "\n");				\
1444 }									\
1445 									\
1446 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1447 
1448 /* Performance counter hotplug functions */
1449 #ifdef CONFIG_PERF_EVENTS
1450 int perf_event_init_cpu(unsigned int cpu);
1451 int perf_event_exit_cpu(unsigned int cpu);
1452 #else
1453 #define perf_event_init_cpu	NULL
1454 #define perf_event_exit_cpu	NULL
1455 #endif
1456 
1457 #endif /* _LINUX_PERF_EVENT_H */
1458