1 /* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <[email protected]> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14 #ifndef _LINUX_PERF_EVENT_H 15 #define _LINUX_PERF_EVENT_H 16 17 #include <uapi/linux/perf_event.h> 18 19 /* 20 * Kernel-internal data types and definitions: 21 */ 22 23 #ifdef CONFIG_PERF_EVENTS 24 # include <asm/perf_event.h> 25 # include <asm/local64.h> 26 #endif 27 28 struct perf_guest_info_callbacks { 29 int (*is_in_guest)(void); 30 int (*is_user_mode)(void); 31 unsigned long (*get_guest_ip)(void); 32 }; 33 34 #ifdef CONFIG_HAVE_HW_BREAKPOINT 35 #include <asm/hw_breakpoint.h> 36 #endif 37 38 #include <linux/list.h> 39 #include <linux/mutex.h> 40 #include <linux/rculist.h> 41 #include <linux/rcupdate.h> 42 #include <linux/spinlock.h> 43 #include <linux/hrtimer.h> 44 #include <linux/fs.h> 45 #include <linux/pid_namespace.h> 46 #include <linux/workqueue.h> 47 #include <linux/ftrace.h> 48 #include <linux/cpu.h> 49 #include <linux/irq_work.h> 50 #include <linux/static_key.h> 51 #include <linux/jump_label_ratelimit.h> 52 #include <linux/atomic.h> 53 #include <linux/sysfs.h> 54 #include <linux/perf_regs.h> 55 #include <linux/workqueue.h> 56 #include <linux/cgroup.h> 57 #include <asm/local.h> 58 59 struct perf_callchain_entry { 60 __u64 nr; 61 __u64 ip[0]; /* /proc/sys/kernel/perf_event_max_stack */ 62 }; 63 64 struct perf_callchain_entry_ctx { 65 struct perf_callchain_entry *entry; 66 u32 max_stack; 67 u32 nr; 68 short contexts; 69 bool contexts_maxed; 70 }; 71 72 typedef unsigned long (*perf_copy_f)(void *dst, const void *src, 73 unsigned long off, unsigned long len); 74 75 struct perf_raw_frag { 76 union { 77 struct perf_raw_frag *next; 78 unsigned long pad; 79 }; 80 perf_copy_f copy; 81 void *data; 82 u32 size; 83 } __packed; 84 85 struct perf_raw_record { 86 struct perf_raw_frag frag; 87 u32 size; 88 }; 89 90 /* 91 * branch stack layout: 92 * nr: number of taken branches stored in entries[] 93 * 94 * Note that nr can vary from sample to sample 95 * branches (to, from) are stored from most recent 96 * to least recent, i.e., entries[0] contains the most 97 * recent branch. 98 */ 99 struct perf_branch_stack { 100 __u64 nr; 101 struct perf_branch_entry entries[0]; 102 }; 103 104 struct task_struct; 105 106 /* 107 * extra PMU register associated with an event 108 */ 109 struct hw_perf_event_extra { 110 u64 config; /* register value */ 111 unsigned int reg; /* register address or index */ 112 int alloc; /* extra register already allocated */ 113 int idx; /* index in shared_regs->regs[] */ 114 }; 115 116 /** 117 * struct hw_perf_event - performance event hardware details: 118 */ 119 struct hw_perf_event { 120 #ifdef CONFIG_PERF_EVENTS 121 union { 122 struct { /* hardware */ 123 u64 config; 124 u64 last_tag; 125 unsigned long config_base; 126 unsigned long event_base; 127 int event_base_rdpmc; 128 int idx; 129 int last_cpu; 130 int flags; 131 132 struct hw_perf_event_extra extra_reg; 133 struct hw_perf_event_extra branch_reg; 134 }; 135 struct { /* software */ 136 struct hrtimer hrtimer; 137 }; 138 struct { /* tracepoint */ 139 /* for tp_event->class */ 140 struct list_head tp_list; 141 }; 142 struct { /* amd_power */ 143 u64 pwr_acc; 144 u64 ptsc; 145 }; 146 #ifdef CONFIG_HAVE_HW_BREAKPOINT 147 struct { /* breakpoint */ 148 /* 149 * Crufty hack to avoid the chicken and egg 150 * problem hw_breakpoint has with context 151 * creation and event initalization. 152 */ 153 struct arch_hw_breakpoint info; 154 struct list_head bp_list; 155 }; 156 #endif 157 struct { /* amd_iommu */ 158 u8 iommu_bank; 159 u8 iommu_cntr; 160 u16 padding; 161 u64 conf; 162 u64 conf1; 163 }; 164 }; 165 /* 166 * If the event is a per task event, this will point to the task in 167 * question. See the comment in perf_event_alloc(). 168 */ 169 struct task_struct *target; 170 171 /* 172 * PMU would store hardware filter configuration 173 * here. 174 */ 175 void *addr_filters; 176 177 /* Last sync'ed generation of filters */ 178 unsigned long addr_filters_gen; 179 180 /* 181 * hw_perf_event::state flags; used to track the PERF_EF_* state. 182 */ 183 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 184 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 185 #define PERF_HES_ARCH 0x04 186 187 int state; 188 189 /* 190 * The last observed hardware counter value, updated with a 191 * local64_cmpxchg() such that pmu::read() can be called nested. 192 */ 193 local64_t prev_count; 194 195 /* 196 * The period to start the next sample with. 197 */ 198 u64 sample_period; 199 200 /* 201 * The period we started this sample with. 202 */ 203 u64 last_period; 204 205 /* 206 * However much is left of the current period; note that this is 207 * a full 64bit value and allows for generation of periods longer 208 * than hardware might allow. 209 */ 210 local64_t period_left; 211 212 /* 213 * State for throttling the event, see __perf_event_overflow() and 214 * perf_adjust_freq_unthr_context(). 215 */ 216 u64 interrupts_seq; 217 u64 interrupts; 218 219 /* 220 * State for freq target events, see __perf_event_overflow() and 221 * perf_adjust_freq_unthr_context(). 222 */ 223 u64 freq_time_stamp; 224 u64 freq_count_stamp; 225 #endif 226 }; 227 228 struct perf_event; 229 230 /* 231 * Common implementation detail of pmu::{start,commit,cancel}_txn 232 */ 233 #define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */ 234 #define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */ 235 236 /** 237 * pmu::capabilities flags 238 */ 239 #define PERF_PMU_CAP_NO_INTERRUPT 0x01 240 #define PERF_PMU_CAP_NO_NMI 0x02 241 #define PERF_PMU_CAP_AUX_NO_SG 0x04 242 #define PERF_PMU_CAP_AUX_SW_DOUBLEBUF 0x08 243 #define PERF_PMU_CAP_EXCLUSIVE 0x10 244 #define PERF_PMU_CAP_ITRACE 0x20 245 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x40 246 247 /** 248 * struct pmu - generic performance monitoring unit 249 */ 250 struct pmu { 251 struct list_head entry; 252 253 struct module *module; 254 struct device *dev; 255 const struct attribute_group **attr_groups; 256 const char *name; 257 int type; 258 259 /* 260 * various common per-pmu feature flags 261 */ 262 int capabilities; 263 264 int * __percpu pmu_disable_count; 265 struct perf_cpu_context * __percpu pmu_cpu_context; 266 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */ 267 int task_ctx_nr; 268 int hrtimer_interval_ms; 269 270 /* number of address filters this PMU can do */ 271 unsigned int nr_addr_filters; 272 273 /* 274 * Fully disable/enable this PMU, can be used to protect from the PMI 275 * as well as for lazy/batch writing of the MSRs. 276 */ 277 void (*pmu_enable) (struct pmu *pmu); /* optional */ 278 void (*pmu_disable) (struct pmu *pmu); /* optional */ 279 280 /* 281 * Try and initialize the event for this PMU. 282 * 283 * Returns: 284 * -ENOENT -- @event is not for this PMU 285 * 286 * -ENODEV -- @event is for this PMU but PMU not present 287 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable 288 * -EINVAL -- @event is for this PMU but @event is not valid 289 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported 290 * -EACCESS -- @event is for this PMU, @event is valid, but no privilidges 291 * 292 * 0 -- @event is for this PMU and valid 293 * 294 * Other error return values are allowed. 295 */ 296 int (*event_init) (struct perf_event *event); 297 298 /* 299 * Notification that the event was mapped or unmapped. Called 300 * in the context of the mapping task. 301 */ 302 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 303 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 304 305 /* 306 * Flags for ->add()/->del()/ ->start()/->stop(). There are 307 * matching hw_perf_event::state flags. 308 */ 309 #define PERF_EF_START 0x01 /* start the counter when adding */ 310 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 311 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 312 313 /* 314 * Adds/Removes a counter to/from the PMU, can be done inside a 315 * transaction, see the ->*_txn() methods. 316 * 317 * The add/del callbacks will reserve all hardware resources required 318 * to service the event, this includes any counter constraint 319 * scheduling etc. 320 * 321 * Called with IRQs disabled and the PMU disabled on the CPU the event 322 * is on. 323 * 324 * ->add() called without PERF_EF_START should result in the same state 325 * as ->add() followed by ->stop(). 326 * 327 * ->del() must always PERF_EF_UPDATE stop an event. If it calls 328 * ->stop() that must deal with already being stopped without 329 * PERF_EF_UPDATE. 330 */ 331 int (*add) (struct perf_event *event, int flags); 332 void (*del) (struct perf_event *event, int flags); 333 334 /* 335 * Starts/Stops a counter present on the PMU. 336 * 337 * The PMI handler should stop the counter when perf_event_overflow() 338 * returns !0. ->start() will be used to continue. 339 * 340 * Also used to change the sample period. 341 * 342 * Called with IRQs disabled and the PMU disabled on the CPU the event 343 * is on -- will be called from NMI context with the PMU generates 344 * NMIs. 345 * 346 * ->stop() with PERF_EF_UPDATE will read the counter and update 347 * period/count values like ->read() would. 348 * 349 * ->start() with PERF_EF_RELOAD will reprogram the the counter 350 * value, must be preceded by a ->stop() with PERF_EF_UPDATE. 351 */ 352 void (*start) (struct perf_event *event, int flags); 353 void (*stop) (struct perf_event *event, int flags); 354 355 /* 356 * Updates the counter value of the event. 357 * 358 * For sampling capable PMUs this will also update the software period 359 * hw_perf_event::period_left field. 360 */ 361 void (*read) (struct perf_event *event); 362 363 /* 364 * Group events scheduling is treated as a transaction, add 365 * group events as a whole and perform one schedulability test. 366 * If the test fails, roll back the whole group 367 * 368 * Start the transaction, after this ->add() doesn't need to 369 * do schedulability tests. 370 * 371 * Optional. 372 */ 373 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags); 374 /* 375 * If ->start_txn() disabled the ->add() schedulability test 376 * then ->commit_txn() is required to perform one. On success 377 * the transaction is closed. On error the transaction is kept 378 * open until ->cancel_txn() is called. 379 * 380 * Optional. 381 */ 382 int (*commit_txn) (struct pmu *pmu); 383 /* 384 * Will cancel the transaction, assumes ->del() is called 385 * for each successful ->add() during the transaction. 386 * 387 * Optional. 388 */ 389 void (*cancel_txn) (struct pmu *pmu); 390 391 /* 392 * Will return the value for perf_event_mmap_page::index for this event, 393 * if no implementation is provided it will default to: event->hw.idx + 1. 394 */ 395 int (*event_idx) (struct perf_event *event); /*optional */ 396 397 /* 398 * context-switches callback 399 */ 400 void (*sched_task) (struct perf_event_context *ctx, 401 bool sched_in); 402 /* 403 * PMU specific data size 404 */ 405 size_t task_ctx_size; 406 407 408 /* 409 * Set up pmu-private data structures for an AUX area 410 */ 411 void *(*setup_aux) (int cpu, void **pages, 412 int nr_pages, bool overwrite); 413 /* optional */ 414 415 /* 416 * Free pmu-private AUX data structures 417 */ 418 void (*free_aux) (void *aux); /* optional */ 419 420 /* 421 * Validate address range filters: make sure the HW supports the 422 * requested configuration and number of filters; return 0 if the 423 * supplied filters are valid, -errno otherwise. 424 * 425 * Runs in the context of the ioctl()ing process and is not serialized 426 * with the rest of the PMU callbacks. 427 */ 428 int (*addr_filters_validate) (struct list_head *filters); 429 /* optional */ 430 431 /* 432 * Synchronize address range filter configuration: 433 * translate hw-agnostic filters into hardware configuration in 434 * event::hw::addr_filters. 435 * 436 * Runs as a part of filter sync sequence that is done in ->start() 437 * callback by calling perf_event_addr_filters_sync(). 438 * 439 * May (and should) traverse event::addr_filters::list, for which its 440 * caller provides necessary serialization. 441 */ 442 void (*addr_filters_sync) (struct perf_event *event); 443 /* optional */ 444 445 /* 446 * Filter events for PMU-specific reasons. 447 */ 448 int (*filter_match) (struct perf_event *event); /* optional */ 449 }; 450 451 /** 452 * struct perf_addr_filter - address range filter definition 453 * @entry: event's filter list linkage 454 * @inode: object file's inode for file-based filters 455 * @offset: filter range offset 456 * @size: filter range size 457 * @range: 1: range, 0: address 458 * @filter: 1: filter/start, 0: stop 459 * 460 * This is a hardware-agnostic filter configuration as specified by the user. 461 */ 462 struct perf_addr_filter { 463 struct list_head entry; 464 struct inode *inode; 465 unsigned long offset; 466 unsigned long size; 467 unsigned int range : 1, 468 filter : 1; 469 }; 470 471 /** 472 * struct perf_addr_filters_head - container for address range filters 473 * @list: list of filters for this event 474 * @lock: spinlock that serializes accesses to the @list and event's 475 * (and its children's) filter generations. 476 * @nr_file_filters: number of file-based filters 477 * 478 * A child event will use parent's @list (and therefore @lock), so they are 479 * bundled together; see perf_event_addr_filters(). 480 */ 481 struct perf_addr_filters_head { 482 struct list_head list; 483 raw_spinlock_t lock; 484 unsigned int nr_file_filters; 485 }; 486 487 /** 488 * enum perf_event_state - the states of a event 489 */ 490 enum perf_event_state { 491 PERF_EVENT_STATE_DEAD = -4, 492 PERF_EVENT_STATE_EXIT = -3, 493 PERF_EVENT_STATE_ERROR = -2, 494 PERF_EVENT_STATE_OFF = -1, 495 PERF_EVENT_STATE_INACTIVE = 0, 496 PERF_EVENT_STATE_ACTIVE = 1, 497 }; 498 499 struct file; 500 struct perf_sample_data; 501 502 typedef void (*perf_overflow_handler_t)(struct perf_event *, 503 struct perf_sample_data *, 504 struct pt_regs *regs); 505 506 /* 507 * Event capabilities. For event_caps and groups caps. 508 * 509 * PERF_EV_CAP_SOFTWARE: Is a software event. 510 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read 511 * from any CPU in the package where it is active. 512 */ 513 #define PERF_EV_CAP_SOFTWARE BIT(0) 514 #define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1) 515 516 #define SWEVENT_HLIST_BITS 8 517 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 518 519 struct swevent_hlist { 520 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 521 struct rcu_head rcu_head; 522 }; 523 524 #define PERF_ATTACH_CONTEXT 0x01 525 #define PERF_ATTACH_GROUP 0x02 526 #define PERF_ATTACH_TASK 0x04 527 #define PERF_ATTACH_TASK_DATA 0x08 528 #define PERF_ATTACH_ITRACE 0x10 529 530 struct perf_cgroup; 531 struct ring_buffer; 532 533 struct pmu_event_list { 534 raw_spinlock_t lock; 535 struct list_head list; 536 }; 537 538 /** 539 * struct perf_event - performance event kernel representation: 540 */ 541 struct perf_event { 542 #ifdef CONFIG_PERF_EVENTS 543 /* 544 * entry onto perf_event_context::event_list; 545 * modifications require ctx->lock 546 * RCU safe iterations. 547 */ 548 struct list_head event_entry; 549 550 /* 551 * XXX: group_entry and sibling_list should be mutually exclusive; 552 * either you're a sibling on a group, or you're the group leader. 553 * Rework the code to always use the same list element. 554 * 555 * Locked for modification by both ctx->mutex and ctx->lock; holding 556 * either sufficies for read. 557 */ 558 struct list_head group_entry; 559 struct list_head sibling_list; 560 561 /* 562 * We need storage to track the entries in perf_pmu_migrate_context; we 563 * cannot use the event_entry because of RCU and we want to keep the 564 * group in tact which avoids us using the other two entries. 565 */ 566 struct list_head migrate_entry; 567 568 struct hlist_node hlist_entry; 569 struct list_head active_entry; 570 int nr_siblings; 571 572 /* Not serialized. Only written during event initialization. */ 573 int event_caps; 574 /* The cumulative AND of all event_caps for events in this group. */ 575 int group_caps; 576 577 struct perf_event *group_leader; 578 struct pmu *pmu; 579 void *pmu_private; 580 581 enum perf_event_state state; 582 unsigned int attach_state; 583 local64_t count; 584 atomic64_t child_count; 585 586 /* 587 * These are the total time in nanoseconds that the event 588 * has been enabled (i.e. eligible to run, and the task has 589 * been scheduled in, if this is a per-task event) 590 * and running (scheduled onto the CPU), respectively. 591 */ 592 u64 total_time_enabled; 593 u64 total_time_running; 594 u64 tstamp; 595 596 /* 597 * timestamp shadows the actual context timing but it can 598 * be safely used in NMI interrupt context. It reflects the 599 * context time as it was when the event was last scheduled in. 600 * 601 * ctx_time already accounts for ctx->timestamp. Therefore to 602 * compute ctx_time for a sample, simply add perf_clock(). 603 */ 604 u64 shadow_ctx_time; 605 606 struct perf_event_attr attr; 607 u16 header_size; 608 u16 id_header_size; 609 u16 read_size; 610 struct hw_perf_event hw; 611 612 struct perf_event_context *ctx; 613 atomic_long_t refcount; 614 615 /* 616 * These accumulate total time (in nanoseconds) that children 617 * events have been enabled and running, respectively. 618 */ 619 atomic64_t child_total_time_enabled; 620 atomic64_t child_total_time_running; 621 622 /* 623 * Protect attach/detach and child_list: 624 */ 625 struct mutex child_mutex; 626 struct list_head child_list; 627 struct perf_event *parent; 628 629 int oncpu; 630 int cpu; 631 632 struct list_head owner_entry; 633 struct task_struct *owner; 634 635 /* mmap bits */ 636 struct mutex mmap_mutex; 637 atomic_t mmap_count; 638 639 struct ring_buffer *rb; 640 struct list_head rb_entry; 641 unsigned long rcu_batches; 642 int rcu_pending; 643 644 /* poll related */ 645 wait_queue_head_t waitq; 646 struct fasync_struct *fasync; 647 648 /* delayed work for NMIs and such */ 649 int pending_wakeup; 650 int pending_kill; 651 int pending_disable; 652 struct irq_work pending; 653 654 atomic_t event_limit; 655 656 /* address range filters */ 657 struct perf_addr_filters_head addr_filters; 658 /* vma address array for file-based filders */ 659 unsigned long *addr_filters_offs; 660 unsigned long addr_filters_gen; 661 662 void (*destroy)(struct perf_event *); 663 struct rcu_head rcu_head; 664 665 struct pid_namespace *ns; 666 u64 id; 667 668 u64 (*clock)(void); 669 perf_overflow_handler_t overflow_handler; 670 void *overflow_handler_context; 671 #ifdef CONFIG_BPF_SYSCALL 672 perf_overflow_handler_t orig_overflow_handler; 673 struct bpf_prog *prog; 674 #endif 675 676 #ifdef CONFIG_EVENT_TRACING 677 struct trace_event_call *tp_event; 678 struct event_filter *filter; 679 #ifdef CONFIG_FUNCTION_TRACER 680 struct ftrace_ops ftrace_ops; 681 #endif 682 #endif 683 684 #ifdef CONFIG_CGROUP_PERF 685 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 686 #endif 687 688 struct list_head sb_list; 689 #endif /* CONFIG_PERF_EVENTS */ 690 }; 691 692 /** 693 * struct perf_event_context - event context structure 694 * 695 * Used as a container for task events and CPU events as well: 696 */ 697 struct perf_event_context { 698 struct pmu *pmu; 699 /* 700 * Protect the states of the events in the list, 701 * nr_active, and the list: 702 */ 703 raw_spinlock_t lock; 704 /* 705 * Protect the list of events. Locking either mutex or lock 706 * is sufficient to ensure the list doesn't change; to change 707 * the list you need to lock both the mutex and the spinlock. 708 */ 709 struct mutex mutex; 710 711 struct list_head active_ctx_list; 712 struct list_head pinned_groups; 713 struct list_head flexible_groups; 714 struct list_head event_list; 715 int nr_events; 716 int nr_active; 717 int is_active; 718 int nr_stat; 719 int nr_freq; 720 int rotate_disable; 721 atomic_t refcount; 722 struct task_struct *task; 723 724 /* 725 * Context clock, runs when context enabled. 726 */ 727 u64 time; 728 u64 timestamp; 729 730 /* 731 * These fields let us detect when two contexts have both 732 * been cloned (inherited) from a common ancestor. 733 */ 734 struct perf_event_context *parent_ctx; 735 u64 parent_gen; 736 u64 generation; 737 int pin_count; 738 #ifdef CONFIG_CGROUP_PERF 739 int nr_cgroups; /* cgroup evts */ 740 #endif 741 void *task_ctx_data; /* pmu specific data */ 742 struct rcu_head rcu_head; 743 }; 744 745 /* 746 * Number of contexts where an event can trigger: 747 * task, softirq, hardirq, nmi. 748 */ 749 #define PERF_NR_CONTEXTS 4 750 751 /** 752 * struct perf_event_cpu_context - per cpu event context structure 753 */ 754 struct perf_cpu_context { 755 struct perf_event_context ctx; 756 struct perf_event_context *task_ctx; 757 int active_oncpu; 758 int exclusive; 759 760 raw_spinlock_t hrtimer_lock; 761 struct hrtimer hrtimer; 762 ktime_t hrtimer_interval; 763 unsigned int hrtimer_active; 764 765 #ifdef CONFIG_CGROUP_PERF 766 struct perf_cgroup *cgrp; 767 struct list_head cgrp_cpuctx_entry; 768 #endif 769 770 struct list_head sched_cb_entry; 771 int sched_cb_usage; 772 773 int online; 774 }; 775 776 struct perf_output_handle { 777 struct perf_event *event; 778 struct ring_buffer *rb; 779 unsigned long wakeup; 780 unsigned long size; 781 u64 aux_flags; 782 union { 783 void *addr; 784 unsigned long head; 785 }; 786 int page; 787 }; 788 789 struct bpf_perf_event_data_kern { 790 struct pt_regs *regs; 791 struct perf_sample_data *data; 792 struct perf_event *event; 793 }; 794 795 #ifdef CONFIG_CGROUP_PERF 796 797 /* 798 * perf_cgroup_info keeps track of time_enabled for a cgroup. 799 * This is a per-cpu dynamically allocated data structure. 800 */ 801 struct perf_cgroup_info { 802 u64 time; 803 u64 timestamp; 804 }; 805 806 struct perf_cgroup { 807 struct cgroup_subsys_state css; 808 struct perf_cgroup_info __percpu *info; 809 }; 810 811 /* 812 * Must ensure cgroup is pinned (css_get) before calling 813 * this function. In other words, we cannot call this function 814 * if there is no cgroup event for the current CPU context. 815 */ 816 static inline struct perf_cgroup * 817 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx) 818 { 819 return container_of(task_css_check(task, perf_event_cgrp_id, 820 ctx ? lockdep_is_held(&ctx->lock) 821 : true), 822 struct perf_cgroup, css); 823 } 824 #endif /* CONFIG_CGROUP_PERF */ 825 826 #ifdef CONFIG_PERF_EVENTS 827 828 extern void *perf_aux_output_begin(struct perf_output_handle *handle, 829 struct perf_event *event); 830 extern void perf_aux_output_end(struct perf_output_handle *handle, 831 unsigned long size); 832 extern int perf_aux_output_skip(struct perf_output_handle *handle, 833 unsigned long size); 834 extern void *perf_get_aux(struct perf_output_handle *handle); 835 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags); 836 extern void perf_event_itrace_started(struct perf_event *event); 837 838 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); 839 extern void perf_pmu_unregister(struct pmu *pmu); 840 841 extern int perf_num_counters(void); 842 extern const char *perf_pmu_name(void); 843 extern void __perf_event_task_sched_in(struct task_struct *prev, 844 struct task_struct *task); 845 extern void __perf_event_task_sched_out(struct task_struct *prev, 846 struct task_struct *next); 847 extern int perf_event_init_task(struct task_struct *child); 848 extern void perf_event_exit_task(struct task_struct *child); 849 extern void perf_event_free_task(struct task_struct *task); 850 extern void perf_event_delayed_put(struct task_struct *task); 851 extern struct file *perf_event_get(unsigned int fd); 852 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event); 853 extern void perf_event_print_debug(void); 854 extern void perf_pmu_disable(struct pmu *pmu); 855 extern void perf_pmu_enable(struct pmu *pmu); 856 extern void perf_sched_cb_dec(struct pmu *pmu); 857 extern void perf_sched_cb_inc(struct pmu *pmu); 858 extern int perf_event_task_disable(void); 859 extern int perf_event_task_enable(void); 860 extern int perf_event_refresh(struct perf_event *event, int refresh); 861 extern void perf_event_update_userpage(struct perf_event *event); 862 extern int perf_event_release_kernel(struct perf_event *event); 863 extern struct perf_event * 864 perf_event_create_kernel_counter(struct perf_event_attr *attr, 865 int cpu, 866 struct task_struct *task, 867 perf_overflow_handler_t callback, 868 void *context); 869 extern void perf_pmu_migrate_context(struct pmu *pmu, 870 int src_cpu, int dst_cpu); 871 int perf_event_read_local(struct perf_event *event, u64 *value, 872 u64 *enabled, u64 *running); 873 extern u64 perf_event_read_value(struct perf_event *event, 874 u64 *enabled, u64 *running); 875 876 877 struct perf_sample_data { 878 /* 879 * Fields set by perf_sample_data_init(), group so as to 880 * minimize the cachelines touched. 881 */ 882 u64 addr; 883 struct perf_raw_record *raw; 884 struct perf_branch_stack *br_stack; 885 u64 period; 886 u64 weight; 887 u64 txn; 888 union perf_mem_data_src data_src; 889 890 /* 891 * The other fields, optionally {set,used} by 892 * perf_{prepare,output}_sample(). 893 */ 894 u64 type; 895 u64 ip; 896 struct { 897 u32 pid; 898 u32 tid; 899 } tid_entry; 900 u64 time; 901 u64 id; 902 u64 stream_id; 903 struct { 904 u32 cpu; 905 u32 reserved; 906 } cpu_entry; 907 struct perf_callchain_entry *callchain; 908 909 /* 910 * regs_user may point to task_pt_regs or to regs_user_copy, depending 911 * on arch details. 912 */ 913 struct perf_regs regs_user; 914 struct pt_regs regs_user_copy; 915 916 struct perf_regs regs_intr; 917 u64 stack_user_size; 918 919 u64 phys_addr; 920 } ____cacheline_aligned; 921 922 /* default value for data source */ 923 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\ 924 PERF_MEM_S(LVL, NA) |\ 925 PERF_MEM_S(SNOOP, NA) |\ 926 PERF_MEM_S(LOCK, NA) |\ 927 PERF_MEM_S(TLB, NA)) 928 929 static inline void perf_sample_data_init(struct perf_sample_data *data, 930 u64 addr, u64 period) 931 { 932 /* remaining struct members initialized in perf_prepare_sample() */ 933 data->addr = addr; 934 data->raw = NULL; 935 data->br_stack = NULL; 936 data->period = period; 937 data->weight = 0; 938 data->data_src.val = PERF_MEM_NA; 939 data->txn = 0; 940 } 941 942 extern void perf_output_sample(struct perf_output_handle *handle, 943 struct perf_event_header *header, 944 struct perf_sample_data *data, 945 struct perf_event *event); 946 extern void perf_prepare_sample(struct perf_event_header *header, 947 struct perf_sample_data *data, 948 struct perf_event *event, 949 struct pt_regs *regs); 950 951 extern int perf_event_overflow(struct perf_event *event, 952 struct perf_sample_data *data, 953 struct pt_regs *regs); 954 955 extern void perf_event_output_forward(struct perf_event *event, 956 struct perf_sample_data *data, 957 struct pt_regs *regs); 958 extern void perf_event_output_backward(struct perf_event *event, 959 struct perf_sample_data *data, 960 struct pt_regs *regs); 961 extern void perf_event_output(struct perf_event *event, 962 struct perf_sample_data *data, 963 struct pt_regs *regs); 964 965 static inline bool 966 is_default_overflow_handler(struct perf_event *event) 967 { 968 if (likely(event->overflow_handler == perf_event_output_forward)) 969 return true; 970 if (unlikely(event->overflow_handler == perf_event_output_backward)) 971 return true; 972 return false; 973 } 974 975 extern void 976 perf_event_header__init_id(struct perf_event_header *header, 977 struct perf_sample_data *data, 978 struct perf_event *event); 979 extern void 980 perf_event__output_id_sample(struct perf_event *event, 981 struct perf_output_handle *handle, 982 struct perf_sample_data *sample); 983 984 extern void 985 perf_log_lost_samples(struct perf_event *event, u64 lost); 986 987 static inline bool is_sampling_event(struct perf_event *event) 988 { 989 return event->attr.sample_period != 0; 990 } 991 992 /* 993 * Return 1 for a software event, 0 for a hardware event 994 */ 995 static inline int is_software_event(struct perf_event *event) 996 { 997 return event->event_caps & PERF_EV_CAP_SOFTWARE; 998 } 999 1000 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 1001 1002 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64); 1003 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 1004 1005 #ifndef perf_arch_fetch_caller_regs 1006 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 1007 #endif 1008 1009 /* 1010 * Take a snapshot of the regs. Skip ip and frame pointer to 1011 * the nth caller. We only need a few of the regs: 1012 * - ip for PERF_SAMPLE_IP 1013 * - cs for user_mode() tests 1014 * - bp for callchains 1015 * - eflags, for future purposes, just in case 1016 */ 1017 static inline void perf_fetch_caller_regs(struct pt_regs *regs) 1018 { 1019 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 1020 } 1021 1022 static __always_inline void 1023 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 1024 { 1025 if (static_key_false(&perf_swevent_enabled[event_id])) 1026 __perf_sw_event(event_id, nr, regs, addr); 1027 } 1028 1029 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]); 1030 1031 /* 1032 * 'Special' version for the scheduler, it hard assumes no recursion, 1033 * which is guaranteed by us not actually scheduling inside other swevents 1034 * because those disable preemption. 1035 */ 1036 static __always_inline void 1037 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) 1038 { 1039 if (static_key_false(&perf_swevent_enabled[event_id])) { 1040 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1041 1042 perf_fetch_caller_regs(regs); 1043 ___perf_sw_event(event_id, nr, regs, addr); 1044 } 1045 } 1046 1047 extern struct static_key_false perf_sched_events; 1048 1049 static __always_inline bool 1050 perf_sw_migrate_enabled(void) 1051 { 1052 if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS])) 1053 return true; 1054 return false; 1055 } 1056 1057 static inline void perf_event_task_migrate(struct task_struct *task) 1058 { 1059 if (perf_sw_migrate_enabled()) 1060 task->sched_migrated = 1; 1061 } 1062 1063 static inline void perf_event_task_sched_in(struct task_struct *prev, 1064 struct task_struct *task) 1065 { 1066 if (static_branch_unlikely(&perf_sched_events)) 1067 __perf_event_task_sched_in(prev, task); 1068 1069 if (perf_sw_migrate_enabled() && task->sched_migrated) { 1070 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1071 1072 perf_fetch_caller_regs(regs); 1073 ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0); 1074 task->sched_migrated = 0; 1075 } 1076 } 1077 1078 static inline void perf_event_task_sched_out(struct task_struct *prev, 1079 struct task_struct *next) 1080 { 1081 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0); 1082 1083 if (static_branch_unlikely(&perf_sched_events)) 1084 __perf_event_task_sched_out(prev, next); 1085 } 1086 1087 extern void perf_event_mmap(struct vm_area_struct *vma); 1088 extern struct perf_guest_info_callbacks *perf_guest_cbs; 1089 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1090 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1091 1092 extern void perf_event_exec(void); 1093 extern void perf_event_comm(struct task_struct *tsk, bool exec); 1094 extern void perf_event_namespaces(struct task_struct *tsk); 1095 extern void perf_event_fork(struct task_struct *tsk); 1096 1097 /* Callchains */ 1098 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 1099 1100 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1101 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1102 extern struct perf_callchain_entry * 1103 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user, 1104 u32 max_stack, bool crosstask, bool add_mark); 1105 extern int get_callchain_buffers(int max_stack); 1106 extern void put_callchain_buffers(void); 1107 1108 extern int sysctl_perf_event_max_stack; 1109 extern int sysctl_perf_event_max_contexts_per_stack; 1110 1111 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip) 1112 { 1113 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) { 1114 struct perf_callchain_entry *entry = ctx->entry; 1115 entry->ip[entry->nr++] = ip; 1116 ++ctx->contexts; 1117 return 0; 1118 } else { 1119 ctx->contexts_maxed = true; 1120 return -1; /* no more room, stop walking the stack */ 1121 } 1122 } 1123 1124 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip) 1125 { 1126 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) { 1127 struct perf_callchain_entry *entry = ctx->entry; 1128 entry->ip[entry->nr++] = ip; 1129 ++ctx->nr; 1130 return 0; 1131 } else { 1132 return -1; /* no more room, stop walking the stack */ 1133 } 1134 } 1135 1136 extern int sysctl_perf_event_paranoid; 1137 extern int sysctl_perf_event_mlock; 1138 extern int sysctl_perf_event_sample_rate; 1139 extern int sysctl_perf_cpu_time_max_percent; 1140 1141 extern void perf_sample_event_took(u64 sample_len_ns); 1142 1143 extern int perf_proc_update_handler(struct ctl_table *table, int write, 1144 void __user *buffer, size_t *lenp, 1145 loff_t *ppos); 1146 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 1147 void __user *buffer, size_t *lenp, 1148 loff_t *ppos); 1149 1150 int perf_event_max_stack_handler(struct ctl_table *table, int write, 1151 void __user *buffer, size_t *lenp, loff_t *ppos); 1152 1153 static inline bool perf_paranoid_tracepoint_raw(void) 1154 { 1155 return sysctl_perf_event_paranoid > -1; 1156 } 1157 1158 static inline bool perf_paranoid_cpu(void) 1159 { 1160 return sysctl_perf_event_paranoid > 0; 1161 } 1162 1163 static inline bool perf_paranoid_kernel(void) 1164 { 1165 return sysctl_perf_event_paranoid > 1; 1166 } 1167 1168 extern void perf_event_init(void); 1169 extern void perf_tp_event(u16 event_type, u64 count, void *record, 1170 int entry_size, struct pt_regs *regs, 1171 struct hlist_head *head, int rctx, 1172 struct task_struct *task); 1173 extern void perf_bp_event(struct perf_event *event, void *data); 1174 1175 #ifndef perf_misc_flags 1176 # define perf_misc_flags(regs) \ 1177 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 1178 # define perf_instruction_pointer(regs) instruction_pointer(regs) 1179 #endif 1180 1181 static inline bool has_branch_stack(struct perf_event *event) 1182 { 1183 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; 1184 } 1185 1186 static inline bool needs_branch_stack(struct perf_event *event) 1187 { 1188 return event->attr.branch_sample_type != 0; 1189 } 1190 1191 static inline bool has_aux(struct perf_event *event) 1192 { 1193 return event->pmu->setup_aux; 1194 } 1195 1196 static inline bool is_write_backward(struct perf_event *event) 1197 { 1198 return !!event->attr.write_backward; 1199 } 1200 1201 static inline bool has_addr_filter(struct perf_event *event) 1202 { 1203 return event->pmu->nr_addr_filters; 1204 } 1205 1206 /* 1207 * An inherited event uses parent's filters 1208 */ 1209 static inline struct perf_addr_filters_head * 1210 perf_event_addr_filters(struct perf_event *event) 1211 { 1212 struct perf_addr_filters_head *ifh = &event->addr_filters; 1213 1214 if (event->parent) 1215 ifh = &event->parent->addr_filters; 1216 1217 return ifh; 1218 } 1219 1220 extern void perf_event_addr_filters_sync(struct perf_event *event); 1221 1222 extern int perf_output_begin(struct perf_output_handle *handle, 1223 struct perf_event *event, unsigned int size); 1224 extern int perf_output_begin_forward(struct perf_output_handle *handle, 1225 struct perf_event *event, 1226 unsigned int size); 1227 extern int perf_output_begin_backward(struct perf_output_handle *handle, 1228 struct perf_event *event, 1229 unsigned int size); 1230 1231 extern void perf_output_end(struct perf_output_handle *handle); 1232 extern unsigned int perf_output_copy(struct perf_output_handle *handle, 1233 const void *buf, unsigned int len); 1234 extern unsigned int perf_output_skip(struct perf_output_handle *handle, 1235 unsigned int len); 1236 extern int perf_swevent_get_recursion_context(void); 1237 extern void perf_swevent_put_recursion_context(int rctx); 1238 extern u64 perf_swevent_set_period(struct perf_event *event); 1239 extern void perf_event_enable(struct perf_event *event); 1240 extern void perf_event_disable(struct perf_event *event); 1241 extern void perf_event_disable_local(struct perf_event *event); 1242 extern void perf_event_disable_inatomic(struct perf_event *event); 1243 extern void perf_event_task_tick(void); 1244 extern int perf_event_account_interrupt(struct perf_event *event); 1245 #else /* !CONFIG_PERF_EVENTS: */ 1246 static inline void * 1247 perf_aux_output_begin(struct perf_output_handle *handle, 1248 struct perf_event *event) { return NULL; } 1249 static inline void 1250 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size) 1251 { } 1252 static inline int 1253 perf_aux_output_skip(struct perf_output_handle *handle, 1254 unsigned long size) { return -EINVAL; } 1255 static inline void * 1256 perf_get_aux(struct perf_output_handle *handle) { return NULL; } 1257 static inline void 1258 perf_event_task_migrate(struct task_struct *task) { } 1259 static inline void 1260 perf_event_task_sched_in(struct task_struct *prev, 1261 struct task_struct *task) { } 1262 static inline void 1263 perf_event_task_sched_out(struct task_struct *prev, 1264 struct task_struct *next) { } 1265 static inline int perf_event_init_task(struct task_struct *child) { return 0; } 1266 static inline void perf_event_exit_task(struct task_struct *child) { } 1267 static inline void perf_event_free_task(struct task_struct *task) { } 1268 static inline void perf_event_delayed_put(struct task_struct *task) { } 1269 static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); } 1270 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 1271 { 1272 return ERR_PTR(-EINVAL); 1273 } 1274 static inline int perf_event_read_local(struct perf_event *event, u64 *value, 1275 u64 *enabled, u64 *running) 1276 { 1277 return -EINVAL; 1278 } 1279 static inline void perf_event_print_debug(void) { } 1280 static inline int perf_event_task_disable(void) { return -EINVAL; } 1281 static inline int perf_event_task_enable(void) { return -EINVAL; } 1282 static inline int perf_event_refresh(struct perf_event *event, int refresh) 1283 { 1284 return -EINVAL; 1285 } 1286 1287 static inline void 1288 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 1289 static inline void 1290 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { } 1291 static inline void 1292 perf_bp_event(struct perf_event *event, void *data) { } 1293 1294 static inline int perf_register_guest_info_callbacks 1295 (struct perf_guest_info_callbacks *callbacks) { return 0; } 1296 static inline int perf_unregister_guest_info_callbacks 1297 (struct perf_guest_info_callbacks *callbacks) { return 0; } 1298 1299 static inline void perf_event_mmap(struct vm_area_struct *vma) { } 1300 static inline void perf_event_exec(void) { } 1301 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { } 1302 static inline void perf_event_namespaces(struct task_struct *tsk) { } 1303 static inline void perf_event_fork(struct task_struct *tsk) { } 1304 static inline void perf_event_init(void) { } 1305 static inline int perf_swevent_get_recursion_context(void) { return -1; } 1306 static inline void perf_swevent_put_recursion_context(int rctx) { } 1307 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; } 1308 static inline void perf_event_enable(struct perf_event *event) { } 1309 static inline void perf_event_disable(struct perf_event *event) { } 1310 static inline int __perf_event_disable(void *info) { return -1; } 1311 static inline void perf_event_task_tick(void) { } 1312 static inline int perf_event_release_kernel(struct perf_event *event) { return 0; } 1313 #endif 1314 1315 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) 1316 extern void perf_restore_debug_store(void); 1317 #else 1318 static inline void perf_restore_debug_store(void) { } 1319 #endif 1320 1321 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag) 1322 { 1323 return frag->pad < sizeof(u64); 1324 } 1325 1326 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 1327 1328 struct perf_pmu_events_attr { 1329 struct device_attribute attr; 1330 u64 id; 1331 const char *event_str; 1332 }; 1333 1334 struct perf_pmu_events_ht_attr { 1335 struct device_attribute attr; 1336 u64 id; 1337 const char *event_str_ht; 1338 const char *event_str_noht; 1339 }; 1340 1341 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 1342 char *page); 1343 1344 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \ 1345 static struct perf_pmu_events_attr _var = { \ 1346 .attr = __ATTR(_name, 0444, _show, NULL), \ 1347 .id = _id, \ 1348 }; 1349 1350 #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \ 1351 static struct perf_pmu_events_attr _var = { \ 1352 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \ 1353 .id = 0, \ 1354 .event_str = _str, \ 1355 }; 1356 1357 #define PMU_FORMAT_ATTR(_name, _format) \ 1358 static ssize_t \ 1359 _name##_show(struct device *dev, \ 1360 struct device_attribute *attr, \ 1361 char *page) \ 1362 { \ 1363 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ 1364 return sprintf(page, _format "\n"); \ 1365 } \ 1366 \ 1367 static struct device_attribute format_attr_##_name = __ATTR_RO(_name) 1368 1369 /* Performance counter hotplug functions */ 1370 #ifdef CONFIG_PERF_EVENTS 1371 int perf_event_init_cpu(unsigned int cpu); 1372 int perf_event_exit_cpu(unsigned int cpu); 1373 #else 1374 #define perf_event_init_cpu NULL 1375 #define perf_event_exit_cpu NULL 1376 #endif 1377 1378 #endif /* _LINUX_PERF_EVENT_H */ 1379