xref: /linux-6.15/include/linux/perf_event.h (revision 06c7a489)
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <[email protected]>
5  *    Copyright (C) 2008-2009, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2009, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16 
17 #include <linux/types.h>
18 #include <linux/ioctl.h>
19 #include <asm/byteorder.h>
20 
21 /*
22  * User-space ABI bits:
23  */
24 
25 /*
26  * attr.type
27  */
28 enum perf_type_id {
29 	PERF_TYPE_HARDWARE			= 0,
30 	PERF_TYPE_SOFTWARE			= 1,
31 	PERF_TYPE_TRACEPOINT			= 2,
32 	PERF_TYPE_HW_CACHE			= 3,
33 	PERF_TYPE_RAW				= 4,
34 	PERF_TYPE_BREAKPOINT			= 5,
35 
36 	PERF_TYPE_MAX,				/* non-ABI */
37 };
38 
39 /*
40  * Generalized performance event event_id types, used by the
41  * attr.event_id parameter of the sys_perf_event_open()
42  * syscall:
43  */
44 enum perf_hw_id {
45 	/*
46 	 * Common hardware events, generalized by the kernel:
47 	 */
48 	PERF_COUNT_HW_CPU_CYCLES		= 0,
49 	PERF_COUNT_HW_INSTRUCTIONS		= 1,
50 	PERF_COUNT_HW_CACHE_REFERENCES		= 2,
51 	PERF_COUNT_HW_CACHE_MISSES		= 3,
52 	PERF_COUNT_HW_BRANCH_INSTRUCTIONS	= 4,
53 	PERF_COUNT_HW_BRANCH_MISSES		= 5,
54 	PERF_COUNT_HW_BUS_CYCLES		= 6,
55 
56 	PERF_COUNT_HW_MAX,			/* non-ABI */
57 };
58 
59 /*
60  * Generalized hardware cache events:
61  *
62  *       { L1-D, L1-I, LLC, ITLB, DTLB, BPU } x
63  *       { read, write, prefetch } x
64  *       { accesses, misses }
65  */
66 enum perf_hw_cache_id {
67 	PERF_COUNT_HW_CACHE_L1D			= 0,
68 	PERF_COUNT_HW_CACHE_L1I			= 1,
69 	PERF_COUNT_HW_CACHE_LL			= 2,
70 	PERF_COUNT_HW_CACHE_DTLB		= 3,
71 	PERF_COUNT_HW_CACHE_ITLB		= 4,
72 	PERF_COUNT_HW_CACHE_BPU			= 5,
73 
74 	PERF_COUNT_HW_CACHE_MAX,		/* non-ABI */
75 };
76 
77 enum perf_hw_cache_op_id {
78 	PERF_COUNT_HW_CACHE_OP_READ		= 0,
79 	PERF_COUNT_HW_CACHE_OP_WRITE		= 1,
80 	PERF_COUNT_HW_CACHE_OP_PREFETCH		= 2,
81 
82 	PERF_COUNT_HW_CACHE_OP_MAX,		/* non-ABI */
83 };
84 
85 enum perf_hw_cache_op_result_id {
86 	PERF_COUNT_HW_CACHE_RESULT_ACCESS	= 0,
87 	PERF_COUNT_HW_CACHE_RESULT_MISS		= 1,
88 
89 	PERF_COUNT_HW_CACHE_RESULT_MAX,		/* non-ABI */
90 };
91 
92 /*
93  * Special "software" events provided by the kernel, even if the hardware
94  * does not support performance events. These events measure various
95  * physical and sw events of the kernel (and allow the profiling of them as
96  * well):
97  */
98 enum perf_sw_ids {
99 	PERF_COUNT_SW_CPU_CLOCK			= 0,
100 	PERF_COUNT_SW_TASK_CLOCK		= 1,
101 	PERF_COUNT_SW_PAGE_FAULTS		= 2,
102 	PERF_COUNT_SW_CONTEXT_SWITCHES		= 3,
103 	PERF_COUNT_SW_CPU_MIGRATIONS		= 4,
104 	PERF_COUNT_SW_PAGE_FAULTS_MIN		= 5,
105 	PERF_COUNT_SW_PAGE_FAULTS_MAJ		= 6,
106 	PERF_COUNT_SW_ALIGNMENT_FAULTS		= 7,
107 	PERF_COUNT_SW_EMULATION_FAULTS		= 8,
108 
109 	PERF_COUNT_SW_MAX,			/* non-ABI */
110 };
111 
112 /*
113  * Bits that can be set in attr.sample_type to request information
114  * in the overflow packets.
115  */
116 enum perf_event_sample_format {
117 	PERF_SAMPLE_IP				= 1U << 0,
118 	PERF_SAMPLE_TID				= 1U << 1,
119 	PERF_SAMPLE_TIME			= 1U << 2,
120 	PERF_SAMPLE_ADDR			= 1U << 3,
121 	PERF_SAMPLE_READ			= 1U << 4,
122 	PERF_SAMPLE_CALLCHAIN			= 1U << 5,
123 	PERF_SAMPLE_ID				= 1U << 6,
124 	PERF_SAMPLE_CPU				= 1U << 7,
125 	PERF_SAMPLE_PERIOD			= 1U << 8,
126 	PERF_SAMPLE_STREAM_ID			= 1U << 9,
127 	PERF_SAMPLE_RAW				= 1U << 10,
128 
129 	PERF_SAMPLE_MAX = 1U << 11,		/* non-ABI */
130 };
131 
132 /*
133  * The format of the data returned by read() on a perf event fd,
134  * as specified by attr.read_format:
135  *
136  * struct read_format {
137  *	{ u64		value;
138  *	  { u64		time_enabled; } && PERF_FORMAT_ENABLED
139  *	  { u64		time_running; } && PERF_FORMAT_RUNNING
140  *	  { u64		id;           } && PERF_FORMAT_ID
141  *	} && !PERF_FORMAT_GROUP
142  *
143  *	{ u64		nr;
144  *	  { u64		time_enabled; } && PERF_FORMAT_ENABLED
145  *	  { u64		time_running; } && PERF_FORMAT_RUNNING
146  *	  { u64		value;
147  *	    { u64	id;           } && PERF_FORMAT_ID
148  *	  }		cntr[nr];
149  *	} && PERF_FORMAT_GROUP
150  * };
151  */
152 enum perf_event_read_format {
153 	PERF_FORMAT_TOTAL_TIME_ENABLED		= 1U << 0,
154 	PERF_FORMAT_TOTAL_TIME_RUNNING		= 1U << 1,
155 	PERF_FORMAT_ID				= 1U << 2,
156 	PERF_FORMAT_GROUP			= 1U << 3,
157 
158 	PERF_FORMAT_MAX = 1U << 4,		/* non-ABI */
159 };
160 
161 #define PERF_ATTR_SIZE_VER0	64	/* sizeof first published struct */
162 
163 /*
164  * Hardware event_id to monitor via a performance monitoring event:
165  */
166 struct perf_event_attr {
167 
168 	/*
169 	 * Major type: hardware/software/tracepoint/etc.
170 	 */
171 	__u32			type;
172 
173 	/*
174 	 * Size of the attr structure, for fwd/bwd compat.
175 	 */
176 	__u32			size;
177 
178 	/*
179 	 * Type specific configuration information.
180 	 */
181 	__u64			config;
182 
183 	union {
184 		__u64		sample_period;
185 		__u64		sample_freq;
186 	};
187 
188 	__u64			sample_type;
189 	__u64			read_format;
190 
191 	__u64			disabled       :  1, /* off by default        */
192 				inherit	       :  1, /* children inherit it   */
193 				pinned	       :  1, /* must always be on PMU */
194 				exclusive      :  1, /* only group on PMU     */
195 				exclude_user   :  1, /* don't count user      */
196 				exclude_kernel :  1, /* ditto kernel          */
197 				exclude_hv     :  1, /* ditto hypervisor      */
198 				exclude_idle   :  1, /* don't count when idle */
199 				mmap           :  1, /* include mmap data     */
200 				comm	       :  1, /* include comm data     */
201 				freq           :  1, /* use freq, not period  */
202 				inherit_stat   :  1, /* per task counts       */
203 				enable_on_exec :  1, /* next exec enables     */
204 				task           :  1, /* trace fork/exit       */
205 				watermark      :  1, /* wakeup_watermark      */
206 				/*
207 				 * precise_ip:
208 				 *
209 				 *  0 - SAMPLE_IP can have arbitrary skid
210 				 *  1 - SAMPLE_IP must have constant skid
211 				 *  2 - SAMPLE_IP requested to have 0 skid
212 				 *  3 - SAMPLE_IP must have 0 skid
213 				 *
214 				 *  See also PERF_RECORD_MISC_EXACT_IP
215 				 */
216 				precise_ip     :  2, /* skid constraint       */
217 				mmap_data      :  1, /* non-exec mmap data    */
218 
219 				__reserved_1   : 46;
220 
221 	union {
222 		__u32		wakeup_events;	  /* wakeup every n events */
223 		__u32		wakeup_watermark; /* bytes before wakeup   */
224 	};
225 
226 	__u32			bp_type;
227 	__u64			bp_addr;
228 	__u64			bp_len;
229 };
230 
231 /*
232  * Ioctls that can be done on a perf event fd:
233  */
234 #define PERF_EVENT_IOC_ENABLE		_IO ('$', 0)
235 #define PERF_EVENT_IOC_DISABLE		_IO ('$', 1)
236 #define PERF_EVENT_IOC_REFRESH		_IO ('$', 2)
237 #define PERF_EVENT_IOC_RESET		_IO ('$', 3)
238 #define PERF_EVENT_IOC_PERIOD		_IOW('$', 4, __u64)
239 #define PERF_EVENT_IOC_SET_OUTPUT	_IO ('$', 5)
240 #define PERF_EVENT_IOC_SET_FILTER	_IOW('$', 6, char *)
241 
242 enum perf_event_ioc_flags {
243 	PERF_IOC_FLAG_GROUP		= 1U << 0,
244 };
245 
246 /*
247  * Structure of the page that can be mapped via mmap
248  */
249 struct perf_event_mmap_page {
250 	__u32	version;		/* version number of this structure */
251 	__u32	compat_version;		/* lowest version this is compat with */
252 
253 	/*
254 	 * Bits needed to read the hw events in user-space.
255 	 *
256 	 *   u32 seq;
257 	 *   s64 count;
258 	 *
259 	 *   do {
260 	 *     seq = pc->lock;
261 	 *
262 	 *     barrier()
263 	 *     if (pc->index) {
264 	 *       count = pmc_read(pc->index - 1);
265 	 *       count += pc->offset;
266 	 *     } else
267 	 *       goto regular_read;
268 	 *
269 	 *     barrier();
270 	 *   } while (pc->lock != seq);
271 	 *
272 	 * NOTE: for obvious reason this only works on self-monitoring
273 	 *       processes.
274 	 */
275 	__u32	lock;			/* seqlock for synchronization */
276 	__u32	index;			/* hardware event identifier */
277 	__s64	offset;			/* add to hardware event value */
278 	__u64	time_enabled;		/* time event active */
279 	__u64	time_running;		/* time event on cpu */
280 
281 		/*
282 		 * Hole for extension of the self monitor capabilities
283 		 */
284 
285 	__u64	__reserved[123];	/* align to 1k */
286 
287 	/*
288 	 * Control data for the mmap() data buffer.
289 	 *
290 	 * User-space reading the @data_head value should issue an rmb(), on
291 	 * SMP capable platforms, after reading this value -- see
292 	 * perf_event_wakeup().
293 	 *
294 	 * When the mapping is PROT_WRITE the @data_tail value should be
295 	 * written by userspace to reflect the last read data. In this case
296 	 * the kernel will not over-write unread data.
297 	 */
298 	__u64   data_head;		/* head in the data section */
299 	__u64	data_tail;		/* user-space written tail */
300 };
301 
302 #define PERF_RECORD_MISC_CPUMODE_MASK		(7 << 0)
303 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN	(0 << 0)
304 #define PERF_RECORD_MISC_KERNEL			(1 << 0)
305 #define PERF_RECORD_MISC_USER			(2 << 0)
306 #define PERF_RECORD_MISC_HYPERVISOR		(3 << 0)
307 #define PERF_RECORD_MISC_GUEST_KERNEL		(4 << 0)
308 #define PERF_RECORD_MISC_GUEST_USER		(5 << 0)
309 
310 /*
311  * Indicates that the content of PERF_SAMPLE_IP points to
312  * the actual instruction that triggered the event. See also
313  * perf_event_attr::precise_ip.
314  */
315 #define PERF_RECORD_MISC_EXACT_IP		(1 << 14)
316 /*
317  * Reserve the last bit to indicate some extended misc field
318  */
319 #define PERF_RECORD_MISC_EXT_RESERVED		(1 << 15)
320 
321 struct perf_event_header {
322 	__u32	type;
323 	__u16	misc;
324 	__u16	size;
325 };
326 
327 enum perf_event_type {
328 
329 	/*
330 	 * The MMAP events record the PROT_EXEC mappings so that we can
331 	 * correlate userspace IPs to code. They have the following structure:
332 	 *
333 	 * struct {
334 	 *	struct perf_event_header	header;
335 	 *
336 	 *	u32				pid, tid;
337 	 *	u64				addr;
338 	 *	u64				len;
339 	 *	u64				pgoff;
340 	 *	char				filename[];
341 	 * };
342 	 */
343 	PERF_RECORD_MMAP			= 1,
344 
345 	/*
346 	 * struct {
347 	 *	struct perf_event_header	header;
348 	 *	u64				id;
349 	 *	u64				lost;
350 	 * };
351 	 */
352 	PERF_RECORD_LOST			= 2,
353 
354 	/*
355 	 * struct {
356 	 *	struct perf_event_header	header;
357 	 *
358 	 *	u32				pid, tid;
359 	 *	char				comm[];
360 	 * };
361 	 */
362 	PERF_RECORD_COMM			= 3,
363 
364 	/*
365 	 * struct {
366 	 *	struct perf_event_header	header;
367 	 *	u32				pid, ppid;
368 	 *	u32				tid, ptid;
369 	 *	u64				time;
370 	 * };
371 	 */
372 	PERF_RECORD_EXIT			= 4,
373 
374 	/*
375 	 * struct {
376 	 *	struct perf_event_header	header;
377 	 *	u64				time;
378 	 *	u64				id;
379 	 *	u64				stream_id;
380 	 * };
381 	 */
382 	PERF_RECORD_THROTTLE			= 5,
383 	PERF_RECORD_UNTHROTTLE			= 6,
384 
385 	/*
386 	 * struct {
387 	 *	struct perf_event_header	header;
388 	 *	u32				pid, ppid;
389 	 *	u32				tid, ptid;
390 	 *	u64				time;
391 	 * };
392 	 */
393 	PERF_RECORD_FORK			= 7,
394 
395 	/*
396 	 * struct {
397 	 *	struct perf_event_header	header;
398 	 *	u32				pid, tid;
399 	 *
400 	 *	struct read_format		values;
401 	 * };
402 	 */
403 	PERF_RECORD_READ			= 8,
404 
405 	/*
406 	 * struct {
407 	 *	struct perf_event_header	header;
408 	 *
409 	 *	{ u64			ip;	  } && PERF_SAMPLE_IP
410 	 *	{ u32			pid, tid; } && PERF_SAMPLE_TID
411 	 *	{ u64			time;     } && PERF_SAMPLE_TIME
412 	 *	{ u64			addr;     } && PERF_SAMPLE_ADDR
413 	 *	{ u64			id;	  } && PERF_SAMPLE_ID
414 	 *	{ u64			stream_id;} && PERF_SAMPLE_STREAM_ID
415 	 *	{ u32			cpu, res; } && PERF_SAMPLE_CPU
416 	 *	{ u64			period;   } && PERF_SAMPLE_PERIOD
417 	 *
418 	 *	{ struct read_format	values;	  } && PERF_SAMPLE_READ
419 	 *
420 	 *	{ u64			nr,
421 	 *	  u64			ips[nr];  } && PERF_SAMPLE_CALLCHAIN
422 	 *
423 	 *	#
424 	 *	# The RAW record below is opaque data wrt the ABI
425 	 *	#
426 	 *	# That is, the ABI doesn't make any promises wrt to
427 	 *	# the stability of its content, it may vary depending
428 	 *	# on event, hardware, kernel version and phase of
429 	 *	# the moon.
430 	 *	#
431 	 *	# In other words, PERF_SAMPLE_RAW contents are not an ABI.
432 	 *	#
433 	 *
434 	 *	{ u32			size;
435 	 *	  char                  data[size];}&& PERF_SAMPLE_RAW
436 	 * };
437 	 */
438 	PERF_RECORD_SAMPLE			= 9,
439 
440 	PERF_RECORD_MAX,			/* non-ABI */
441 };
442 
443 enum perf_callchain_context {
444 	PERF_CONTEXT_HV			= (__u64)-32,
445 	PERF_CONTEXT_KERNEL		= (__u64)-128,
446 	PERF_CONTEXT_USER		= (__u64)-512,
447 
448 	PERF_CONTEXT_GUEST		= (__u64)-2048,
449 	PERF_CONTEXT_GUEST_KERNEL	= (__u64)-2176,
450 	PERF_CONTEXT_GUEST_USER		= (__u64)-2560,
451 
452 	PERF_CONTEXT_MAX		= (__u64)-4095,
453 };
454 
455 #define PERF_FLAG_FD_NO_GROUP	(1U << 0)
456 #define PERF_FLAG_FD_OUTPUT	(1U << 1)
457 
458 #ifdef __KERNEL__
459 /*
460  * Kernel-internal data types and definitions:
461  */
462 
463 #ifdef CONFIG_PERF_EVENTS
464 # include <asm/perf_event.h>
465 # include <asm/local64.h>
466 #endif
467 
468 struct perf_guest_info_callbacks {
469 	int (*is_in_guest) (void);
470 	int (*is_user_mode) (void);
471 	unsigned long (*get_guest_ip) (void);
472 };
473 
474 #ifdef CONFIG_HAVE_HW_BREAKPOINT
475 #include <asm/hw_breakpoint.h>
476 #endif
477 
478 #include <linux/list.h>
479 #include <linux/mutex.h>
480 #include <linux/rculist.h>
481 #include <linux/rcupdate.h>
482 #include <linux/spinlock.h>
483 #include <linux/hrtimer.h>
484 #include <linux/fs.h>
485 #include <linux/pid_namespace.h>
486 #include <linux/workqueue.h>
487 #include <linux/ftrace.h>
488 #include <linux/cpu.h>
489 #include <asm/atomic.h>
490 #include <asm/local.h>
491 
492 #define PERF_MAX_STACK_DEPTH		255
493 
494 struct perf_callchain_entry {
495 	__u64				nr;
496 	__u64				ip[PERF_MAX_STACK_DEPTH];
497 };
498 
499 struct perf_raw_record {
500 	u32				size;
501 	void				*data;
502 };
503 
504 struct perf_branch_entry {
505 	__u64				from;
506 	__u64				to;
507 	__u64				flags;
508 };
509 
510 struct perf_branch_stack {
511 	__u64				nr;
512 	struct perf_branch_entry	entries[0];
513 };
514 
515 struct task_struct;
516 
517 /**
518  * struct hw_perf_event - performance event hardware details:
519  */
520 struct hw_perf_event {
521 #ifdef CONFIG_PERF_EVENTS
522 	union {
523 		struct { /* hardware */
524 			u64		config;
525 			u64		last_tag;
526 			unsigned long	config_base;
527 			unsigned long	event_base;
528 			int		idx;
529 			int		last_cpu;
530 		};
531 		struct { /* software */
532 			s64		remaining;
533 			struct hrtimer	hrtimer;
534 		};
535 #ifdef CONFIG_HAVE_HW_BREAKPOINT
536 		struct { /* breakpoint */
537 			struct arch_hw_breakpoint	info;
538 			struct list_head		bp_list;
539 		};
540 #endif
541 	};
542 	local64_t			prev_count;
543 	u64				sample_period;
544 	u64				last_period;
545 	local64_t			period_left;
546 	u64				interrupts;
547 
548 	u64				freq_time_stamp;
549 	u64				freq_count_stamp;
550 #endif
551 };
552 
553 struct perf_event;
554 
555 /*
556  * Common implementation detail of pmu::{start,commit,cancel}_txn
557  */
558 #define PERF_EVENT_TXN 0x1
559 
560 /**
561  * struct pmu - generic performance monitoring unit
562  */
563 struct pmu {
564 	int (*enable)			(struct perf_event *event);
565 	void (*disable)			(struct perf_event *event);
566 	int (*start)			(struct perf_event *event);
567 	void (*stop)			(struct perf_event *event);
568 	void (*read)			(struct perf_event *event);
569 	void (*unthrottle)		(struct perf_event *event);
570 
571 	/*
572 	 * Group events scheduling is treated as a transaction, add group
573 	 * events as a whole and perform one schedulability test. If the test
574 	 * fails, roll back the whole group
575 	 */
576 
577 	/*
578 	 * Start the transaction, after this ->enable() doesn't need
579 	 * to do schedulability tests.
580 	 */
581 	void (*start_txn)	(const struct pmu *pmu);
582 	/*
583 	 * If ->start_txn() disabled the ->enable() schedulability test
584 	 * then ->commit_txn() is required to perform one. On success
585 	 * the transaction is closed. On error the transaction is kept
586 	 * open until ->cancel_txn() is called.
587 	 */
588 	int  (*commit_txn)	(const struct pmu *pmu);
589 	/*
590 	 * Will cancel the transaction, assumes ->disable() is called for
591 	 * each successfull ->enable() during the transaction.
592 	 */
593 	void (*cancel_txn)	(const struct pmu *pmu);
594 };
595 
596 /**
597  * enum perf_event_active_state - the states of a event
598  */
599 enum perf_event_active_state {
600 	PERF_EVENT_STATE_ERROR		= -2,
601 	PERF_EVENT_STATE_OFF		= -1,
602 	PERF_EVENT_STATE_INACTIVE	=  0,
603 	PERF_EVENT_STATE_ACTIVE		=  1,
604 };
605 
606 struct file;
607 
608 #define PERF_BUFFER_WRITABLE		0x01
609 
610 struct perf_buffer {
611 	atomic_t			refcount;
612 	struct rcu_head			rcu_head;
613 #ifdef CONFIG_PERF_USE_VMALLOC
614 	struct work_struct		work;
615 	int				page_order;	/* allocation order  */
616 #endif
617 	int				nr_pages;	/* nr of data pages  */
618 	int				writable;	/* are we writable   */
619 
620 	atomic_t			poll;		/* POLL_ for wakeups */
621 
622 	local_t				head;		/* write position    */
623 	local_t				nest;		/* nested writers    */
624 	local_t				events;		/* event limit       */
625 	local_t				wakeup;		/* wakeup stamp      */
626 	local_t				lost;		/* nr records lost   */
627 
628 	long				watermark;	/* wakeup watermark  */
629 
630 	struct perf_event_mmap_page	*user_page;
631 	void				*data_pages[0];
632 };
633 
634 struct perf_pending_entry {
635 	struct perf_pending_entry *next;
636 	void (*func)(struct perf_pending_entry *);
637 };
638 
639 struct perf_sample_data;
640 
641 typedef void (*perf_overflow_handler_t)(struct perf_event *, int,
642 					struct perf_sample_data *,
643 					struct pt_regs *regs);
644 
645 enum perf_group_flag {
646 	PERF_GROUP_SOFTWARE = 0x1,
647 };
648 
649 #define SWEVENT_HLIST_BITS	8
650 #define SWEVENT_HLIST_SIZE	(1 << SWEVENT_HLIST_BITS)
651 
652 struct swevent_hlist {
653 	struct hlist_head	heads[SWEVENT_HLIST_SIZE];
654 	struct rcu_head		rcu_head;
655 };
656 
657 #define PERF_ATTACH_CONTEXT	0x01
658 #define PERF_ATTACH_GROUP	0x02
659 
660 /**
661  * struct perf_event - performance event kernel representation:
662  */
663 struct perf_event {
664 #ifdef CONFIG_PERF_EVENTS
665 	struct list_head		group_entry;
666 	struct list_head		event_entry;
667 	struct list_head		sibling_list;
668 	struct hlist_node		hlist_entry;
669 	int				nr_siblings;
670 	int				group_flags;
671 	struct perf_event		*group_leader;
672 	const struct pmu		*pmu;
673 
674 	enum perf_event_active_state	state;
675 	unsigned int			attach_state;
676 	local64_t			count;
677 	atomic64_t			child_count;
678 
679 	/*
680 	 * These are the total time in nanoseconds that the event
681 	 * has been enabled (i.e. eligible to run, and the task has
682 	 * been scheduled in, if this is a per-task event)
683 	 * and running (scheduled onto the CPU), respectively.
684 	 *
685 	 * They are computed from tstamp_enabled, tstamp_running and
686 	 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
687 	 */
688 	u64				total_time_enabled;
689 	u64				total_time_running;
690 
691 	/*
692 	 * These are timestamps used for computing total_time_enabled
693 	 * and total_time_running when the event is in INACTIVE or
694 	 * ACTIVE state, measured in nanoseconds from an arbitrary point
695 	 * in time.
696 	 * tstamp_enabled: the notional time when the event was enabled
697 	 * tstamp_running: the notional time when the event was scheduled on
698 	 * tstamp_stopped: in INACTIVE state, the notional time when the
699 	 *	event was scheduled off.
700 	 */
701 	u64				tstamp_enabled;
702 	u64				tstamp_running;
703 	u64				tstamp_stopped;
704 
705 	struct perf_event_attr		attr;
706 	struct hw_perf_event		hw;
707 
708 	struct perf_event_context	*ctx;
709 	struct file			*filp;
710 
711 	/*
712 	 * These accumulate total time (in nanoseconds) that children
713 	 * events have been enabled and running, respectively.
714 	 */
715 	atomic64_t			child_total_time_enabled;
716 	atomic64_t			child_total_time_running;
717 
718 	/*
719 	 * Protect attach/detach and child_list:
720 	 */
721 	struct mutex			child_mutex;
722 	struct list_head		child_list;
723 	struct perf_event		*parent;
724 
725 	int				oncpu;
726 	int				cpu;
727 
728 	struct list_head		owner_entry;
729 	struct task_struct		*owner;
730 
731 	/* mmap bits */
732 	struct mutex			mmap_mutex;
733 	atomic_t			mmap_count;
734 	int				mmap_locked;
735 	struct user_struct		*mmap_user;
736 	struct perf_buffer		*buffer;
737 
738 	/* poll related */
739 	wait_queue_head_t		waitq;
740 	struct fasync_struct		*fasync;
741 
742 	/* delayed work for NMIs and such */
743 	int				pending_wakeup;
744 	int				pending_kill;
745 	int				pending_disable;
746 	struct perf_pending_entry	pending;
747 
748 	atomic_t			event_limit;
749 
750 	void (*destroy)(struct perf_event *);
751 	struct rcu_head			rcu_head;
752 
753 	struct pid_namespace		*ns;
754 	u64				id;
755 
756 	perf_overflow_handler_t		overflow_handler;
757 
758 #ifdef CONFIG_EVENT_TRACING
759 	struct ftrace_event_call	*tp_event;
760 	struct event_filter		*filter;
761 #endif
762 
763 #endif /* CONFIG_PERF_EVENTS */
764 };
765 
766 /**
767  * struct perf_event_context - event context structure
768  *
769  * Used as a container for task events and CPU events as well:
770  */
771 struct perf_event_context {
772 	/*
773 	 * Protect the states of the events in the list,
774 	 * nr_active, and the list:
775 	 */
776 	raw_spinlock_t			lock;
777 	/*
778 	 * Protect the list of events.  Locking either mutex or lock
779 	 * is sufficient to ensure the list doesn't change; to change
780 	 * the list you need to lock both the mutex and the spinlock.
781 	 */
782 	struct mutex			mutex;
783 
784 	struct list_head		pinned_groups;
785 	struct list_head		flexible_groups;
786 	struct list_head		event_list;
787 	int				nr_events;
788 	int				nr_active;
789 	int				is_active;
790 	int				nr_stat;
791 	atomic_t			refcount;
792 	struct task_struct		*task;
793 
794 	/*
795 	 * Context clock, runs when context enabled.
796 	 */
797 	u64				time;
798 	u64				timestamp;
799 
800 	/*
801 	 * These fields let us detect when two contexts have both
802 	 * been cloned (inherited) from a common ancestor.
803 	 */
804 	struct perf_event_context	*parent_ctx;
805 	u64				parent_gen;
806 	u64				generation;
807 	int				pin_count;
808 	struct rcu_head			rcu_head;
809 };
810 
811 /**
812  * struct perf_event_cpu_context - per cpu event context structure
813  */
814 struct perf_cpu_context {
815 	struct perf_event_context	ctx;
816 	struct perf_event_context	*task_ctx;
817 	int				active_oncpu;
818 	int				max_pertask;
819 	int				exclusive;
820 	struct swevent_hlist		*swevent_hlist;
821 	struct mutex			hlist_mutex;
822 	int				hlist_refcount;
823 
824 	/*
825 	 * Recursion avoidance:
826 	 *
827 	 * task, softirq, irq, nmi context
828 	 */
829 	int				recursion[4];
830 };
831 
832 struct perf_output_handle {
833 	struct perf_event		*event;
834 	struct perf_buffer		*buffer;
835 	unsigned long			wakeup;
836 	unsigned long			size;
837 	void				*addr;
838 	int				page;
839 	int				nmi;
840 	int				sample;
841 };
842 
843 #ifdef CONFIG_PERF_EVENTS
844 
845 /*
846  * Set by architecture code:
847  */
848 extern int perf_max_events;
849 
850 extern const struct pmu *hw_perf_event_init(struct perf_event *event);
851 
852 extern void perf_event_task_sched_in(struct task_struct *task);
853 extern void perf_event_task_sched_out(struct task_struct *task, struct task_struct *next);
854 extern void perf_event_task_tick(struct task_struct *task);
855 extern int perf_event_init_task(struct task_struct *child);
856 extern void perf_event_exit_task(struct task_struct *child);
857 extern void perf_event_free_task(struct task_struct *task);
858 extern void set_perf_event_pending(void);
859 extern void perf_event_do_pending(void);
860 extern void perf_event_print_debug(void);
861 extern void __perf_disable(void);
862 extern bool __perf_enable(void);
863 extern void perf_disable(void);
864 extern void perf_enable(void);
865 extern int perf_event_task_disable(void);
866 extern int perf_event_task_enable(void);
867 extern void perf_event_update_userpage(struct perf_event *event);
868 extern int perf_event_release_kernel(struct perf_event *event);
869 extern struct perf_event *
870 perf_event_create_kernel_counter(struct perf_event_attr *attr,
871 				int cpu,
872 				pid_t pid,
873 				perf_overflow_handler_t callback);
874 extern u64 perf_event_read_value(struct perf_event *event,
875 				 u64 *enabled, u64 *running);
876 
877 struct perf_sample_data {
878 	u64				type;
879 
880 	u64				ip;
881 	struct {
882 		u32	pid;
883 		u32	tid;
884 	}				tid_entry;
885 	u64				time;
886 	u64				addr;
887 	u64				id;
888 	u64				stream_id;
889 	struct {
890 		u32	cpu;
891 		u32	reserved;
892 	}				cpu_entry;
893 	u64				period;
894 	struct perf_callchain_entry	*callchain;
895 	struct perf_raw_record		*raw;
896 };
897 
898 static inline
899 void perf_sample_data_init(struct perf_sample_data *data, u64 addr)
900 {
901 	data->addr = addr;
902 	data->raw  = NULL;
903 }
904 
905 extern void perf_output_sample(struct perf_output_handle *handle,
906 			       struct perf_event_header *header,
907 			       struct perf_sample_data *data,
908 			       struct perf_event *event);
909 extern void perf_prepare_sample(struct perf_event_header *header,
910 				struct perf_sample_data *data,
911 				struct perf_event *event,
912 				struct pt_regs *regs);
913 
914 extern int perf_event_overflow(struct perf_event *event, int nmi,
915 				 struct perf_sample_data *data,
916 				 struct pt_regs *regs);
917 
918 /*
919  * Return 1 for a software event, 0 for a hardware event
920  */
921 static inline int is_software_event(struct perf_event *event)
922 {
923 	switch (event->attr.type) {
924 	case PERF_TYPE_SOFTWARE:
925 	case PERF_TYPE_TRACEPOINT:
926 	/* for now the breakpoint stuff also works as software event */
927 	case PERF_TYPE_BREAKPOINT:
928 		return 1;
929 	}
930 	return 0;
931 }
932 
933 extern atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
934 
935 extern void __perf_sw_event(u32, u64, int, struct pt_regs *, u64);
936 
937 #ifndef perf_arch_fetch_caller_regs
938 static inline void
939 perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
940 #endif
941 
942 /*
943  * Take a snapshot of the regs. Skip ip and frame pointer to
944  * the nth caller. We only need a few of the regs:
945  * - ip for PERF_SAMPLE_IP
946  * - cs for user_mode() tests
947  * - bp for callchains
948  * - eflags, for future purposes, just in case
949  */
950 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
951 {
952 	memset(regs, 0, sizeof(*regs));
953 
954 	perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
955 }
956 
957 static inline void
958 perf_sw_event(u32 event_id, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
959 {
960 	if (atomic_read(&perf_swevent_enabled[event_id])) {
961 		struct pt_regs hot_regs;
962 
963 		if (!regs) {
964 			perf_fetch_caller_regs(&hot_regs);
965 			regs = &hot_regs;
966 		}
967 		__perf_sw_event(event_id, nr, nmi, regs, addr);
968 	}
969 }
970 
971 extern void perf_event_mmap(struct vm_area_struct *vma);
972 extern struct perf_guest_info_callbacks *perf_guest_cbs;
973 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
974 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
975 
976 extern void perf_event_comm(struct task_struct *tsk);
977 extern void perf_event_fork(struct task_struct *tsk);
978 
979 extern struct perf_callchain_entry *perf_callchain(struct pt_regs *regs);
980 
981 extern int sysctl_perf_event_paranoid;
982 extern int sysctl_perf_event_mlock;
983 extern int sysctl_perf_event_sample_rate;
984 
985 static inline bool perf_paranoid_tracepoint_raw(void)
986 {
987 	return sysctl_perf_event_paranoid > -1;
988 }
989 
990 static inline bool perf_paranoid_cpu(void)
991 {
992 	return sysctl_perf_event_paranoid > 0;
993 }
994 
995 static inline bool perf_paranoid_kernel(void)
996 {
997 	return sysctl_perf_event_paranoid > 1;
998 }
999 
1000 extern void perf_event_init(void);
1001 extern void perf_tp_event(u64 addr, u64 count, void *record,
1002 			  int entry_size, struct pt_regs *regs,
1003 			  struct hlist_head *head, int rctx);
1004 extern void perf_bp_event(struct perf_event *event, void *data);
1005 
1006 #ifndef perf_misc_flags
1007 #define perf_misc_flags(regs)	(user_mode(regs) ? PERF_RECORD_MISC_USER : \
1008 				 PERF_RECORD_MISC_KERNEL)
1009 #define perf_instruction_pointer(regs)	instruction_pointer(regs)
1010 #endif
1011 
1012 extern int perf_output_begin(struct perf_output_handle *handle,
1013 			     struct perf_event *event, unsigned int size,
1014 			     int nmi, int sample);
1015 extern void perf_output_end(struct perf_output_handle *handle);
1016 extern void perf_output_copy(struct perf_output_handle *handle,
1017 			     const void *buf, unsigned int len);
1018 extern int perf_swevent_get_recursion_context(void);
1019 extern void perf_swevent_put_recursion_context(int rctx);
1020 extern void perf_event_enable(struct perf_event *event);
1021 extern void perf_event_disable(struct perf_event *event);
1022 #else
1023 static inline void
1024 perf_event_task_sched_in(struct task_struct *task)			{ }
1025 static inline void
1026 perf_event_task_sched_out(struct task_struct *task,
1027 			    struct task_struct *next)			{ }
1028 static inline void
1029 perf_event_task_tick(struct task_struct *task)				{ }
1030 static inline int perf_event_init_task(struct task_struct *child)	{ return 0; }
1031 static inline void perf_event_exit_task(struct task_struct *child)	{ }
1032 static inline void perf_event_free_task(struct task_struct *task)	{ }
1033 static inline void perf_event_do_pending(void)				{ }
1034 static inline void perf_event_print_debug(void)				{ }
1035 static inline void perf_disable(void)					{ }
1036 static inline void perf_enable(void)					{ }
1037 static inline int perf_event_task_disable(void)				{ return -EINVAL; }
1038 static inline int perf_event_task_enable(void)				{ return -EINVAL; }
1039 
1040 static inline void
1041 perf_sw_event(u32 event_id, u64 nr, int nmi,
1042 		     struct pt_regs *regs, u64 addr)			{ }
1043 static inline void
1044 perf_bp_event(struct perf_event *event, void *data)			{ }
1045 
1046 static inline int perf_register_guest_info_callbacks
1047 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1048 static inline int perf_unregister_guest_info_callbacks
1049 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1050 
1051 static inline void perf_event_mmap(struct vm_area_struct *vma)		{ }
1052 static inline void perf_event_comm(struct task_struct *tsk)		{ }
1053 static inline void perf_event_fork(struct task_struct *tsk)		{ }
1054 static inline void perf_event_init(void)				{ }
1055 static inline int  perf_swevent_get_recursion_context(void)		{ return -1; }
1056 static inline void perf_swevent_put_recursion_context(int rctx)		{ }
1057 static inline void perf_event_enable(struct perf_event *event)		{ }
1058 static inline void perf_event_disable(struct perf_event *event)		{ }
1059 #endif
1060 
1061 #define perf_output_put(handle, x) \
1062 	perf_output_copy((handle), &(x), sizeof(x))
1063 
1064 /*
1065  * This has to have a higher priority than migration_notifier in sched.c.
1066  */
1067 #define perf_cpu_notifier(fn)					\
1068 do {								\
1069 	static struct notifier_block fn##_nb __cpuinitdata =	\
1070 		{ .notifier_call = fn, .priority = CPU_PRI_PERF }; \
1071 	fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE,		\
1072 		(void *)(unsigned long)smp_processor_id());	\
1073 	fn(&fn##_nb, (unsigned long)CPU_STARTING,		\
1074 		(void *)(unsigned long)smp_processor_id());	\
1075 	fn(&fn##_nb, (unsigned long)CPU_ONLINE,			\
1076 		(void *)(unsigned long)smp_processor_id());	\
1077 	register_cpu_notifier(&fn##_nb);			\
1078 } while (0)
1079 
1080 #endif /* __KERNEL__ */
1081 #endif /* _LINUX_PERF_EVENT_H */
1082