1 /* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <[email protected]> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14 #ifndef _LINUX_PERF_EVENT_H 15 #define _LINUX_PERF_EVENT_H 16 17 #include <uapi/linux/perf_event.h> 18 19 /* 20 * Kernel-internal data types and definitions: 21 */ 22 23 #ifdef CONFIG_PERF_EVENTS 24 # include <asm/perf_event.h> 25 # include <asm/local64.h> 26 #endif 27 28 struct perf_guest_info_callbacks { 29 int (*is_in_guest)(void); 30 int (*is_user_mode)(void); 31 unsigned long (*get_guest_ip)(void); 32 }; 33 34 #ifdef CONFIG_HAVE_HW_BREAKPOINT 35 #include <asm/hw_breakpoint.h> 36 #endif 37 38 #include <linux/list.h> 39 #include <linux/mutex.h> 40 #include <linux/rculist.h> 41 #include <linux/rcupdate.h> 42 #include <linux/spinlock.h> 43 #include <linux/hrtimer.h> 44 #include <linux/fs.h> 45 #include <linux/pid_namespace.h> 46 #include <linux/workqueue.h> 47 #include <linux/ftrace.h> 48 #include <linux/cpu.h> 49 #include <linux/irq_work.h> 50 #include <linux/static_key.h> 51 #include <linux/jump_label_ratelimit.h> 52 #include <linux/atomic.h> 53 #include <linux/sysfs.h> 54 #include <linux/perf_regs.h> 55 #include <linux/workqueue.h> 56 #include <linux/cgroup.h> 57 #include <asm/local.h> 58 59 struct perf_callchain_entry { 60 __u64 nr; 61 __u64 ip[PERF_MAX_STACK_DEPTH]; 62 }; 63 64 struct perf_raw_record { 65 u32 size; 66 void *data; 67 }; 68 69 /* 70 * branch stack layout: 71 * nr: number of taken branches stored in entries[] 72 * 73 * Note that nr can vary from sample to sample 74 * branches (to, from) are stored from most recent 75 * to least recent, i.e., entries[0] contains the most 76 * recent branch. 77 */ 78 struct perf_branch_stack { 79 __u64 nr; 80 struct perf_branch_entry entries[0]; 81 }; 82 83 struct task_struct; 84 85 /* 86 * extra PMU register associated with an event 87 */ 88 struct hw_perf_event_extra { 89 u64 config; /* register value */ 90 unsigned int reg; /* register address or index */ 91 int alloc; /* extra register already allocated */ 92 int idx; /* index in shared_regs->regs[] */ 93 }; 94 95 /** 96 * struct hw_perf_event - performance event hardware details: 97 */ 98 struct hw_perf_event { 99 #ifdef CONFIG_PERF_EVENTS 100 union { 101 struct { /* hardware */ 102 u64 config; 103 u64 last_tag; 104 unsigned long config_base; 105 unsigned long event_base; 106 int event_base_rdpmc; 107 int idx; 108 int last_cpu; 109 int flags; 110 111 struct hw_perf_event_extra extra_reg; 112 struct hw_perf_event_extra branch_reg; 113 }; 114 struct { /* software */ 115 struct hrtimer hrtimer; 116 }; 117 struct { /* tracepoint */ 118 /* for tp_event->class */ 119 struct list_head tp_list; 120 }; 121 struct { /* intel_cqm */ 122 int cqm_state; 123 u32 cqm_rmid; 124 struct list_head cqm_events_entry; 125 struct list_head cqm_groups_entry; 126 struct list_head cqm_group_entry; 127 }; 128 struct { /* itrace */ 129 int itrace_started; 130 }; 131 #ifdef CONFIG_HAVE_HW_BREAKPOINT 132 struct { /* breakpoint */ 133 /* 134 * Crufty hack to avoid the chicken and egg 135 * problem hw_breakpoint has with context 136 * creation and event initalization. 137 */ 138 struct arch_hw_breakpoint info; 139 struct list_head bp_list; 140 }; 141 #endif 142 }; 143 struct task_struct *target; 144 int state; 145 local64_t prev_count; 146 u64 sample_period; 147 u64 last_period; 148 local64_t period_left; 149 u64 interrupts_seq; 150 u64 interrupts; 151 152 u64 freq_time_stamp; 153 u64 freq_count_stamp; 154 #endif 155 }; 156 157 /* 158 * hw_perf_event::state flags 159 */ 160 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 161 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 162 #define PERF_HES_ARCH 0x04 163 164 struct perf_event; 165 166 /* 167 * Common implementation detail of pmu::{start,commit,cancel}_txn 168 */ 169 #define PERF_EVENT_TXN 0x1 170 171 /** 172 * pmu::capabilities flags 173 */ 174 #define PERF_PMU_CAP_NO_INTERRUPT 0x01 175 #define PERF_PMU_CAP_NO_NMI 0x02 176 #define PERF_PMU_CAP_AUX_NO_SG 0x04 177 #define PERF_PMU_CAP_AUX_SW_DOUBLEBUF 0x08 178 #define PERF_PMU_CAP_EXCLUSIVE 0x10 179 #define PERF_PMU_CAP_ITRACE 0x20 180 181 /** 182 * struct pmu - generic performance monitoring unit 183 */ 184 struct pmu { 185 struct list_head entry; 186 187 struct module *module; 188 struct device *dev; 189 const struct attribute_group **attr_groups; 190 const char *name; 191 int type; 192 193 /* 194 * various common per-pmu feature flags 195 */ 196 int capabilities; 197 198 int * __percpu pmu_disable_count; 199 struct perf_cpu_context * __percpu pmu_cpu_context; 200 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */ 201 int task_ctx_nr; 202 int hrtimer_interval_ms; 203 204 /* 205 * Fully disable/enable this PMU, can be used to protect from the PMI 206 * as well as for lazy/batch writing of the MSRs. 207 */ 208 void (*pmu_enable) (struct pmu *pmu); /* optional */ 209 void (*pmu_disable) (struct pmu *pmu); /* optional */ 210 211 /* 212 * Try and initialize the event for this PMU. 213 * Should return -ENOENT when the @event doesn't match this PMU. 214 */ 215 int (*event_init) (struct perf_event *event); 216 217 /* 218 * Notification that the event was mapped or unmapped. Called 219 * in the context of the mapping task. 220 */ 221 void (*event_mapped) (struct perf_event *event); /*optional*/ 222 void (*event_unmapped) (struct perf_event *event); /*optional*/ 223 224 #define PERF_EF_START 0x01 /* start the counter when adding */ 225 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 226 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 227 228 /* 229 * Adds/Removes a counter to/from the PMU, can be done inside 230 * a transaction, see the ->*_txn() methods. 231 */ 232 int (*add) (struct perf_event *event, int flags); 233 void (*del) (struct perf_event *event, int flags); 234 235 /* 236 * Starts/Stops a counter present on the PMU. The PMI handler 237 * should stop the counter when perf_event_overflow() returns 238 * !0. ->start() will be used to continue. 239 */ 240 void (*start) (struct perf_event *event, int flags); 241 void (*stop) (struct perf_event *event, int flags); 242 243 /* 244 * Updates the counter value of the event. 245 */ 246 void (*read) (struct perf_event *event); 247 248 /* 249 * Group events scheduling is treated as a transaction, add 250 * group events as a whole and perform one schedulability test. 251 * If the test fails, roll back the whole group 252 * 253 * Start the transaction, after this ->add() doesn't need to 254 * do schedulability tests. 255 */ 256 void (*start_txn) (struct pmu *pmu); /* optional */ 257 /* 258 * If ->start_txn() disabled the ->add() schedulability test 259 * then ->commit_txn() is required to perform one. On success 260 * the transaction is closed. On error the transaction is kept 261 * open until ->cancel_txn() is called. 262 */ 263 int (*commit_txn) (struct pmu *pmu); /* optional */ 264 /* 265 * Will cancel the transaction, assumes ->del() is called 266 * for each successful ->add() during the transaction. 267 */ 268 void (*cancel_txn) (struct pmu *pmu); /* optional */ 269 270 /* 271 * Will return the value for perf_event_mmap_page::index for this event, 272 * if no implementation is provided it will default to: event->hw.idx + 1. 273 */ 274 int (*event_idx) (struct perf_event *event); /*optional */ 275 276 /* 277 * context-switches callback 278 */ 279 void (*sched_task) (struct perf_event_context *ctx, 280 bool sched_in); 281 /* 282 * PMU specific data size 283 */ 284 size_t task_ctx_size; 285 286 287 /* 288 * Return the count value for a counter. 289 */ 290 u64 (*count) (struct perf_event *event); /*optional*/ 291 292 /* 293 * Set up pmu-private data structures for an AUX area 294 */ 295 void *(*setup_aux) (int cpu, void **pages, 296 int nr_pages, bool overwrite); 297 /* optional */ 298 299 /* 300 * Free pmu-private AUX data structures 301 */ 302 void (*free_aux) (void *aux); /* optional */ 303 304 /* 305 * Filter events for PMU-specific reasons. 306 */ 307 int (*filter_match) (struct perf_event *event); /* optional */ 308 }; 309 310 /** 311 * enum perf_event_active_state - the states of a event 312 */ 313 enum perf_event_active_state { 314 PERF_EVENT_STATE_EXIT = -3, 315 PERF_EVENT_STATE_ERROR = -2, 316 PERF_EVENT_STATE_OFF = -1, 317 PERF_EVENT_STATE_INACTIVE = 0, 318 PERF_EVENT_STATE_ACTIVE = 1, 319 }; 320 321 struct file; 322 struct perf_sample_data; 323 324 typedef void (*perf_overflow_handler_t)(struct perf_event *, 325 struct perf_sample_data *, 326 struct pt_regs *regs); 327 328 enum perf_group_flag { 329 PERF_GROUP_SOFTWARE = 0x1, 330 }; 331 332 #define SWEVENT_HLIST_BITS 8 333 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 334 335 struct swevent_hlist { 336 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 337 struct rcu_head rcu_head; 338 }; 339 340 #define PERF_ATTACH_CONTEXT 0x01 341 #define PERF_ATTACH_GROUP 0x02 342 #define PERF_ATTACH_TASK 0x04 343 #define PERF_ATTACH_TASK_DATA 0x08 344 345 struct perf_cgroup; 346 struct ring_buffer; 347 348 /** 349 * struct perf_event - performance event kernel representation: 350 */ 351 struct perf_event { 352 #ifdef CONFIG_PERF_EVENTS 353 /* 354 * entry onto perf_event_context::event_list; 355 * modifications require ctx->lock 356 * RCU safe iterations. 357 */ 358 struct list_head event_entry; 359 360 /* 361 * XXX: group_entry and sibling_list should be mutually exclusive; 362 * either you're a sibling on a group, or you're the group leader. 363 * Rework the code to always use the same list element. 364 * 365 * Locked for modification by both ctx->mutex and ctx->lock; holding 366 * either sufficies for read. 367 */ 368 struct list_head group_entry; 369 struct list_head sibling_list; 370 371 /* 372 * We need storage to track the entries in perf_pmu_migrate_context; we 373 * cannot use the event_entry because of RCU and we want to keep the 374 * group in tact which avoids us using the other two entries. 375 */ 376 struct list_head migrate_entry; 377 378 struct hlist_node hlist_entry; 379 struct list_head active_entry; 380 int nr_siblings; 381 int group_flags; 382 struct perf_event *group_leader; 383 struct pmu *pmu; 384 385 enum perf_event_active_state state; 386 unsigned int attach_state; 387 local64_t count; 388 atomic64_t child_count; 389 390 /* 391 * These are the total time in nanoseconds that the event 392 * has been enabled (i.e. eligible to run, and the task has 393 * been scheduled in, if this is a per-task event) 394 * and running (scheduled onto the CPU), respectively. 395 * 396 * They are computed from tstamp_enabled, tstamp_running and 397 * tstamp_stopped when the event is in INACTIVE or ACTIVE state. 398 */ 399 u64 total_time_enabled; 400 u64 total_time_running; 401 402 /* 403 * These are timestamps used for computing total_time_enabled 404 * and total_time_running when the event is in INACTIVE or 405 * ACTIVE state, measured in nanoseconds from an arbitrary point 406 * in time. 407 * tstamp_enabled: the notional time when the event was enabled 408 * tstamp_running: the notional time when the event was scheduled on 409 * tstamp_stopped: in INACTIVE state, the notional time when the 410 * event was scheduled off. 411 */ 412 u64 tstamp_enabled; 413 u64 tstamp_running; 414 u64 tstamp_stopped; 415 416 /* 417 * timestamp shadows the actual context timing but it can 418 * be safely used in NMI interrupt context. It reflects the 419 * context time as it was when the event was last scheduled in. 420 * 421 * ctx_time already accounts for ctx->timestamp. Therefore to 422 * compute ctx_time for a sample, simply add perf_clock(). 423 */ 424 u64 shadow_ctx_time; 425 426 struct perf_event_attr attr; 427 u16 header_size; 428 u16 id_header_size; 429 u16 read_size; 430 struct hw_perf_event hw; 431 432 struct perf_event_context *ctx; 433 atomic_long_t refcount; 434 435 /* 436 * These accumulate total time (in nanoseconds) that children 437 * events have been enabled and running, respectively. 438 */ 439 atomic64_t child_total_time_enabled; 440 atomic64_t child_total_time_running; 441 442 /* 443 * Protect attach/detach and child_list: 444 */ 445 struct mutex child_mutex; 446 struct list_head child_list; 447 struct perf_event *parent; 448 449 int oncpu; 450 int cpu; 451 452 struct list_head owner_entry; 453 struct task_struct *owner; 454 455 /* mmap bits */ 456 struct mutex mmap_mutex; 457 atomic_t mmap_count; 458 459 struct ring_buffer *rb; 460 struct list_head rb_entry; 461 unsigned long rcu_batches; 462 int rcu_pending; 463 464 /* poll related */ 465 wait_queue_head_t waitq; 466 struct fasync_struct *fasync; 467 468 /* delayed work for NMIs and such */ 469 int pending_wakeup; 470 int pending_kill; 471 int pending_disable; 472 struct irq_work pending; 473 474 atomic_t event_limit; 475 476 void (*destroy)(struct perf_event *); 477 struct rcu_head rcu_head; 478 479 struct pid_namespace *ns; 480 u64 id; 481 482 u64 (*clock)(void); 483 perf_overflow_handler_t overflow_handler; 484 void *overflow_handler_context; 485 486 #ifdef CONFIG_EVENT_TRACING 487 struct trace_event_call *tp_event; 488 struct event_filter *filter; 489 #ifdef CONFIG_FUNCTION_TRACER 490 struct ftrace_ops ftrace_ops; 491 #endif 492 #endif 493 494 #ifdef CONFIG_CGROUP_PERF 495 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 496 int cgrp_defer_enabled; 497 #endif 498 499 #endif /* CONFIG_PERF_EVENTS */ 500 }; 501 502 /** 503 * struct perf_event_context - event context structure 504 * 505 * Used as a container for task events and CPU events as well: 506 */ 507 struct perf_event_context { 508 struct pmu *pmu; 509 /* 510 * Protect the states of the events in the list, 511 * nr_active, and the list: 512 */ 513 raw_spinlock_t lock; 514 /* 515 * Protect the list of events. Locking either mutex or lock 516 * is sufficient to ensure the list doesn't change; to change 517 * the list you need to lock both the mutex and the spinlock. 518 */ 519 struct mutex mutex; 520 521 struct list_head active_ctx_list; 522 struct list_head pinned_groups; 523 struct list_head flexible_groups; 524 struct list_head event_list; 525 int nr_events; 526 int nr_active; 527 int is_active; 528 int nr_stat; 529 int nr_freq; 530 int rotate_disable; 531 atomic_t refcount; 532 struct task_struct *task; 533 534 /* 535 * Context clock, runs when context enabled. 536 */ 537 u64 time; 538 u64 timestamp; 539 540 /* 541 * These fields let us detect when two contexts have both 542 * been cloned (inherited) from a common ancestor. 543 */ 544 struct perf_event_context *parent_ctx; 545 u64 parent_gen; 546 u64 generation; 547 int pin_count; 548 int nr_cgroups; /* cgroup evts */ 549 void *task_ctx_data; /* pmu specific data */ 550 struct rcu_head rcu_head; 551 552 struct delayed_work orphans_remove; 553 bool orphans_remove_sched; 554 }; 555 556 /* 557 * Number of contexts where an event can trigger: 558 * task, softirq, hardirq, nmi. 559 */ 560 #define PERF_NR_CONTEXTS 4 561 562 /** 563 * struct perf_event_cpu_context - per cpu event context structure 564 */ 565 struct perf_cpu_context { 566 struct perf_event_context ctx; 567 struct perf_event_context *task_ctx; 568 int active_oncpu; 569 int exclusive; 570 571 raw_spinlock_t hrtimer_lock; 572 struct hrtimer hrtimer; 573 ktime_t hrtimer_interval; 574 unsigned int hrtimer_active; 575 576 struct pmu *unique_pmu; 577 struct perf_cgroup *cgrp; 578 }; 579 580 struct perf_output_handle { 581 struct perf_event *event; 582 struct ring_buffer *rb; 583 unsigned long wakeup; 584 unsigned long size; 585 union { 586 void *addr; 587 unsigned long head; 588 }; 589 int page; 590 }; 591 592 #ifdef CONFIG_CGROUP_PERF 593 594 /* 595 * perf_cgroup_info keeps track of time_enabled for a cgroup. 596 * This is a per-cpu dynamically allocated data structure. 597 */ 598 struct perf_cgroup_info { 599 u64 time; 600 u64 timestamp; 601 }; 602 603 struct perf_cgroup { 604 struct cgroup_subsys_state css; 605 struct perf_cgroup_info __percpu *info; 606 }; 607 608 /* 609 * Must ensure cgroup is pinned (css_get) before calling 610 * this function. In other words, we cannot call this function 611 * if there is no cgroup event for the current CPU context. 612 */ 613 static inline struct perf_cgroup * 614 perf_cgroup_from_task(struct task_struct *task) 615 { 616 return container_of(task_css(task, perf_event_cgrp_id), 617 struct perf_cgroup, css); 618 } 619 #endif /* CONFIG_CGROUP_PERF */ 620 621 #ifdef CONFIG_PERF_EVENTS 622 623 extern void *perf_aux_output_begin(struct perf_output_handle *handle, 624 struct perf_event *event); 625 extern void perf_aux_output_end(struct perf_output_handle *handle, 626 unsigned long size, bool truncated); 627 extern int perf_aux_output_skip(struct perf_output_handle *handle, 628 unsigned long size); 629 extern void *perf_get_aux(struct perf_output_handle *handle); 630 631 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); 632 extern void perf_pmu_unregister(struct pmu *pmu); 633 634 extern int perf_num_counters(void); 635 extern const char *perf_pmu_name(void); 636 extern void __perf_event_task_sched_in(struct task_struct *prev, 637 struct task_struct *task); 638 extern void __perf_event_task_sched_out(struct task_struct *prev, 639 struct task_struct *next); 640 extern int perf_event_init_task(struct task_struct *child); 641 extern void perf_event_exit_task(struct task_struct *child); 642 extern void perf_event_free_task(struct task_struct *task); 643 extern void perf_event_delayed_put(struct task_struct *task); 644 extern void perf_event_print_debug(void); 645 extern void perf_pmu_disable(struct pmu *pmu); 646 extern void perf_pmu_enable(struct pmu *pmu); 647 extern void perf_sched_cb_dec(struct pmu *pmu); 648 extern void perf_sched_cb_inc(struct pmu *pmu); 649 extern int perf_event_task_disable(void); 650 extern int perf_event_task_enable(void); 651 extern int perf_event_refresh(struct perf_event *event, int refresh); 652 extern void perf_event_update_userpage(struct perf_event *event); 653 extern int perf_event_release_kernel(struct perf_event *event); 654 extern struct perf_event * 655 perf_event_create_kernel_counter(struct perf_event_attr *attr, 656 int cpu, 657 struct task_struct *task, 658 perf_overflow_handler_t callback, 659 void *context); 660 extern void perf_pmu_migrate_context(struct pmu *pmu, 661 int src_cpu, int dst_cpu); 662 extern u64 perf_event_read_value(struct perf_event *event, 663 u64 *enabled, u64 *running); 664 665 666 struct perf_sample_data { 667 /* 668 * Fields set by perf_sample_data_init(), group so as to 669 * minimize the cachelines touched. 670 */ 671 u64 addr; 672 struct perf_raw_record *raw; 673 struct perf_branch_stack *br_stack; 674 u64 period; 675 u64 weight; 676 u64 txn; 677 union perf_mem_data_src data_src; 678 679 /* 680 * The other fields, optionally {set,used} by 681 * perf_{prepare,output}_sample(). 682 */ 683 u64 type; 684 u64 ip; 685 struct { 686 u32 pid; 687 u32 tid; 688 } tid_entry; 689 u64 time; 690 u64 id; 691 u64 stream_id; 692 struct { 693 u32 cpu; 694 u32 reserved; 695 } cpu_entry; 696 struct perf_callchain_entry *callchain; 697 698 /* 699 * regs_user may point to task_pt_regs or to regs_user_copy, depending 700 * on arch details. 701 */ 702 struct perf_regs regs_user; 703 struct pt_regs regs_user_copy; 704 705 struct perf_regs regs_intr; 706 u64 stack_user_size; 707 } ____cacheline_aligned; 708 709 /* default value for data source */ 710 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\ 711 PERF_MEM_S(LVL, NA) |\ 712 PERF_MEM_S(SNOOP, NA) |\ 713 PERF_MEM_S(LOCK, NA) |\ 714 PERF_MEM_S(TLB, NA)) 715 716 static inline void perf_sample_data_init(struct perf_sample_data *data, 717 u64 addr, u64 period) 718 { 719 /* remaining struct members initialized in perf_prepare_sample() */ 720 data->addr = addr; 721 data->raw = NULL; 722 data->br_stack = NULL; 723 data->period = period; 724 data->weight = 0; 725 data->data_src.val = PERF_MEM_NA; 726 data->txn = 0; 727 } 728 729 extern void perf_output_sample(struct perf_output_handle *handle, 730 struct perf_event_header *header, 731 struct perf_sample_data *data, 732 struct perf_event *event); 733 extern void perf_prepare_sample(struct perf_event_header *header, 734 struct perf_sample_data *data, 735 struct perf_event *event, 736 struct pt_regs *regs); 737 738 extern int perf_event_overflow(struct perf_event *event, 739 struct perf_sample_data *data, 740 struct pt_regs *regs); 741 742 extern void perf_event_output(struct perf_event *event, 743 struct perf_sample_data *data, 744 struct pt_regs *regs); 745 746 extern void 747 perf_event_header__init_id(struct perf_event_header *header, 748 struct perf_sample_data *data, 749 struct perf_event *event); 750 extern void 751 perf_event__output_id_sample(struct perf_event *event, 752 struct perf_output_handle *handle, 753 struct perf_sample_data *sample); 754 755 extern void 756 perf_log_lost_samples(struct perf_event *event, u64 lost); 757 758 static inline bool is_sampling_event(struct perf_event *event) 759 { 760 return event->attr.sample_period != 0; 761 } 762 763 /* 764 * Return 1 for a software event, 0 for a hardware event 765 */ 766 static inline int is_software_event(struct perf_event *event) 767 { 768 return event->pmu->task_ctx_nr == perf_sw_context; 769 } 770 771 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 772 773 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64); 774 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 775 776 #ifndef perf_arch_fetch_caller_regs 777 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 778 #endif 779 780 /* 781 * Take a snapshot of the regs. Skip ip and frame pointer to 782 * the nth caller. We only need a few of the regs: 783 * - ip for PERF_SAMPLE_IP 784 * - cs for user_mode() tests 785 * - bp for callchains 786 * - eflags, for future purposes, just in case 787 */ 788 static inline void perf_fetch_caller_regs(struct pt_regs *regs) 789 { 790 memset(regs, 0, sizeof(*regs)); 791 792 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 793 } 794 795 static __always_inline void 796 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 797 { 798 if (static_key_false(&perf_swevent_enabled[event_id])) 799 __perf_sw_event(event_id, nr, regs, addr); 800 } 801 802 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]); 803 804 /* 805 * 'Special' version for the scheduler, it hard assumes no recursion, 806 * which is guaranteed by us not actually scheduling inside other swevents 807 * because those disable preemption. 808 */ 809 static __always_inline void 810 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) 811 { 812 if (static_key_false(&perf_swevent_enabled[event_id])) { 813 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 814 815 perf_fetch_caller_regs(regs); 816 ___perf_sw_event(event_id, nr, regs, addr); 817 } 818 } 819 820 extern struct static_key_deferred perf_sched_events; 821 822 static __always_inline bool 823 perf_sw_migrate_enabled(void) 824 { 825 if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS])) 826 return true; 827 return false; 828 } 829 830 static inline void perf_event_task_migrate(struct task_struct *task) 831 { 832 if (perf_sw_migrate_enabled()) 833 task->sched_migrated = 1; 834 } 835 836 static inline void perf_event_task_sched_in(struct task_struct *prev, 837 struct task_struct *task) 838 { 839 if (static_key_false(&perf_sched_events.key)) 840 __perf_event_task_sched_in(prev, task); 841 842 if (perf_sw_migrate_enabled() && task->sched_migrated) { 843 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 844 845 perf_fetch_caller_regs(regs); 846 ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0); 847 task->sched_migrated = 0; 848 } 849 } 850 851 static inline void perf_event_task_sched_out(struct task_struct *prev, 852 struct task_struct *next) 853 { 854 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0); 855 856 if (static_key_false(&perf_sched_events.key)) 857 __perf_event_task_sched_out(prev, next); 858 } 859 860 static inline u64 __perf_event_count(struct perf_event *event) 861 { 862 return local64_read(&event->count) + atomic64_read(&event->child_count); 863 } 864 865 extern void perf_event_mmap(struct vm_area_struct *vma); 866 extern struct perf_guest_info_callbacks *perf_guest_cbs; 867 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 868 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 869 870 extern void perf_event_exec(void); 871 extern void perf_event_comm(struct task_struct *tsk, bool exec); 872 extern void perf_event_fork(struct task_struct *tsk); 873 874 /* Callchains */ 875 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 876 877 extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs); 878 extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs); 879 880 static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip) 881 { 882 if (entry->nr < PERF_MAX_STACK_DEPTH) 883 entry->ip[entry->nr++] = ip; 884 } 885 886 extern int sysctl_perf_event_paranoid; 887 extern int sysctl_perf_event_mlock; 888 extern int sysctl_perf_event_sample_rate; 889 extern int sysctl_perf_cpu_time_max_percent; 890 891 extern void perf_sample_event_took(u64 sample_len_ns); 892 893 extern int perf_proc_update_handler(struct ctl_table *table, int write, 894 void __user *buffer, size_t *lenp, 895 loff_t *ppos); 896 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 897 void __user *buffer, size_t *lenp, 898 loff_t *ppos); 899 900 901 static inline bool perf_paranoid_tracepoint_raw(void) 902 { 903 return sysctl_perf_event_paranoid > -1; 904 } 905 906 static inline bool perf_paranoid_cpu(void) 907 { 908 return sysctl_perf_event_paranoid > 0; 909 } 910 911 static inline bool perf_paranoid_kernel(void) 912 { 913 return sysctl_perf_event_paranoid > 1; 914 } 915 916 extern void perf_event_init(void); 917 extern void perf_tp_event(u64 addr, u64 count, void *record, 918 int entry_size, struct pt_regs *regs, 919 struct hlist_head *head, int rctx, 920 struct task_struct *task); 921 extern void perf_bp_event(struct perf_event *event, void *data); 922 923 #ifndef perf_misc_flags 924 # define perf_misc_flags(regs) \ 925 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 926 # define perf_instruction_pointer(regs) instruction_pointer(regs) 927 #endif 928 929 static inline bool has_branch_stack(struct perf_event *event) 930 { 931 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; 932 } 933 934 static inline bool needs_branch_stack(struct perf_event *event) 935 { 936 return event->attr.branch_sample_type != 0; 937 } 938 939 static inline bool has_aux(struct perf_event *event) 940 { 941 return event->pmu->setup_aux; 942 } 943 944 extern int perf_output_begin(struct perf_output_handle *handle, 945 struct perf_event *event, unsigned int size); 946 extern void perf_output_end(struct perf_output_handle *handle); 947 extern unsigned int perf_output_copy(struct perf_output_handle *handle, 948 const void *buf, unsigned int len); 949 extern unsigned int perf_output_skip(struct perf_output_handle *handle, 950 unsigned int len); 951 extern int perf_swevent_get_recursion_context(void); 952 extern void perf_swevent_put_recursion_context(int rctx); 953 extern u64 perf_swevent_set_period(struct perf_event *event); 954 extern void perf_event_enable(struct perf_event *event); 955 extern void perf_event_disable(struct perf_event *event); 956 extern int __perf_event_disable(void *info); 957 extern void perf_event_task_tick(void); 958 #else /* !CONFIG_PERF_EVENTS: */ 959 static inline void * 960 perf_aux_output_begin(struct perf_output_handle *handle, 961 struct perf_event *event) { return NULL; } 962 static inline void 963 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size, 964 bool truncated) { } 965 static inline int 966 perf_aux_output_skip(struct perf_output_handle *handle, 967 unsigned long size) { return -EINVAL; } 968 static inline void * 969 perf_get_aux(struct perf_output_handle *handle) { return NULL; } 970 static inline void 971 perf_event_task_migrate(struct task_struct *task) { } 972 static inline void 973 perf_event_task_sched_in(struct task_struct *prev, 974 struct task_struct *task) { } 975 static inline void 976 perf_event_task_sched_out(struct task_struct *prev, 977 struct task_struct *next) { } 978 static inline int perf_event_init_task(struct task_struct *child) { return 0; } 979 static inline void perf_event_exit_task(struct task_struct *child) { } 980 static inline void perf_event_free_task(struct task_struct *task) { } 981 static inline void perf_event_delayed_put(struct task_struct *task) { } 982 static inline void perf_event_print_debug(void) { } 983 static inline int perf_event_task_disable(void) { return -EINVAL; } 984 static inline int perf_event_task_enable(void) { return -EINVAL; } 985 static inline int perf_event_refresh(struct perf_event *event, int refresh) 986 { 987 return -EINVAL; 988 } 989 990 static inline void 991 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 992 static inline void 993 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { } 994 static inline void 995 perf_bp_event(struct perf_event *event, void *data) { } 996 997 static inline int perf_register_guest_info_callbacks 998 (struct perf_guest_info_callbacks *callbacks) { return 0; } 999 static inline int perf_unregister_guest_info_callbacks 1000 (struct perf_guest_info_callbacks *callbacks) { return 0; } 1001 1002 static inline void perf_event_mmap(struct vm_area_struct *vma) { } 1003 static inline void perf_event_exec(void) { } 1004 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { } 1005 static inline void perf_event_fork(struct task_struct *tsk) { } 1006 static inline void perf_event_init(void) { } 1007 static inline int perf_swevent_get_recursion_context(void) { return -1; } 1008 static inline void perf_swevent_put_recursion_context(int rctx) { } 1009 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; } 1010 static inline void perf_event_enable(struct perf_event *event) { } 1011 static inline void perf_event_disable(struct perf_event *event) { } 1012 static inline int __perf_event_disable(void *info) { return -1; } 1013 static inline void perf_event_task_tick(void) { } 1014 #endif 1015 1016 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_NO_HZ_FULL) 1017 extern bool perf_event_can_stop_tick(void); 1018 #else 1019 static inline bool perf_event_can_stop_tick(void) { return true; } 1020 #endif 1021 1022 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) 1023 extern void perf_restore_debug_store(void); 1024 #else 1025 static inline void perf_restore_debug_store(void) { } 1026 #endif 1027 1028 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 1029 1030 /* 1031 * This has to have a higher priority than migration_notifier in sched/core.c. 1032 */ 1033 #define perf_cpu_notifier(fn) \ 1034 do { \ 1035 static struct notifier_block fn##_nb = \ 1036 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \ 1037 unsigned long cpu = smp_processor_id(); \ 1038 unsigned long flags; \ 1039 \ 1040 cpu_notifier_register_begin(); \ 1041 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \ 1042 (void *)(unsigned long)cpu); \ 1043 local_irq_save(flags); \ 1044 fn(&fn##_nb, (unsigned long)CPU_STARTING, \ 1045 (void *)(unsigned long)cpu); \ 1046 local_irq_restore(flags); \ 1047 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \ 1048 (void *)(unsigned long)cpu); \ 1049 __register_cpu_notifier(&fn##_nb); \ 1050 cpu_notifier_register_done(); \ 1051 } while (0) 1052 1053 /* 1054 * Bare-bones version of perf_cpu_notifier(), which doesn't invoke the 1055 * callback for already online CPUs. 1056 */ 1057 #define __perf_cpu_notifier(fn) \ 1058 do { \ 1059 static struct notifier_block fn##_nb = \ 1060 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \ 1061 \ 1062 __register_cpu_notifier(&fn##_nb); \ 1063 } while (0) 1064 1065 struct perf_pmu_events_attr { 1066 struct device_attribute attr; 1067 u64 id; 1068 const char *event_str; 1069 }; 1070 1071 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 1072 char *page); 1073 1074 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \ 1075 static struct perf_pmu_events_attr _var = { \ 1076 .attr = __ATTR(_name, 0444, _show, NULL), \ 1077 .id = _id, \ 1078 }; 1079 1080 #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \ 1081 static struct perf_pmu_events_attr _var = { \ 1082 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \ 1083 .id = 0, \ 1084 .event_str = _str, \ 1085 }; 1086 1087 #define PMU_FORMAT_ATTR(_name, _format) \ 1088 static ssize_t \ 1089 _name##_show(struct device *dev, \ 1090 struct device_attribute *attr, \ 1091 char *page) \ 1092 { \ 1093 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ 1094 return sprintf(page, _format "\n"); \ 1095 } \ 1096 \ 1097 static struct device_attribute format_attr_##_name = __ATTR_RO(_name) 1098 1099 #endif /* _LINUX_PERF_EVENT_H */ 1100