1 /* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <[email protected]> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14 #ifndef _LINUX_PERF_EVENT_H 15 #define _LINUX_PERF_EVENT_H 16 17 #include <uapi/linux/perf_event.h> 18 #include <uapi/linux/bpf_perf_event.h> 19 20 /* 21 * Kernel-internal data types and definitions: 22 */ 23 24 #ifdef CONFIG_PERF_EVENTS 25 # include <asm/perf_event.h> 26 # include <asm/local64.h> 27 #endif 28 29 struct perf_guest_info_callbacks { 30 int (*is_in_guest)(void); 31 int (*is_user_mode)(void); 32 unsigned long (*get_guest_ip)(void); 33 }; 34 35 #ifdef CONFIG_HAVE_HW_BREAKPOINT 36 #include <asm/hw_breakpoint.h> 37 #endif 38 39 #include <linux/list.h> 40 #include <linux/mutex.h> 41 #include <linux/rculist.h> 42 #include <linux/rcupdate.h> 43 #include <linux/spinlock.h> 44 #include <linux/hrtimer.h> 45 #include <linux/fs.h> 46 #include <linux/pid_namespace.h> 47 #include <linux/workqueue.h> 48 #include <linux/ftrace.h> 49 #include <linux/cpu.h> 50 #include <linux/irq_work.h> 51 #include <linux/static_key.h> 52 #include <linux/jump_label_ratelimit.h> 53 #include <linux/atomic.h> 54 #include <linux/sysfs.h> 55 #include <linux/perf_regs.h> 56 #include <linux/cgroup.h> 57 #include <linux/refcount.h> 58 #include <asm/local.h> 59 60 struct perf_callchain_entry { 61 __u64 nr; 62 __u64 ip[0]; /* /proc/sys/kernel/perf_event_max_stack */ 63 }; 64 65 struct perf_callchain_entry_ctx { 66 struct perf_callchain_entry *entry; 67 u32 max_stack; 68 u32 nr; 69 short contexts; 70 bool contexts_maxed; 71 }; 72 73 typedef unsigned long (*perf_copy_f)(void *dst, const void *src, 74 unsigned long off, unsigned long len); 75 76 struct perf_raw_frag { 77 union { 78 struct perf_raw_frag *next; 79 unsigned long pad; 80 }; 81 perf_copy_f copy; 82 void *data; 83 u32 size; 84 } __packed; 85 86 struct perf_raw_record { 87 struct perf_raw_frag frag; 88 u32 size; 89 }; 90 91 /* 92 * branch stack layout: 93 * nr: number of taken branches stored in entries[] 94 * 95 * Note that nr can vary from sample to sample 96 * branches (to, from) are stored from most recent 97 * to least recent, i.e., entries[0] contains the most 98 * recent branch. 99 */ 100 struct perf_branch_stack { 101 __u64 nr; 102 struct perf_branch_entry entries[0]; 103 }; 104 105 struct task_struct; 106 107 /* 108 * extra PMU register associated with an event 109 */ 110 struct hw_perf_event_extra { 111 u64 config; /* register value */ 112 unsigned int reg; /* register address or index */ 113 int alloc; /* extra register already allocated */ 114 int idx; /* index in shared_regs->regs[] */ 115 }; 116 117 /** 118 * struct hw_perf_event - performance event hardware details: 119 */ 120 struct hw_perf_event { 121 #ifdef CONFIG_PERF_EVENTS 122 union { 123 struct { /* hardware */ 124 u64 config; 125 u64 last_tag; 126 unsigned long config_base; 127 unsigned long event_base; 128 int event_base_rdpmc; 129 int idx; 130 int last_cpu; 131 int flags; 132 133 struct hw_perf_event_extra extra_reg; 134 struct hw_perf_event_extra branch_reg; 135 }; 136 struct { /* software */ 137 struct hrtimer hrtimer; 138 }; 139 struct { /* tracepoint */ 140 /* for tp_event->class */ 141 struct list_head tp_list; 142 }; 143 struct { /* amd_power */ 144 u64 pwr_acc; 145 u64 ptsc; 146 }; 147 #ifdef CONFIG_HAVE_HW_BREAKPOINT 148 struct { /* breakpoint */ 149 /* 150 * Crufty hack to avoid the chicken and egg 151 * problem hw_breakpoint has with context 152 * creation and event initalization. 153 */ 154 struct arch_hw_breakpoint info; 155 struct list_head bp_list; 156 }; 157 #endif 158 struct { /* amd_iommu */ 159 u8 iommu_bank; 160 u8 iommu_cntr; 161 u16 padding; 162 u64 conf; 163 u64 conf1; 164 }; 165 }; 166 /* 167 * If the event is a per task event, this will point to the task in 168 * question. See the comment in perf_event_alloc(). 169 */ 170 struct task_struct *target; 171 172 /* 173 * PMU would store hardware filter configuration 174 * here. 175 */ 176 void *addr_filters; 177 178 /* Last sync'ed generation of filters */ 179 unsigned long addr_filters_gen; 180 181 /* 182 * hw_perf_event::state flags; used to track the PERF_EF_* state. 183 */ 184 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 185 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 186 #define PERF_HES_ARCH 0x04 187 188 int state; 189 190 /* 191 * The last observed hardware counter value, updated with a 192 * local64_cmpxchg() such that pmu::read() can be called nested. 193 */ 194 local64_t prev_count; 195 196 /* 197 * The period to start the next sample with. 198 */ 199 u64 sample_period; 200 201 /* 202 * The period we started this sample with. 203 */ 204 u64 last_period; 205 206 /* 207 * However much is left of the current period; note that this is 208 * a full 64bit value and allows for generation of periods longer 209 * than hardware might allow. 210 */ 211 local64_t period_left; 212 213 /* 214 * State for throttling the event, see __perf_event_overflow() and 215 * perf_adjust_freq_unthr_context(). 216 */ 217 u64 interrupts_seq; 218 u64 interrupts; 219 220 /* 221 * State for freq target events, see __perf_event_overflow() and 222 * perf_adjust_freq_unthr_context(). 223 */ 224 u64 freq_time_stamp; 225 u64 freq_count_stamp; 226 #endif 227 }; 228 229 struct perf_event; 230 231 /* 232 * Common implementation detail of pmu::{start,commit,cancel}_txn 233 */ 234 #define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */ 235 #define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */ 236 237 /** 238 * pmu::capabilities flags 239 */ 240 #define PERF_PMU_CAP_NO_INTERRUPT 0x01 241 #define PERF_PMU_CAP_NO_NMI 0x02 242 #define PERF_PMU_CAP_AUX_NO_SG 0x04 243 #define PERF_PMU_CAP_AUX_SW_DOUBLEBUF 0x08 244 #define PERF_PMU_CAP_EXCLUSIVE 0x10 245 #define PERF_PMU_CAP_ITRACE 0x20 246 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x40 247 #define PERF_PMU_CAP_NO_EXCLUDE 0x80 248 249 /** 250 * struct pmu - generic performance monitoring unit 251 */ 252 struct pmu { 253 struct list_head entry; 254 255 struct module *module; 256 struct device *dev; 257 const struct attribute_group **attr_groups; 258 const char *name; 259 int type; 260 261 /* 262 * various common per-pmu feature flags 263 */ 264 int capabilities; 265 266 int __percpu *pmu_disable_count; 267 struct perf_cpu_context __percpu *pmu_cpu_context; 268 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */ 269 int task_ctx_nr; 270 int hrtimer_interval_ms; 271 272 /* number of address filters this PMU can do */ 273 unsigned int nr_addr_filters; 274 275 /* 276 * Fully disable/enable this PMU, can be used to protect from the PMI 277 * as well as for lazy/batch writing of the MSRs. 278 */ 279 void (*pmu_enable) (struct pmu *pmu); /* optional */ 280 void (*pmu_disable) (struct pmu *pmu); /* optional */ 281 282 /* 283 * Try and initialize the event for this PMU. 284 * 285 * Returns: 286 * -ENOENT -- @event is not for this PMU 287 * 288 * -ENODEV -- @event is for this PMU but PMU not present 289 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable 290 * -EINVAL -- @event is for this PMU but @event is not valid 291 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported 292 * -EACCESS -- @event is for this PMU, @event is valid, but no privilidges 293 * 294 * 0 -- @event is for this PMU and valid 295 * 296 * Other error return values are allowed. 297 */ 298 int (*event_init) (struct perf_event *event); 299 300 /* 301 * Notification that the event was mapped or unmapped. Called 302 * in the context of the mapping task. 303 */ 304 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 305 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 306 307 /* 308 * Flags for ->add()/->del()/ ->start()/->stop(). There are 309 * matching hw_perf_event::state flags. 310 */ 311 #define PERF_EF_START 0x01 /* start the counter when adding */ 312 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 313 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 314 315 /* 316 * Adds/Removes a counter to/from the PMU, can be done inside a 317 * transaction, see the ->*_txn() methods. 318 * 319 * The add/del callbacks will reserve all hardware resources required 320 * to service the event, this includes any counter constraint 321 * scheduling etc. 322 * 323 * Called with IRQs disabled and the PMU disabled on the CPU the event 324 * is on. 325 * 326 * ->add() called without PERF_EF_START should result in the same state 327 * as ->add() followed by ->stop(). 328 * 329 * ->del() must always PERF_EF_UPDATE stop an event. If it calls 330 * ->stop() that must deal with already being stopped without 331 * PERF_EF_UPDATE. 332 */ 333 int (*add) (struct perf_event *event, int flags); 334 void (*del) (struct perf_event *event, int flags); 335 336 /* 337 * Starts/Stops a counter present on the PMU. 338 * 339 * The PMI handler should stop the counter when perf_event_overflow() 340 * returns !0. ->start() will be used to continue. 341 * 342 * Also used to change the sample period. 343 * 344 * Called with IRQs disabled and the PMU disabled on the CPU the event 345 * is on -- will be called from NMI context with the PMU generates 346 * NMIs. 347 * 348 * ->stop() with PERF_EF_UPDATE will read the counter and update 349 * period/count values like ->read() would. 350 * 351 * ->start() with PERF_EF_RELOAD will reprogram the the counter 352 * value, must be preceded by a ->stop() with PERF_EF_UPDATE. 353 */ 354 void (*start) (struct perf_event *event, int flags); 355 void (*stop) (struct perf_event *event, int flags); 356 357 /* 358 * Updates the counter value of the event. 359 * 360 * For sampling capable PMUs this will also update the software period 361 * hw_perf_event::period_left field. 362 */ 363 void (*read) (struct perf_event *event); 364 365 /* 366 * Group events scheduling is treated as a transaction, add 367 * group events as a whole and perform one schedulability test. 368 * If the test fails, roll back the whole group 369 * 370 * Start the transaction, after this ->add() doesn't need to 371 * do schedulability tests. 372 * 373 * Optional. 374 */ 375 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags); 376 /* 377 * If ->start_txn() disabled the ->add() schedulability test 378 * then ->commit_txn() is required to perform one. On success 379 * the transaction is closed. On error the transaction is kept 380 * open until ->cancel_txn() is called. 381 * 382 * Optional. 383 */ 384 int (*commit_txn) (struct pmu *pmu); 385 /* 386 * Will cancel the transaction, assumes ->del() is called 387 * for each successful ->add() during the transaction. 388 * 389 * Optional. 390 */ 391 void (*cancel_txn) (struct pmu *pmu); 392 393 /* 394 * Will return the value for perf_event_mmap_page::index for this event, 395 * if no implementation is provided it will default to: event->hw.idx + 1. 396 */ 397 int (*event_idx) (struct perf_event *event); /*optional */ 398 399 /* 400 * context-switches callback 401 */ 402 void (*sched_task) (struct perf_event_context *ctx, 403 bool sched_in); 404 /* 405 * PMU specific data size 406 */ 407 size_t task_ctx_size; 408 409 410 /* 411 * Set up pmu-private data structures for an AUX area 412 */ 413 void *(*setup_aux) (struct perf_event *event, void **pages, 414 int nr_pages, bool overwrite); 415 /* optional */ 416 417 /* 418 * Free pmu-private AUX data structures 419 */ 420 void (*free_aux) (void *aux); /* optional */ 421 422 /* 423 * Validate address range filters: make sure the HW supports the 424 * requested configuration and number of filters; return 0 if the 425 * supplied filters are valid, -errno otherwise. 426 * 427 * Runs in the context of the ioctl()ing process and is not serialized 428 * with the rest of the PMU callbacks. 429 */ 430 int (*addr_filters_validate) (struct list_head *filters); 431 /* optional */ 432 433 /* 434 * Synchronize address range filter configuration: 435 * translate hw-agnostic filters into hardware configuration in 436 * event::hw::addr_filters. 437 * 438 * Runs as a part of filter sync sequence that is done in ->start() 439 * callback by calling perf_event_addr_filters_sync(). 440 * 441 * May (and should) traverse event::addr_filters::list, for which its 442 * caller provides necessary serialization. 443 */ 444 void (*addr_filters_sync) (struct perf_event *event); 445 /* optional */ 446 447 /* 448 * Filter events for PMU-specific reasons. 449 */ 450 int (*filter_match) (struct perf_event *event); /* optional */ 451 }; 452 453 enum perf_addr_filter_action_t { 454 PERF_ADDR_FILTER_ACTION_STOP = 0, 455 PERF_ADDR_FILTER_ACTION_START, 456 PERF_ADDR_FILTER_ACTION_FILTER, 457 }; 458 459 /** 460 * struct perf_addr_filter - address range filter definition 461 * @entry: event's filter list linkage 462 * @inode: object file's inode for file-based filters 463 * @offset: filter range offset 464 * @size: filter range size (size==0 means single address trigger) 465 * @action: filter/start/stop 466 * 467 * This is a hardware-agnostic filter configuration as specified by the user. 468 */ 469 struct perf_addr_filter { 470 struct list_head entry; 471 struct path path; 472 unsigned long offset; 473 unsigned long size; 474 enum perf_addr_filter_action_t action; 475 }; 476 477 /** 478 * struct perf_addr_filters_head - container for address range filters 479 * @list: list of filters for this event 480 * @lock: spinlock that serializes accesses to the @list and event's 481 * (and its children's) filter generations. 482 * @nr_file_filters: number of file-based filters 483 * 484 * A child event will use parent's @list (and therefore @lock), so they are 485 * bundled together; see perf_event_addr_filters(). 486 */ 487 struct perf_addr_filters_head { 488 struct list_head list; 489 raw_spinlock_t lock; 490 unsigned int nr_file_filters; 491 }; 492 493 struct perf_addr_filter_range { 494 unsigned long start; 495 unsigned long size; 496 }; 497 498 /** 499 * enum perf_event_state - the states of an event: 500 */ 501 enum perf_event_state { 502 PERF_EVENT_STATE_DEAD = -4, 503 PERF_EVENT_STATE_EXIT = -3, 504 PERF_EVENT_STATE_ERROR = -2, 505 PERF_EVENT_STATE_OFF = -1, 506 PERF_EVENT_STATE_INACTIVE = 0, 507 PERF_EVENT_STATE_ACTIVE = 1, 508 }; 509 510 struct file; 511 struct perf_sample_data; 512 513 typedef void (*perf_overflow_handler_t)(struct perf_event *, 514 struct perf_sample_data *, 515 struct pt_regs *regs); 516 517 /* 518 * Event capabilities. For event_caps and groups caps. 519 * 520 * PERF_EV_CAP_SOFTWARE: Is a software event. 521 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read 522 * from any CPU in the package where it is active. 523 */ 524 #define PERF_EV_CAP_SOFTWARE BIT(0) 525 #define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1) 526 527 #define SWEVENT_HLIST_BITS 8 528 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 529 530 struct swevent_hlist { 531 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 532 struct rcu_head rcu_head; 533 }; 534 535 #define PERF_ATTACH_CONTEXT 0x01 536 #define PERF_ATTACH_GROUP 0x02 537 #define PERF_ATTACH_TASK 0x04 538 #define PERF_ATTACH_TASK_DATA 0x08 539 #define PERF_ATTACH_ITRACE 0x10 540 541 struct perf_cgroup; 542 struct ring_buffer; 543 544 struct pmu_event_list { 545 raw_spinlock_t lock; 546 struct list_head list; 547 }; 548 549 #define for_each_sibling_event(sibling, event) \ 550 if ((event)->group_leader == (event)) \ 551 list_for_each_entry((sibling), &(event)->sibling_list, sibling_list) 552 553 /** 554 * struct perf_event - performance event kernel representation: 555 */ 556 struct perf_event { 557 #ifdef CONFIG_PERF_EVENTS 558 /* 559 * entry onto perf_event_context::event_list; 560 * modifications require ctx->lock 561 * RCU safe iterations. 562 */ 563 struct list_head event_entry; 564 565 /* 566 * Locked for modification by both ctx->mutex and ctx->lock; holding 567 * either sufficies for read. 568 */ 569 struct list_head sibling_list; 570 struct list_head active_list; 571 /* 572 * Node on the pinned or flexible tree located at the event context; 573 */ 574 struct rb_node group_node; 575 u64 group_index; 576 /* 577 * We need storage to track the entries in perf_pmu_migrate_context; we 578 * cannot use the event_entry because of RCU and we want to keep the 579 * group in tact which avoids us using the other two entries. 580 */ 581 struct list_head migrate_entry; 582 583 struct hlist_node hlist_entry; 584 struct list_head active_entry; 585 int nr_siblings; 586 587 /* Not serialized. Only written during event initialization. */ 588 int event_caps; 589 /* The cumulative AND of all event_caps for events in this group. */ 590 int group_caps; 591 592 struct perf_event *group_leader; 593 struct pmu *pmu; 594 void *pmu_private; 595 596 enum perf_event_state state; 597 unsigned int attach_state; 598 local64_t count; 599 atomic64_t child_count; 600 601 /* 602 * These are the total time in nanoseconds that the event 603 * has been enabled (i.e. eligible to run, and the task has 604 * been scheduled in, if this is a per-task event) 605 * and running (scheduled onto the CPU), respectively. 606 */ 607 u64 total_time_enabled; 608 u64 total_time_running; 609 u64 tstamp; 610 611 /* 612 * timestamp shadows the actual context timing but it can 613 * be safely used in NMI interrupt context. It reflects the 614 * context time as it was when the event was last scheduled in. 615 * 616 * ctx_time already accounts for ctx->timestamp. Therefore to 617 * compute ctx_time for a sample, simply add perf_clock(). 618 */ 619 u64 shadow_ctx_time; 620 621 struct perf_event_attr attr; 622 u16 header_size; 623 u16 id_header_size; 624 u16 read_size; 625 struct hw_perf_event hw; 626 627 struct perf_event_context *ctx; 628 atomic_long_t refcount; 629 630 /* 631 * These accumulate total time (in nanoseconds) that children 632 * events have been enabled and running, respectively. 633 */ 634 atomic64_t child_total_time_enabled; 635 atomic64_t child_total_time_running; 636 637 /* 638 * Protect attach/detach and child_list: 639 */ 640 struct mutex child_mutex; 641 struct list_head child_list; 642 struct perf_event *parent; 643 644 int oncpu; 645 int cpu; 646 647 struct list_head owner_entry; 648 struct task_struct *owner; 649 650 /* mmap bits */ 651 struct mutex mmap_mutex; 652 atomic_t mmap_count; 653 654 struct ring_buffer *rb; 655 struct list_head rb_entry; 656 unsigned long rcu_batches; 657 int rcu_pending; 658 659 /* poll related */ 660 wait_queue_head_t waitq; 661 struct fasync_struct *fasync; 662 663 /* delayed work for NMIs and such */ 664 int pending_wakeup; 665 int pending_kill; 666 int pending_disable; 667 struct irq_work pending; 668 669 atomic_t event_limit; 670 671 /* address range filters */ 672 struct perf_addr_filters_head addr_filters; 673 /* vma address array for file-based filders */ 674 struct perf_addr_filter_range *addr_filter_ranges; 675 unsigned long addr_filters_gen; 676 677 void (*destroy)(struct perf_event *); 678 struct rcu_head rcu_head; 679 680 struct pid_namespace *ns; 681 u64 id; 682 683 u64 (*clock)(void); 684 perf_overflow_handler_t overflow_handler; 685 void *overflow_handler_context; 686 #ifdef CONFIG_BPF_SYSCALL 687 perf_overflow_handler_t orig_overflow_handler; 688 struct bpf_prog *prog; 689 #endif 690 691 #ifdef CONFIG_EVENT_TRACING 692 struct trace_event_call *tp_event; 693 struct event_filter *filter; 694 #ifdef CONFIG_FUNCTION_TRACER 695 struct ftrace_ops ftrace_ops; 696 #endif 697 #endif 698 699 #ifdef CONFIG_CGROUP_PERF 700 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 701 #endif 702 703 struct list_head sb_list; 704 #endif /* CONFIG_PERF_EVENTS */ 705 }; 706 707 708 struct perf_event_groups { 709 struct rb_root tree; 710 u64 index; 711 }; 712 713 /** 714 * struct perf_event_context - event context structure 715 * 716 * Used as a container for task events and CPU events as well: 717 */ 718 struct perf_event_context { 719 struct pmu *pmu; 720 /* 721 * Protect the states of the events in the list, 722 * nr_active, and the list: 723 */ 724 raw_spinlock_t lock; 725 /* 726 * Protect the list of events. Locking either mutex or lock 727 * is sufficient to ensure the list doesn't change; to change 728 * the list you need to lock both the mutex and the spinlock. 729 */ 730 struct mutex mutex; 731 732 struct list_head active_ctx_list; 733 struct perf_event_groups pinned_groups; 734 struct perf_event_groups flexible_groups; 735 struct list_head event_list; 736 737 struct list_head pinned_active; 738 struct list_head flexible_active; 739 740 int nr_events; 741 int nr_active; 742 int is_active; 743 int nr_stat; 744 int nr_freq; 745 int rotate_disable; 746 refcount_t refcount; 747 struct task_struct *task; 748 749 /* 750 * Context clock, runs when context enabled. 751 */ 752 u64 time; 753 u64 timestamp; 754 755 /* 756 * These fields let us detect when two contexts have both 757 * been cloned (inherited) from a common ancestor. 758 */ 759 struct perf_event_context *parent_ctx; 760 u64 parent_gen; 761 u64 generation; 762 int pin_count; 763 #ifdef CONFIG_CGROUP_PERF 764 int nr_cgroups; /* cgroup evts */ 765 #endif 766 void *task_ctx_data; /* pmu specific data */ 767 struct rcu_head rcu_head; 768 }; 769 770 /* 771 * Number of contexts where an event can trigger: 772 * task, softirq, hardirq, nmi. 773 */ 774 #define PERF_NR_CONTEXTS 4 775 776 /** 777 * struct perf_event_cpu_context - per cpu event context structure 778 */ 779 struct perf_cpu_context { 780 struct perf_event_context ctx; 781 struct perf_event_context *task_ctx; 782 int active_oncpu; 783 int exclusive; 784 785 raw_spinlock_t hrtimer_lock; 786 struct hrtimer hrtimer; 787 ktime_t hrtimer_interval; 788 unsigned int hrtimer_active; 789 790 #ifdef CONFIG_CGROUP_PERF 791 struct perf_cgroup *cgrp; 792 struct list_head cgrp_cpuctx_entry; 793 #endif 794 795 struct list_head sched_cb_entry; 796 int sched_cb_usage; 797 798 int online; 799 }; 800 801 struct perf_output_handle { 802 struct perf_event *event; 803 struct ring_buffer *rb; 804 unsigned long wakeup; 805 unsigned long size; 806 u64 aux_flags; 807 union { 808 void *addr; 809 unsigned long head; 810 }; 811 int page; 812 }; 813 814 struct bpf_perf_event_data_kern { 815 bpf_user_pt_regs_t *regs; 816 struct perf_sample_data *data; 817 struct perf_event *event; 818 }; 819 820 #ifdef CONFIG_CGROUP_PERF 821 822 /* 823 * perf_cgroup_info keeps track of time_enabled for a cgroup. 824 * This is a per-cpu dynamically allocated data structure. 825 */ 826 struct perf_cgroup_info { 827 u64 time; 828 u64 timestamp; 829 }; 830 831 struct perf_cgroup { 832 struct cgroup_subsys_state css; 833 struct perf_cgroup_info __percpu *info; 834 }; 835 836 /* 837 * Must ensure cgroup is pinned (css_get) before calling 838 * this function. In other words, we cannot call this function 839 * if there is no cgroup event for the current CPU context. 840 */ 841 static inline struct perf_cgroup * 842 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx) 843 { 844 return container_of(task_css_check(task, perf_event_cgrp_id, 845 ctx ? lockdep_is_held(&ctx->lock) 846 : true), 847 struct perf_cgroup, css); 848 } 849 #endif /* CONFIG_CGROUP_PERF */ 850 851 #ifdef CONFIG_PERF_EVENTS 852 853 extern void *perf_aux_output_begin(struct perf_output_handle *handle, 854 struct perf_event *event); 855 extern void perf_aux_output_end(struct perf_output_handle *handle, 856 unsigned long size); 857 extern int perf_aux_output_skip(struct perf_output_handle *handle, 858 unsigned long size); 859 extern void *perf_get_aux(struct perf_output_handle *handle); 860 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags); 861 extern void perf_event_itrace_started(struct perf_event *event); 862 863 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); 864 extern void perf_pmu_unregister(struct pmu *pmu); 865 866 extern int perf_num_counters(void); 867 extern const char *perf_pmu_name(void); 868 extern void __perf_event_task_sched_in(struct task_struct *prev, 869 struct task_struct *task); 870 extern void __perf_event_task_sched_out(struct task_struct *prev, 871 struct task_struct *next); 872 extern int perf_event_init_task(struct task_struct *child); 873 extern void perf_event_exit_task(struct task_struct *child); 874 extern void perf_event_free_task(struct task_struct *task); 875 extern void perf_event_delayed_put(struct task_struct *task); 876 extern struct file *perf_event_get(unsigned int fd); 877 extern const struct perf_event *perf_get_event(struct file *file); 878 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event); 879 extern void perf_event_print_debug(void); 880 extern void perf_pmu_disable(struct pmu *pmu); 881 extern void perf_pmu_enable(struct pmu *pmu); 882 extern void perf_sched_cb_dec(struct pmu *pmu); 883 extern void perf_sched_cb_inc(struct pmu *pmu); 884 extern int perf_event_task_disable(void); 885 extern int perf_event_task_enable(void); 886 extern int perf_event_refresh(struct perf_event *event, int refresh); 887 extern void perf_event_update_userpage(struct perf_event *event); 888 extern int perf_event_release_kernel(struct perf_event *event); 889 extern struct perf_event * 890 perf_event_create_kernel_counter(struct perf_event_attr *attr, 891 int cpu, 892 struct task_struct *task, 893 perf_overflow_handler_t callback, 894 void *context); 895 extern void perf_pmu_migrate_context(struct pmu *pmu, 896 int src_cpu, int dst_cpu); 897 int perf_event_read_local(struct perf_event *event, u64 *value, 898 u64 *enabled, u64 *running); 899 extern u64 perf_event_read_value(struct perf_event *event, 900 u64 *enabled, u64 *running); 901 902 903 struct perf_sample_data { 904 /* 905 * Fields set by perf_sample_data_init(), group so as to 906 * minimize the cachelines touched. 907 */ 908 u64 addr; 909 struct perf_raw_record *raw; 910 struct perf_branch_stack *br_stack; 911 u64 period; 912 u64 weight; 913 u64 txn; 914 union perf_mem_data_src data_src; 915 916 /* 917 * The other fields, optionally {set,used} by 918 * perf_{prepare,output}_sample(). 919 */ 920 u64 type; 921 u64 ip; 922 struct { 923 u32 pid; 924 u32 tid; 925 } tid_entry; 926 u64 time; 927 u64 id; 928 u64 stream_id; 929 struct { 930 u32 cpu; 931 u32 reserved; 932 } cpu_entry; 933 struct perf_callchain_entry *callchain; 934 935 /* 936 * regs_user may point to task_pt_regs or to regs_user_copy, depending 937 * on arch details. 938 */ 939 struct perf_regs regs_user; 940 struct pt_regs regs_user_copy; 941 942 struct perf_regs regs_intr; 943 u64 stack_user_size; 944 945 u64 phys_addr; 946 } ____cacheline_aligned; 947 948 /* default value for data source */ 949 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\ 950 PERF_MEM_S(LVL, NA) |\ 951 PERF_MEM_S(SNOOP, NA) |\ 952 PERF_MEM_S(LOCK, NA) |\ 953 PERF_MEM_S(TLB, NA)) 954 955 static inline void perf_sample_data_init(struct perf_sample_data *data, 956 u64 addr, u64 period) 957 { 958 /* remaining struct members initialized in perf_prepare_sample() */ 959 data->addr = addr; 960 data->raw = NULL; 961 data->br_stack = NULL; 962 data->period = period; 963 data->weight = 0; 964 data->data_src.val = PERF_MEM_NA; 965 data->txn = 0; 966 } 967 968 extern void perf_output_sample(struct perf_output_handle *handle, 969 struct perf_event_header *header, 970 struct perf_sample_data *data, 971 struct perf_event *event); 972 extern void perf_prepare_sample(struct perf_event_header *header, 973 struct perf_sample_data *data, 974 struct perf_event *event, 975 struct pt_regs *regs); 976 977 extern int perf_event_overflow(struct perf_event *event, 978 struct perf_sample_data *data, 979 struct pt_regs *regs); 980 981 extern void perf_event_output_forward(struct perf_event *event, 982 struct perf_sample_data *data, 983 struct pt_regs *regs); 984 extern void perf_event_output_backward(struct perf_event *event, 985 struct perf_sample_data *data, 986 struct pt_regs *regs); 987 extern int perf_event_output(struct perf_event *event, 988 struct perf_sample_data *data, 989 struct pt_regs *regs); 990 991 static inline bool 992 is_default_overflow_handler(struct perf_event *event) 993 { 994 if (likely(event->overflow_handler == perf_event_output_forward)) 995 return true; 996 if (unlikely(event->overflow_handler == perf_event_output_backward)) 997 return true; 998 return false; 999 } 1000 1001 extern void 1002 perf_event_header__init_id(struct perf_event_header *header, 1003 struct perf_sample_data *data, 1004 struct perf_event *event); 1005 extern void 1006 perf_event__output_id_sample(struct perf_event *event, 1007 struct perf_output_handle *handle, 1008 struct perf_sample_data *sample); 1009 1010 extern void 1011 perf_log_lost_samples(struct perf_event *event, u64 lost); 1012 1013 static inline bool event_has_any_exclude_flag(struct perf_event *event) 1014 { 1015 struct perf_event_attr *attr = &event->attr; 1016 1017 return attr->exclude_idle || attr->exclude_user || 1018 attr->exclude_kernel || attr->exclude_hv || 1019 attr->exclude_guest || attr->exclude_host; 1020 } 1021 1022 static inline bool is_sampling_event(struct perf_event *event) 1023 { 1024 return event->attr.sample_period != 0; 1025 } 1026 1027 /* 1028 * Return 1 for a software event, 0 for a hardware event 1029 */ 1030 static inline int is_software_event(struct perf_event *event) 1031 { 1032 return event->event_caps & PERF_EV_CAP_SOFTWARE; 1033 } 1034 1035 /* 1036 * Return 1 for event in sw context, 0 for event in hw context 1037 */ 1038 static inline int in_software_context(struct perf_event *event) 1039 { 1040 return event->ctx->pmu->task_ctx_nr == perf_sw_context; 1041 } 1042 1043 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 1044 1045 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64); 1046 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 1047 1048 #ifndef perf_arch_fetch_caller_regs 1049 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 1050 #endif 1051 1052 /* 1053 * Take a snapshot of the regs. Skip ip and frame pointer to 1054 * the nth caller. We only need a few of the regs: 1055 * - ip for PERF_SAMPLE_IP 1056 * - cs for user_mode() tests 1057 * - bp for callchains 1058 * - eflags, for future purposes, just in case 1059 */ 1060 static inline void perf_fetch_caller_regs(struct pt_regs *regs) 1061 { 1062 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 1063 } 1064 1065 static __always_inline void 1066 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 1067 { 1068 if (static_key_false(&perf_swevent_enabled[event_id])) 1069 __perf_sw_event(event_id, nr, regs, addr); 1070 } 1071 1072 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]); 1073 1074 /* 1075 * 'Special' version for the scheduler, it hard assumes no recursion, 1076 * which is guaranteed by us not actually scheduling inside other swevents 1077 * because those disable preemption. 1078 */ 1079 static __always_inline void 1080 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) 1081 { 1082 if (static_key_false(&perf_swevent_enabled[event_id])) { 1083 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1084 1085 perf_fetch_caller_regs(regs); 1086 ___perf_sw_event(event_id, nr, regs, addr); 1087 } 1088 } 1089 1090 extern struct static_key_false perf_sched_events; 1091 1092 static __always_inline bool 1093 perf_sw_migrate_enabled(void) 1094 { 1095 if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS])) 1096 return true; 1097 return false; 1098 } 1099 1100 static inline void perf_event_task_migrate(struct task_struct *task) 1101 { 1102 if (perf_sw_migrate_enabled()) 1103 task->sched_migrated = 1; 1104 } 1105 1106 static inline void perf_event_task_sched_in(struct task_struct *prev, 1107 struct task_struct *task) 1108 { 1109 if (static_branch_unlikely(&perf_sched_events)) 1110 __perf_event_task_sched_in(prev, task); 1111 1112 if (perf_sw_migrate_enabled() && task->sched_migrated) { 1113 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1114 1115 perf_fetch_caller_regs(regs); 1116 ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0); 1117 task->sched_migrated = 0; 1118 } 1119 } 1120 1121 static inline void perf_event_task_sched_out(struct task_struct *prev, 1122 struct task_struct *next) 1123 { 1124 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0); 1125 1126 if (static_branch_unlikely(&perf_sched_events)) 1127 __perf_event_task_sched_out(prev, next); 1128 } 1129 1130 extern void perf_event_mmap(struct vm_area_struct *vma); 1131 1132 extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, 1133 bool unregister, const char *sym); 1134 extern void perf_event_bpf_event(struct bpf_prog *prog, 1135 enum perf_bpf_event_type type, 1136 u16 flags); 1137 1138 extern struct perf_guest_info_callbacks *perf_guest_cbs; 1139 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1140 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1141 1142 extern void perf_event_exec(void); 1143 extern void perf_event_comm(struct task_struct *tsk, bool exec); 1144 extern void perf_event_namespaces(struct task_struct *tsk); 1145 extern void perf_event_fork(struct task_struct *tsk); 1146 1147 /* Callchains */ 1148 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 1149 1150 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1151 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1152 extern struct perf_callchain_entry * 1153 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user, 1154 u32 max_stack, bool crosstask, bool add_mark); 1155 extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs); 1156 extern int get_callchain_buffers(int max_stack); 1157 extern void put_callchain_buffers(void); 1158 1159 extern int sysctl_perf_event_max_stack; 1160 extern int sysctl_perf_event_max_contexts_per_stack; 1161 1162 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip) 1163 { 1164 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) { 1165 struct perf_callchain_entry *entry = ctx->entry; 1166 entry->ip[entry->nr++] = ip; 1167 ++ctx->contexts; 1168 return 0; 1169 } else { 1170 ctx->contexts_maxed = true; 1171 return -1; /* no more room, stop walking the stack */ 1172 } 1173 } 1174 1175 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip) 1176 { 1177 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) { 1178 struct perf_callchain_entry *entry = ctx->entry; 1179 entry->ip[entry->nr++] = ip; 1180 ++ctx->nr; 1181 return 0; 1182 } else { 1183 return -1; /* no more room, stop walking the stack */ 1184 } 1185 } 1186 1187 extern int sysctl_perf_event_paranoid; 1188 extern int sysctl_perf_event_mlock; 1189 extern int sysctl_perf_event_sample_rate; 1190 extern int sysctl_perf_cpu_time_max_percent; 1191 1192 extern void perf_sample_event_took(u64 sample_len_ns); 1193 1194 extern int perf_proc_update_handler(struct ctl_table *table, int write, 1195 void __user *buffer, size_t *lenp, 1196 loff_t *ppos); 1197 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 1198 void __user *buffer, size_t *lenp, 1199 loff_t *ppos); 1200 1201 int perf_event_max_stack_handler(struct ctl_table *table, int write, 1202 void __user *buffer, size_t *lenp, loff_t *ppos); 1203 1204 static inline bool perf_paranoid_tracepoint_raw(void) 1205 { 1206 return sysctl_perf_event_paranoid > -1; 1207 } 1208 1209 static inline bool perf_paranoid_cpu(void) 1210 { 1211 return sysctl_perf_event_paranoid > 0; 1212 } 1213 1214 static inline bool perf_paranoid_kernel(void) 1215 { 1216 return sysctl_perf_event_paranoid > 1; 1217 } 1218 1219 extern void perf_event_init(void); 1220 extern void perf_tp_event(u16 event_type, u64 count, void *record, 1221 int entry_size, struct pt_regs *regs, 1222 struct hlist_head *head, int rctx, 1223 struct task_struct *task); 1224 extern void perf_bp_event(struct perf_event *event, void *data); 1225 1226 #ifndef perf_misc_flags 1227 # define perf_misc_flags(regs) \ 1228 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 1229 # define perf_instruction_pointer(regs) instruction_pointer(regs) 1230 #endif 1231 #ifndef perf_arch_bpf_user_pt_regs 1232 # define perf_arch_bpf_user_pt_regs(regs) regs 1233 #endif 1234 1235 static inline bool has_branch_stack(struct perf_event *event) 1236 { 1237 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; 1238 } 1239 1240 static inline bool needs_branch_stack(struct perf_event *event) 1241 { 1242 return event->attr.branch_sample_type != 0; 1243 } 1244 1245 static inline bool has_aux(struct perf_event *event) 1246 { 1247 return event->pmu->setup_aux; 1248 } 1249 1250 static inline bool is_write_backward(struct perf_event *event) 1251 { 1252 return !!event->attr.write_backward; 1253 } 1254 1255 static inline bool has_addr_filter(struct perf_event *event) 1256 { 1257 return event->pmu->nr_addr_filters; 1258 } 1259 1260 /* 1261 * An inherited event uses parent's filters 1262 */ 1263 static inline struct perf_addr_filters_head * 1264 perf_event_addr_filters(struct perf_event *event) 1265 { 1266 struct perf_addr_filters_head *ifh = &event->addr_filters; 1267 1268 if (event->parent) 1269 ifh = &event->parent->addr_filters; 1270 1271 return ifh; 1272 } 1273 1274 extern void perf_event_addr_filters_sync(struct perf_event *event); 1275 1276 extern int perf_output_begin(struct perf_output_handle *handle, 1277 struct perf_event *event, unsigned int size); 1278 extern int perf_output_begin_forward(struct perf_output_handle *handle, 1279 struct perf_event *event, 1280 unsigned int size); 1281 extern int perf_output_begin_backward(struct perf_output_handle *handle, 1282 struct perf_event *event, 1283 unsigned int size); 1284 1285 extern void perf_output_end(struct perf_output_handle *handle); 1286 extern unsigned int perf_output_copy(struct perf_output_handle *handle, 1287 const void *buf, unsigned int len); 1288 extern unsigned int perf_output_skip(struct perf_output_handle *handle, 1289 unsigned int len); 1290 extern int perf_swevent_get_recursion_context(void); 1291 extern void perf_swevent_put_recursion_context(int rctx); 1292 extern u64 perf_swevent_set_period(struct perf_event *event); 1293 extern void perf_event_enable(struct perf_event *event); 1294 extern void perf_event_disable(struct perf_event *event); 1295 extern void perf_event_disable_local(struct perf_event *event); 1296 extern void perf_event_disable_inatomic(struct perf_event *event); 1297 extern void perf_event_task_tick(void); 1298 extern int perf_event_account_interrupt(struct perf_event *event); 1299 #else /* !CONFIG_PERF_EVENTS: */ 1300 static inline void * 1301 perf_aux_output_begin(struct perf_output_handle *handle, 1302 struct perf_event *event) { return NULL; } 1303 static inline void 1304 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size) 1305 { } 1306 static inline int 1307 perf_aux_output_skip(struct perf_output_handle *handle, 1308 unsigned long size) { return -EINVAL; } 1309 static inline void * 1310 perf_get_aux(struct perf_output_handle *handle) { return NULL; } 1311 static inline void 1312 perf_event_task_migrate(struct task_struct *task) { } 1313 static inline void 1314 perf_event_task_sched_in(struct task_struct *prev, 1315 struct task_struct *task) { } 1316 static inline void 1317 perf_event_task_sched_out(struct task_struct *prev, 1318 struct task_struct *next) { } 1319 static inline int perf_event_init_task(struct task_struct *child) { return 0; } 1320 static inline void perf_event_exit_task(struct task_struct *child) { } 1321 static inline void perf_event_free_task(struct task_struct *task) { } 1322 static inline void perf_event_delayed_put(struct task_struct *task) { } 1323 static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); } 1324 static inline const struct perf_event *perf_get_event(struct file *file) 1325 { 1326 return ERR_PTR(-EINVAL); 1327 } 1328 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 1329 { 1330 return ERR_PTR(-EINVAL); 1331 } 1332 static inline int perf_event_read_local(struct perf_event *event, u64 *value, 1333 u64 *enabled, u64 *running) 1334 { 1335 return -EINVAL; 1336 } 1337 static inline void perf_event_print_debug(void) { } 1338 static inline int perf_event_task_disable(void) { return -EINVAL; } 1339 static inline int perf_event_task_enable(void) { return -EINVAL; } 1340 static inline int perf_event_refresh(struct perf_event *event, int refresh) 1341 { 1342 return -EINVAL; 1343 } 1344 1345 static inline void 1346 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 1347 static inline void 1348 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { } 1349 static inline void 1350 perf_bp_event(struct perf_event *event, void *data) { } 1351 1352 static inline int perf_register_guest_info_callbacks 1353 (struct perf_guest_info_callbacks *callbacks) { return 0; } 1354 static inline int perf_unregister_guest_info_callbacks 1355 (struct perf_guest_info_callbacks *callbacks) { return 0; } 1356 1357 static inline void perf_event_mmap(struct vm_area_struct *vma) { } 1358 1359 typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data); 1360 static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, 1361 bool unregister, const char *sym) { } 1362 static inline void perf_event_bpf_event(struct bpf_prog *prog, 1363 enum perf_bpf_event_type type, 1364 u16 flags) { } 1365 static inline void perf_event_exec(void) { } 1366 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { } 1367 static inline void perf_event_namespaces(struct task_struct *tsk) { } 1368 static inline void perf_event_fork(struct task_struct *tsk) { } 1369 static inline void perf_event_init(void) { } 1370 static inline int perf_swevent_get_recursion_context(void) { return -1; } 1371 static inline void perf_swevent_put_recursion_context(int rctx) { } 1372 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; } 1373 static inline void perf_event_enable(struct perf_event *event) { } 1374 static inline void perf_event_disable(struct perf_event *event) { } 1375 static inline int __perf_event_disable(void *info) { return -1; } 1376 static inline void perf_event_task_tick(void) { } 1377 static inline int perf_event_release_kernel(struct perf_event *event) { return 0; } 1378 #endif 1379 1380 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) 1381 extern void perf_restore_debug_store(void); 1382 #else 1383 static inline void perf_restore_debug_store(void) { } 1384 #endif 1385 1386 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag) 1387 { 1388 return frag->pad < sizeof(u64); 1389 } 1390 1391 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 1392 1393 struct perf_pmu_events_attr { 1394 struct device_attribute attr; 1395 u64 id; 1396 const char *event_str; 1397 }; 1398 1399 struct perf_pmu_events_ht_attr { 1400 struct device_attribute attr; 1401 u64 id; 1402 const char *event_str_ht; 1403 const char *event_str_noht; 1404 }; 1405 1406 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 1407 char *page); 1408 1409 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \ 1410 static struct perf_pmu_events_attr _var = { \ 1411 .attr = __ATTR(_name, 0444, _show, NULL), \ 1412 .id = _id, \ 1413 }; 1414 1415 #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \ 1416 static struct perf_pmu_events_attr _var = { \ 1417 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \ 1418 .id = 0, \ 1419 .event_str = _str, \ 1420 }; 1421 1422 #define PMU_FORMAT_ATTR(_name, _format) \ 1423 static ssize_t \ 1424 _name##_show(struct device *dev, \ 1425 struct device_attribute *attr, \ 1426 char *page) \ 1427 { \ 1428 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ 1429 return sprintf(page, _format "\n"); \ 1430 } \ 1431 \ 1432 static struct device_attribute format_attr_##_name = __ATTR_RO(_name) 1433 1434 /* Performance counter hotplug functions */ 1435 #ifdef CONFIG_PERF_EVENTS 1436 int perf_event_init_cpu(unsigned int cpu); 1437 int perf_event_exit_cpu(unsigned int cpu); 1438 #else 1439 #define perf_event_init_cpu NULL 1440 #define perf_event_exit_cpu NULL 1441 #endif 1442 1443 #endif /* _LINUX_PERF_EVENT_H */ 1444