1 /* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <[email protected]> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14 #ifndef _LINUX_PERF_EVENT_H 15 #define _LINUX_PERF_EVENT_H 16 17 #include <uapi/linux/perf_event.h> 18 #include <uapi/linux/bpf_perf_event.h> 19 20 /* 21 * Kernel-internal data types and definitions: 22 */ 23 24 #ifdef CONFIG_PERF_EVENTS 25 # include <asm/perf_event.h> 26 # include <asm/local64.h> 27 #endif 28 29 struct perf_guest_info_callbacks { 30 int (*is_in_guest)(void); 31 int (*is_user_mode)(void); 32 unsigned long (*get_guest_ip)(void); 33 void (*handle_intel_pt_intr)(void); 34 }; 35 36 #ifdef CONFIG_HAVE_HW_BREAKPOINT 37 #include <asm/hw_breakpoint.h> 38 #endif 39 40 #include <linux/list.h> 41 #include <linux/mutex.h> 42 #include <linux/rculist.h> 43 #include <linux/rcupdate.h> 44 #include <linux/spinlock.h> 45 #include <linux/hrtimer.h> 46 #include <linux/fs.h> 47 #include <linux/pid_namespace.h> 48 #include <linux/workqueue.h> 49 #include <linux/ftrace.h> 50 #include <linux/cpu.h> 51 #include <linux/irq_work.h> 52 #include <linux/static_key.h> 53 #include <linux/jump_label_ratelimit.h> 54 #include <linux/atomic.h> 55 #include <linux/sysfs.h> 56 #include <linux/perf_regs.h> 57 #include <linux/cgroup.h> 58 #include <linux/refcount.h> 59 #include <asm/local.h> 60 61 struct perf_callchain_entry { 62 __u64 nr; 63 __u64 ip[0]; /* /proc/sys/kernel/perf_event_max_stack */ 64 }; 65 66 struct perf_callchain_entry_ctx { 67 struct perf_callchain_entry *entry; 68 u32 max_stack; 69 u32 nr; 70 short contexts; 71 bool contexts_maxed; 72 }; 73 74 typedef unsigned long (*perf_copy_f)(void *dst, const void *src, 75 unsigned long off, unsigned long len); 76 77 struct perf_raw_frag { 78 union { 79 struct perf_raw_frag *next; 80 unsigned long pad; 81 }; 82 perf_copy_f copy; 83 void *data; 84 u32 size; 85 } __packed; 86 87 struct perf_raw_record { 88 struct perf_raw_frag frag; 89 u32 size; 90 }; 91 92 /* 93 * branch stack layout: 94 * nr: number of taken branches stored in entries[] 95 * 96 * Note that nr can vary from sample to sample 97 * branches (to, from) are stored from most recent 98 * to least recent, i.e., entries[0] contains the most 99 * recent branch. 100 */ 101 struct perf_branch_stack { 102 __u64 nr; 103 struct perf_branch_entry entries[0]; 104 }; 105 106 struct task_struct; 107 108 /* 109 * extra PMU register associated with an event 110 */ 111 struct hw_perf_event_extra { 112 u64 config; /* register value */ 113 unsigned int reg; /* register address or index */ 114 int alloc; /* extra register already allocated */ 115 int idx; /* index in shared_regs->regs[] */ 116 }; 117 118 /** 119 * struct hw_perf_event - performance event hardware details: 120 */ 121 struct hw_perf_event { 122 #ifdef CONFIG_PERF_EVENTS 123 union { 124 struct { /* hardware */ 125 u64 config; 126 u64 last_tag; 127 unsigned long config_base; 128 unsigned long event_base; 129 int event_base_rdpmc; 130 int idx; 131 int last_cpu; 132 int flags; 133 134 struct hw_perf_event_extra extra_reg; 135 struct hw_perf_event_extra branch_reg; 136 }; 137 struct { /* software */ 138 struct hrtimer hrtimer; 139 }; 140 struct { /* tracepoint */ 141 /* for tp_event->class */ 142 struct list_head tp_list; 143 }; 144 struct { /* amd_power */ 145 u64 pwr_acc; 146 u64 ptsc; 147 }; 148 #ifdef CONFIG_HAVE_HW_BREAKPOINT 149 struct { /* breakpoint */ 150 /* 151 * Crufty hack to avoid the chicken and egg 152 * problem hw_breakpoint has with context 153 * creation and event initalization. 154 */ 155 struct arch_hw_breakpoint info; 156 struct list_head bp_list; 157 }; 158 #endif 159 struct { /* amd_iommu */ 160 u8 iommu_bank; 161 u8 iommu_cntr; 162 u16 padding; 163 u64 conf; 164 u64 conf1; 165 }; 166 }; 167 /* 168 * If the event is a per task event, this will point to the task in 169 * question. See the comment in perf_event_alloc(). 170 */ 171 struct task_struct *target; 172 173 /* 174 * PMU would store hardware filter configuration 175 * here. 176 */ 177 void *addr_filters; 178 179 /* Last sync'ed generation of filters */ 180 unsigned long addr_filters_gen; 181 182 /* 183 * hw_perf_event::state flags; used to track the PERF_EF_* state. 184 */ 185 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 186 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 187 #define PERF_HES_ARCH 0x04 188 189 int state; 190 191 /* 192 * The last observed hardware counter value, updated with a 193 * local64_cmpxchg() such that pmu::read() can be called nested. 194 */ 195 local64_t prev_count; 196 197 /* 198 * The period to start the next sample with. 199 */ 200 u64 sample_period; 201 202 /* 203 * The period we started this sample with. 204 */ 205 u64 last_period; 206 207 /* 208 * However much is left of the current period; note that this is 209 * a full 64bit value and allows for generation of periods longer 210 * than hardware might allow. 211 */ 212 local64_t period_left; 213 214 /* 215 * State for throttling the event, see __perf_event_overflow() and 216 * perf_adjust_freq_unthr_context(). 217 */ 218 u64 interrupts_seq; 219 u64 interrupts; 220 221 /* 222 * State for freq target events, see __perf_event_overflow() and 223 * perf_adjust_freq_unthr_context(). 224 */ 225 u64 freq_time_stamp; 226 u64 freq_count_stamp; 227 #endif 228 }; 229 230 struct perf_event; 231 232 /* 233 * Common implementation detail of pmu::{start,commit,cancel}_txn 234 */ 235 #define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */ 236 #define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */ 237 238 /** 239 * pmu::capabilities flags 240 */ 241 #define PERF_PMU_CAP_NO_INTERRUPT 0x01 242 #define PERF_PMU_CAP_NO_NMI 0x02 243 #define PERF_PMU_CAP_AUX_NO_SG 0x04 244 #define PERF_PMU_CAP_EXTENDED_REGS 0x08 245 #define PERF_PMU_CAP_EXCLUSIVE 0x10 246 #define PERF_PMU_CAP_ITRACE 0x20 247 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x40 248 #define PERF_PMU_CAP_NO_EXCLUDE 0x80 249 250 /** 251 * struct pmu - generic performance monitoring unit 252 */ 253 struct pmu { 254 struct list_head entry; 255 256 struct module *module; 257 struct device *dev; 258 const struct attribute_group **attr_groups; 259 const struct attribute_group **attr_update; 260 const char *name; 261 int type; 262 263 /* 264 * various common per-pmu feature flags 265 */ 266 int capabilities; 267 268 int __percpu *pmu_disable_count; 269 struct perf_cpu_context __percpu *pmu_cpu_context; 270 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */ 271 int task_ctx_nr; 272 int hrtimer_interval_ms; 273 274 /* number of address filters this PMU can do */ 275 unsigned int nr_addr_filters; 276 277 /* 278 * Fully disable/enable this PMU, can be used to protect from the PMI 279 * as well as for lazy/batch writing of the MSRs. 280 */ 281 void (*pmu_enable) (struct pmu *pmu); /* optional */ 282 void (*pmu_disable) (struct pmu *pmu); /* optional */ 283 284 /* 285 * Try and initialize the event for this PMU. 286 * 287 * Returns: 288 * -ENOENT -- @event is not for this PMU 289 * 290 * -ENODEV -- @event is for this PMU but PMU not present 291 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable 292 * -EINVAL -- @event is for this PMU but @event is not valid 293 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported 294 * -EACCESS -- @event is for this PMU, @event is valid, but no privilidges 295 * 296 * 0 -- @event is for this PMU and valid 297 * 298 * Other error return values are allowed. 299 */ 300 int (*event_init) (struct perf_event *event); 301 302 /* 303 * Notification that the event was mapped or unmapped. Called 304 * in the context of the mapping task. 305 */ 306 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 307 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 308 309 /* 310 * Flags for ->add()/->del()/ ->start()/->stop(). There are 311 * matching hw_perf_event::state flags. 312 */ 313 #define PERF_EF_START 0x01 /* start the counter when adding */ 314 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 315 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 316 317 /* 318 * Adds/Removes a counter to/from the PMU, can be done inside a 319 * transaction, see the ->*_txn() methods. 320 * 321 * The add/del callbacks will reserve all hardware resources required 322 * to service the event, this includes any counter constraint 323 * scheduling etc. 324 * 325 * Called with IRQs disabled and the PMU disabled on the CPU the event 326 * is on. 327 * 328 * ->add() called without PERF_EF_START should result in the same state 329 * as ->add() followed by ->stop(). 330 * 331 * ->del() must always PERF_EF_UPDATE stop an event. If it calls 332 * ->stop() that must deal with already being stopped without 333 * PERF_EF_UPDATE. 334 */ 335 int (*add) (struct perf_event *event, int flags); 336 void (*del) (struct perf_event *event, int flags); 337 338 /* 339 * Starts/Stops a counter present on the PMU. 340 * 341 * The PMI handler should stop the counter when perf_event_overflow() 342 * returns !0. ->start() will be used to continue. 343 * 344 * Also used to change the sample period. 345 * 346 * Called with IRQs disabled and the PMU disabled on the CPU the event 347 * is on -- will be called from NMI context with the PMU generates 348 * NMIs. 349 * 350 * ->stop() with PERF_EF_UPDATE will read the counter and update 351 * period/count values like ->read() would. 352 * 353 * ->start() with PERF_EF_RELOAD will reprogram the the counter 354 * value, must be preceded by a ->stop() with PERF_EF_UPDATE. 355 */ 356 void (*start) (struct perf_event *event, int flags); 357 void (*stop) (struct perf_event *event, int flags); 358 359 /* 360 * Updates the counter value of the event. 361 * 362 * For sampling capable PMUs this will also update the software period 363 * hw_perf_event::period_left field. 364 */ 365 void (*read) (struct perf_event *event); 366 367 /* 368 * Group events scheduling is treated as a transaction, add 369 * group events as a whole and perform one schedulability test. 370 * If the test fails, roll back the whole group 371 * 372 * Start the transaction, after this ->add() doesn't need to 373 * do schedulability tests. 374 * 375 * Optional. 376 */ 377 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags); 378 /* 379 * If ->start_txn() disabled the ->add() schedulability test 380 * then ->commit_txn() is required to perform one. On success 381 * the transaction is closed. On error the transaction is kept 382 * open until ->cancel_txn() is called. 383 * 384 * Optional. 385 */ 386 int (*commit_txn) (struct pmu *pmu); 387 /* 388 * Will cancel the transaction, assumes ->del() is called 389 * for each successful ->add() during the transaction. 390 * 391 * Optional. 392 */ 393 void (*cancel_txn) (struct pmu *pmu); 394 395 /* 396 * Will return the value for perf_event_mmap_page::index for this event, 397 * if no implementation is provided it will default to: event->hw.idx + 1. 398 */ 399 int (*event_idx) (struct perf_event *event); /*optional */ 400 401 /* 402 * context-switches callback 403 */ 404 void (*sched_task) (struct perf_event_context *ctx, 405 bool sched_in); 406 /* 407 * PMU specific data size 408 */ 409 size_t task_ctx_size; 410 411 412 /* 413 * Set up pmu-private data structures for an AUX area 414 */ 415 void *(*setup_aux) (struct perf_event *event, void **pages, 416 int nr_pages, bool overwrite); 417 /* optional */ 418 419 /* 420 * Free pmu-private AUX data structures 421 */ 422 void (*free_aux) (void *aux); /* optional */ 423 424 /* 425 * Validate address range filters: make sure the HW supports the 426 * requested configuration and number of filters; return 0 if the 427 * supplied filters are valid, -errno otherwise. 428 * 429 * Runs in the context of the ioctl()ing process and is not serialized 430 * with the rest of the PMU callbacks. 431 */ 432 int (*addr_filters_validate) (struct list_head *filters); 433 /* optional */ 434 435 /* 436 * Synchronize address range filter configuration: 437 * translate hw-agnostic filters into hardware configuration in 438 * event::hw::addr_filters. 439 * 440 * Runs as a part of filter sync sequence that is done in ->start() 441 * callback by calling perf_event_addr_filters_sync(). 442 * 443 * May (and should) traverse event::addr_filters::list, for which its 444 * caller provides necessary serialization. 445 */ 446 void (*addr_filters_sync) (struct perf_event *event); 447 /* optional */ 448 449 /* 450 * Filter events for PMU-specific reasons. 451 */ 452 int (*filter_match) (struct perf_event *event); /* optional */ 453 454 /* 455 * Check period value for PERF_EVENT_IOC_PERIOD ioctl. 456 */ 457 int (*check_period) (struct perf_event *event, u64 value); /* optional */ 458 }; 459 460 enum perf_addr_filter_action_t { 461 PERF_ADDR_FILTER_ACTION_STOP = 0, 462 PERF_ADDR_FILTER_ACTION_START, 463 PERF_ADDR_FILTER_ACTION_FILTER, 464 }; 465 466 /** 467 * struct perf_addr_filter - address range filter definition 468 * @entry: event's filter list linkage 469 * @path: object file's path for file-based filters 470 * @offset: filter range offset 471 * @size: filter range size (size==0 means single address trigger) 472 * @action: filter/start/stop 473 * 474 * This is a hardware-agnostic filter configuration as specified by the user. 475 */ 476 struct perf_addr_filter { 477 struct list_head entry; 478 struct path path; 479 unsigned long offset; 480 unsigned long size; 481 enum perf_addr_filter_action_t action; 482 }; 483 484 /** 485 * struct perf_addr_filters_head - container for address range filters 486 * @list: list of filters for this event 487 * @lock: spinlock that serializes accesses to the @list and event's 488 * (and its children's) filter generations. 489 * @nr_file_filters: number of file-based filters 490 * 491 * A child event will use parent's @list (and therefore @lock), so they are 492 * bundled together; see perf_event_addr_filters(). 493 */ 494 struct perf_addr_filters_head { 495 struct list_head list; 496 raw_spinlock_t lock; 497 unsigned int nr_file_filters; 498 }; 499 500 struct perf_addr_filter_range { 501 unsigned long start; 502 unsigned long size; 503 }; 504 505 /** 506 * enum perf_event_state - the states of an event: 507 */ 508 enum perf_event_state { 509 PERF_EVENT_STATE_DEAD = -4, 510 PERF_EVENT_STATE_EXIT = -3, 511 PERF_EVENT_STATE_ERROR = -2, 512 PERF_EVENT_STATE_OFF = -1, 513 PERF_EVENT_STATE_INACTIVE = 0, 514 PERF_EVENT_STATE_ACTIVE = 1, 515 }; 516 517 struct file; 518 struct perf_sample_data; 519 520 typedef void (*perf_overflow_handler_t)(struct perf_event *, 521 struct perf_sample_data *, 522 struct pt_regs *regs); 523 524 /* 525 * Event capabilities. For event_caps and groups caps. 526 * 527 * PERF_EV_CAP_SOFTWARE: Is a software event. 528 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read 529 * from any CPU in the package where it is active. 530 */ 531 #define PERF_EV_CAP_SOFTWARE BIT(0) 532 #define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1) 533 534 #define SWEVENT_HLIST_BITS 8 535 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 536 537 struct swevent_hlist { 538 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 539 struct rcu_head rcu_head; 540 }; 541 542 #define PERF_ATTACH_CONTEXT 0x01 543 #define PERF_ATTACH_GROUP 0x02 544 #define PERF_ATTACH_TASK 0x04 545 #define PERF_ATTACH_TASK_DATA 0x08 546 #define PERF_ATTACH_ITRACE 0x10 547 548 struct perf_cgroup; 549 struct ring_buffer; 550 551 struct pmu_event_list { 552 raw_spinlock_t lock; 553 struct list_head list; 554 }; 555 556 #define for_each_sibling_event(sibling, event) \ 557 if ((event)->group_leader == (event)) \ 558 list_for_each_entry((sibling), &(event)->sibling_list, sibling_list) 559 560 /** 561 * struct perf_event - performance event kernel representation: 562 */ 563 struct perf_event { 564 #ifdef CONFIG_PERF_EVENTS 565 /* 566 * entry onto perf_event_context::event_list; 567 * modifications require ctx->lock 568 * RCU safe iterations. 569 */ 570 struct list_head event_entry; 571 572 /* 573 * Locked for modification by both ctx->mutex and ctx->lock; holding 574 * either sufficies for read. 575 */ 576 struct list_head sibling_list; 577 struct list_head active_list; 578 /* 579 * Node on the pinned or flexible tree located at the event context; 580 */ 581 struct rb_node group_node; 582 u64 group_index; 583 /* 584 * We need storage to track the entries in perf_pmu_migrate_context; we 585 * cannot use the event_entry because of RCU and we want to keep the 586 * group in tact which avoids us using the other two entries. 587 */ 588 struct list_head migrate_entry; 589 590 struct hlist_node hlist_entry; 591 struct list_head active_entry; 592 int nr_siblings; 593 594 /* Not serialized. Only written during event initialization. */ 595 int event_caps; 596 /* The cumulative AND of all event_caps for events in this group. */ 597 int group_caps; 598 599 struct perf_event *group_leader; 600 struct pmu *pmu; 601 void *pmu_private; 602 603 enum perf_event_state state; 604 unsigned int attach_state; 605 local64_t count; 606 atomic64_t child_count; 607 608 /* 609 * These are the total time in nanoseconds that the event 610 * has been enabled (i.e. eligible to run, and the task has 611 * been scheduled in, if this is a per-task event) 612 * and running (scheduled onto the CPU), respectively. 613 */ 614 u64 total_time_enabled; 615 u64 total_time_running; 616 u64 tstamp; 617 618 /* 619 * timestamp shadows the actual context timing but it can 620 * be safely used in NMI interrupt context. It reflects the 621 * context time as it was when the event was last scheduled in. 622 * 623 * ctx_time already accounts for ctx->timestamp. Therefore to 624 * compute ctx_time for a sample, simply add perf_clock(). 625 */ 626 u64 shadow_ctx_time; 627 628 struct perf_event_attr attr; 629 u16 header_size; 630 u16 id_header_size; 631 u16 read_size; 632 struct hw_perf_event hw; 633 634 struct perf_event_context *ctx; 635 atomic_long_t refcount; 636 637 /* 638 * These accumulate total time (in nanoseconds) that children 639 * events have been enabled and running, respectively. 640 */ 641 atomic64_t child_total_time_enabled; 642 atomic64_t child_total_time_running; 643 644 /* 645 * Protect attach/detach and child_list: 646 */ 647 struct mutex child_mutex; 648 struct list_head child_list; 649 struct perf_event *parent; 650 651 int oncpu; 652 int cpu; 653 654 struct list_head owner_entry; 655 struct task_struct *owner; 656 657 /* mmap bits */ 658 struct mutex mmap_mutex; 659 atomic_t mmap_count; 660 661 struct ring_buffer *rb; 662 struct list_head rb_entry; 663 unsigned long rcu_batches; 664 int rcu_pending; 665 666 /* poll related */ 667 wait_queue_head_t waitq; 668 struct fasync_struct *fasync; 669 670 /* delayed work for NMIs and such */ 671 int pending_wakeup; 672 int pending_kill; 673 int pending_disable; 674 struct irq_work pending; 675 676 atomic_t event_limit; 677 678 /* address range filters */ 679 struct perf_addr_filters_head addr_filters; 680 /* vma address array for file-based filders */ 681 struct perf_addr_filter_range *addr_filter_ranges; 682 unsigned long addr_filters_gen; 683 684 void (*destroy)(struct perf_event *); 685 struct rcu_head rcu_head; 686 687 struct pid_namespace *ns; 688 u64 id; 689 690 u64 (*clock)(void); 691 perf_overflow_handler_t overflow_handler; 692 void *overflow_handler_context; 693 #ifdef CONFIG_BPF_SYSCALL 694 perf_overflow_handler_t orig_overflow_handler; 695 struct bpf_prog *prog; 696 #endif 697 698 #ifdef CONFIG_EVENT_TRACING 699 struct trace_event_call *tp_event; 700 struct event_filter *filter; 701 #ifdef CONFIG_FUNCTION_TRACER 702 struct ftrace_ops ftrace_ops; 703 #endif 704 #endif 705 706 #ifdef CONFIG_CGROUP_PERF 707 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 708 #endif 709 710 struct list_head sb_list; 711 #endif /* CONFIG_PERF_EVENTS */ 712 }; 713 714 715 struct perf_event_groups { 716 struct rb_root tree; 717 u64 index; 718 }; 719 720 /** 721 * struct perf_event_context - event context structure 722 * 723 * Used as a container for task events and CPU events as well: 724 */ 725 struct perf_event_context { 726 struct pmu *pmu; 727 /* 728 * Protect the states of the events in the list, 729 * nr_active, and the list: 730 */ 731 raw_spinlock_t lock; 732 /* 733 * Protect the list of events. Locking either mutex or lock 734 * is sufficient to ensure the list doesn't change; to change 735 * the list you need to lock both the mutex and the spinlock. 736 */ 737 struct mutex mutex; 738 739 struct list_head active_ctx_list; 740 struct perf_event_groups pinned_groups; 741 struct perf_event_groups flexible_groups; 742 struct list_head event_list; 743 744 struct list_head pinned_active; 745 struct list_head flexible_active; 746 747 int nr_events; 748 int nr_active; 749 int is_active; 750 int nr_stat; 751 int nr_freq; 752 int rotate_disable; 753 /* 754 * Set when nr_events != nr_active, except tolerant to events not 755 * necessary to be active due to scheduling constraints, such as cgroups. 756 */ 757 int rotate_necessary; 758 refcount_t refcount; 759 struct task_struct *task; 760 761 /* 762 * Context clock, runs when context enabled. 763 */ 764 u64 time; 765 u64 timestamp; 766 767 /* 768 * These fields let us detect when two contexts have both 769 * been cloned (inherited) from a common ancestor. 770 */ 771 struct perf_event_context *parent_ctx; 772 u64 parent_gen; 773 u64 generation; 774 int pin_count; 775 #ifdef CONFIG_CGROUP_PERF 776 int nr_cgroups; /* cgroup evts */ 777 #endif 778 void *task_ctx_data; /* pmu specific data */ 779 struct rcu_head rcu_head; 780 }; 781 782 /* 783 * Number of contexts where an event can trigger: 784 * task, softirq, hardirq, nmi. 785 */ 786 #define PERF_NR_CONTEXTS 4 787 788 /** 789 * struct perf_event_cpu_context - per cpu event context structure 790 */ 791 struct perf_cpu_context { 792 struct perf_event_context ctx; 793 struct perf_event_context *task_ctx; 794 int active_oncpu; 795 int exclusive; 796 797 raw_spinlock_t hrtimer_lock; 798 struct hrtimer hrtimer; 799 ktime_t hrtimer_interval; 800 unsigned int hrtimer_active; 801 802 #ifdef CONFIG_CGROUP_PERF 803 struct perf_cgroup *cgrp; 804 struct list_head cgrp_cpuctx_entry; 805 #endif 806 807 struct list_head sched_cb_entry; 808 int sched_cb_usage; 809 810 int online; 811 }; 812 813 struct perf_output_handle { 814 struct perf_event *event; 815 struct ring_buffer *rb; 816 unsigned long wakeup; 817 unsigned long size; 818 u64 aux_flags; 819 union { 820 void *addr; 821 unsigned long head; 822 }; 823 int page; 824 }; 825 826 struct bpf_perf_event_data_kern { 827 bpf_user_pt_regs_t *regs; 828 struct perf_sample_data *data; 829 struct perf_event *event; 830 }; 831 832 #ifdef CONFIG_CGROUP_PERF 833 834 /* 835 * perf_cgroup_info keeps track of time_enabled for a cgroup. 836 * This is a per-cpu dynamically allocated data structure. 837 */ 838 struct perf_cgroup_info { 839 u64 time; 840 u64 timestamp; 841 }; 842 843 struct perf_cgroup { 844 struct cgroup_subsys_state css; 845 struct perf_cgroup_info __percpu *info; 846 }; 847 848 /* 849 * Must ensure cgroup is pinned (css_get) before calling 850 * this function. In other words, we cannot call this function 851 * if there is no cgroup event for the current CPU context. 852 */ 853 static inline struct perf_cgroup * 854 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx) 855 { 856 return container_of(task_css_check(task, perf_event_cgrp_id, 857 ctx ? lockdep_is_held(&ctx->lock) 858 : true), 859 struct perf_cgroup, css); 860 } 861 #endif /* CONFIG_CGROUP_PERF */ 862 863 #ifdef CONFIG_PERF_EVENTS 864 865 extern void *perf_aux_output_begin(struct perf_output_handle *handle, 866 struct perf_event *event); 867 extern void perf_aux_output_end(struct perf_output_handle *handle, 868 unsigned long size); 869 extern int perf_aux_output_skip(struct perf_output_handle *handle, 870 unsigned long size); 871 extern void *perf_get_aux(struct perf_output_handle *handle); 872 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags); 873 extern void perf_event_itrace_started(struct perf_event *event); 874 875 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); 876 extern void perf_pmu_unregister(struct pmu *pmu); 877 878 extern int perf_num_counters(void); 879 extern const char *perf_pmu_name(void); 880 extern void __perf_event_task_sched_in(struct task_struct *prev, 881 struct task_struct *task); 882 extern void __perf_event_task_sched_out(struct task_struct *prev, 883 struct task_struct *next); 884 extern int perf_event_init_task(struct task_struct *child); 885 extern void perf_event_exit_task(struct task_struct *child); 886 extern void perf_event_free_task(struct task_struct *task); 887 extern void perf_event_delayed_put(struct task_struct *task); 888 extern struct file *perf_event_get(unsigned int fd); 889 extern const struct perf_event *perf_get_event(struct file *file); 890 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event); 891 extern void perf_event_print_debug(void); 892 extern void perf_pmu_disable(struct pmu *pmu); 893 extern void perf_pmu_enable(struct pmu *pmu); 894 extern void perf_sched_cb_dec(struct pmu *pmu); 895 extern void perf_sched_cb_inc(struct pmu *pmu); 896 extern int perf_event_task_disable(void); 897 extern int perf_event_task_enable(void); 898 899 extern void perf_pmu_resched(struct pmu *pmu); 900 901 extern int perf_event_refresh(struct perf_event *event, int refresh); 902 extern void perf_event_update_userpage(struct perf_event *event); 903 extern int perf_event_release_kernel(struct perf_event *event); 904 extern struct perf_event * 905 perf_event_create_kernel_counter(struct perf_event_attr *attr, 906 int cpu, 907 struct task_struct *task, 908 perf_overflow_handler_t callback, 909 void *context); 910 extern void perf_pmu_migrate_context(struct pmu *pmu, 911 int src_cpu, int dst_cpu); 912 int perf_event_read_local(struct perf_event *event, u64 *value, 913 u64 *enabled, u64 *running); 914 extern u64 perf_event_read_value(struct perf_event *event, 915 u64 *enabled, u64 *running); 916 917 918 struct perf_sample_data { 919 /* 920 * Fields set by perf_sample_data_init(), group so as to 921 * minimize the cachelines touched. 922 */ 923 u64 addr; 924 struct perf_raw_record *raw; 925 struct perf_branch_stack *br_stack; 926 u64 period; 927 u64 weight; 928 u64 txn; 929 union perf_mem_data_src data_src; 930 931 /* 932 * The other fields, optionally {set,used} by 933 * perf_{prepare,output}_sample(). 934 */ 935 u64 type; 936 u64 ip; 937 struct { 938 u32 pid; 939 u32 tid; 940 } tid_entry; 941 u64 time; 942 u64 id; 943 u64 stream_id; 944 struct { 945 u32 cpu; 946 u32 reserved; 947 } cpu_entry; 948 struct perf_callchain_entry *callchain; 949 950 /* 951 * regs_user may point to task_pt_regs or to regs_user_copy, depending 952 * on arch details. 953 */ 954 struct perf_regs regs_user; 955 struct pt_regs regs_user_copy; 956 957 struct perf_regs regs_intr; 958 u64 stack_user_size; 959 960 u64 phys_addr; 961 } ____cacheline_aligned; 962 963 /* default value for data source */ 964 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\ 965 PERF_MEM_S(LVL, NA) |\ 966 PERF_MEM_S(SNOOP, NA) |\ 967 PERF_MEM_S(LOCK, NA) |\ 968 PERF_MEM_S(TLB, NA)) 969 970 static inline void perf_sample_data_init(struct perf_sample_data *data, 971 u64 addr, u64 period) 972 { 973 /* remaining struct members initialized in perf_prepare_sample() */ 974 data->addr = addr; 975 data->raw = NULL; 976 data->br_stack = NULL; 977 data->period = period; 978 data->weight = 0; 979 data->data_src.val = PERF_MEM_NA; 980 data->txn = 0; 981 } 982 983 extern void perf_output_sample(struct perf_output_handle *handle, 984 struct perf_event_header *header, 985 struct perf_sample_data *data, 986 struct perf_event *event); 987 extern void perf_prepare_sample(struct perf_event_header *header, 988 struct perf_sample_data *data, 989 struct perf_event *event, 990 struct pt_regs *regs); 991 992 extern int perf_event_overflow(struct perf_event *event, 993 struct perf_sample_data *data, 994 struct pt_regs *regs); 995 996 extern void perf_event_output_forward(struct perf_event *event, 997 struct perf_sample_data *data, 998 struct pt_regs *regs); 999 extern void perf_event_output_backward(struct perf_event *event, 1000 struct perf_sample_data *data, 1001 struct pt_regs *regs); 1002 extern int perf_event_output(struct perf_event *event, 1003 struct perf_sample_data *data, 1004 struct pt_regs *regs); 1005 1006 static inline bool 1007 is_default_overflow_handler(struct perf_event *event) 1008 { 1009 if (likely(event->overflow_handler == perf_event_output_forward)) 1010 return true; 1011 if (unlikely(event->overflow_handler == perf_event_output_backward)) 1012 return true; 1013 return false; 1014 } 1015 1016 extern void 1017 perf_event_header__init_id(struct perf_event_header *header, 1018 struct perf_sample_data *data, 1019 struct perf_event *event); 1020 extern void 1021 perf_event__output_id_sample(struct perf_event *event, 1022 struct perf_output_handle *handle, 1023 struct perf_sample_data *sample); 1024 1025 extern void 1026 perf_log_lost_samples(struct perf_event *event, u64 lost); 1027 1028 static inline bool event_has_any_exclude_flag(struct perf_event *event) 1029 { 1030 struct perf_event_attr *attr = &event->attr; 1031 1032 return attr->exclude_idle || attr->exclude_user || 1033 attr->exclude_kernel || attr->exclude_hv || 1034 attr->exclude_guest || attr->exclude_host; 1035 } 1036 1037 static inline bool is_sampling_event(struct perf_event *event) 1038 { 1039 return event->attr.sample_period != 0; 1040 } 1041 1042 /* 1043 * Return 1 for a software event, 0 for a hardware event 1044 */ 1045 static inline int is_software_event(struct perf_event *event) 1046 { 1047 return event->event_caps & PERF_EV_CAP_SOFTWARE; 1048 } 1049 1050 /* 1051 * Return 1 for event in sw context, 0 for event in hw context 1052 */ 1053 static inline int in_software_context(struct perf_event *event) 1054 { 1055 return event->ctx->pmu->task_ctx_nr == perf_sw_context; 1056 } 1057 1058 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 1059 1060 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64); 1061 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 1062 1063 #ifndef perf_arch_fetch_caller_regs 1064 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 1065 #endif 1066 1067 /* 1068 * When generating a perf sample in-line, instead of from an interrupt / 1069 * exception, we lack a pt_regs. This is typically used from software events 1070 * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints. 1071 * 1072 * We typically don't need a full set, but (for x86) do require: 1073 * - ip for PERF_SAMPLE_IP 1074 * - cs for user_mode() tests 1075 * - sp for PERF_SAMPLE_CALLCHAIN 1076 * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs()) 1077 * 1078 * NOTE: assumes @regs is otherwise already 0 filled; this is important for 1079 * things like PERF_SAMPLE_REGS_INTR. 1080 */ 1081 static inline void perf_fetch_caller_regs(struct pt_regs *regs) 1082 { 1083 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 1084 } 1085 1086 static __always_inline void 1087 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 1088 { 1089 if (static_key_false(&perf_swevent_enabled[event_id])) 1090 __perf_sw_event(event_id, nr, regs, addr); 1091 } 1092 1093 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]); 1094 1095 /* 1096 * 'Special' version for the scheduler, it hard assumes no recursion, 1097 * which is guaranteed by us not actually scheduling inside other swevents 1098 * because those disable preemption. 1099 */ 1100 static __always_inline void 1101 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) 1102 { 1103 if (static_key_false(&perf_swevent_enabled[event_id])) { 1104 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1105 1106 perf_fetch_caller_regs(regs); 1107 ___perf_sw_event(event_id, nr, regs, addr); 1108 } 1109 } 1110 1111 extern struct static_key_false perf_sched_events; 1112 1113 static __always_inline bool 1114 perf_sw_migrate_enabled(void) 1115 { 1116 if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS])) 1117 return true; 1118 return false; 1119 } 1120 1121 static inline void perf_event_task_migrate(struct task_struct *task) 1122 { 1123 if (perf_sw_migrate_enabled()) 1124 task->sched_migrated = 1; 1125 } 1126 1127 static inline void perf_event_task_sched_in(struct task_struct *prev, 1128 struct task_struct *task) 1129 { 1130 if (static_branch_unlikely(&perf_sched_events)) 1131 __perf_event_task_sched_in(prev, task); 1132 1133 if (perf_sw_migrate_enabled() && task->sched_migrated) { 1134 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1135 1136 perf_fetch_caller_regs(regs); 1137 ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0); 1138 task->sched_migrated = 0; 1139 } 1140 } 1141 1142 static inline void perf_event_task_sched_out(struct task_struct *prev, 1143 struct task_struct *next) 1144 { 1145 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0); 1146 1147 if (static_branch_unlikely(&perf_sched_events)) 1148 __perf_event_task_sched_out(prev, next); 1149 } 1150 1151 extern void perf_event_mmap(struct vm_area_struct *vma); 1152 1153 extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, 1154 bool unregister, const char *sym); 1155 extern void perf_event_bpf_event(struct bpf_prog *prog, 1156 enum perf_bpf_event_type type, 1157 u16 flags); 1158 1159 extern struct perf_guest_info_callbacks *perf_guest_cbs; 1160 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1161 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1162 1163 extern void perf_event_exec(void); 1164 extern void perf_event_comm(struct task_struct *tsk, bool exec); 1165 extern void perf_event_namespaces(struct task_struct *tsk); 1166 extern void perf_event_fork(struct task_struct *tsk); 1167 1168 /* Callchains */ 1169 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 1170 1171 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1172 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1173 extern struct perf_callchain_entry * 1174 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user, 1175 u32 max_stack, bool crosstask, bool add_mark); 1176 extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs); 1177 extern int get_callchain_buffers(int max_stack); 1178 extern void put_callchain_buffers(void); 1179 1180 extern int sysctl_perf_event_max_stack; 1181 extern int sysctl_perf_event_max_contexts_per_stack; 1182 1183 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip) 1184 { 1185 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) { 1186 struct perf_callchain_entry *entry = ctx->entry; 1187 entry->ip[entry->nr++] = ip; 1188 ++ctx->contexts; 1189 return 0; 1190 } else { 1191 ctx->contexts_maxed = true; 1192 return -1; /* no more room, stop walking the stack */ 1193 } 1194 } 1195 1196 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip) 1197 { 1198 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) { 1199 struct perf_callchain_entry *entry = ctx->entry; 1200 entry->ip[entry->nr++] = ip; 1201 ++ctx->nr; 1202 return 0; 1203 } else { 1204 return -1; /* no more room, stop walking the stack */ 1205 } 1206 } 1207 1208 extern int sysctl_perf_event_paranoid; 1209 extern int sysctl_perf_event_mlock; 1210 extern int sysctl_perf_event_sample_rate; 1211 extern int sysctl_perf_cpu_time_max_percent; 1212 1213 extern void perf_sample_event_took(u64 sample_len_ns); 1214 1215 extern int perf_proc_update_handler(struct ctl_table *table, int write, 1216 void __user *buffer, size_t *lenp, 1217 loff_t *ppos); 1218 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 1219 void __user *buffer, size_t *lenp, 1220 loff_t *ppos); 1221 1222 int perf_event_max_stack_handler(struct ctl_table *table, int write, 1223 void __user *buffer, size_t *lenp, loff_t *ppos); 1224 1225 static inline bool perf_paranoid_tracepoint_raw(void) 1226 { 1227 return sysctl_perf_event_paranoid > -1; 1228 } 1229 1230 static inline bool perf_paranoid_cpu(void) 1231 { 1232 return sysctl_perf_event_paranoid > 0; 1233 } 1234 1235 static inline bool perf_paranoid_kernel(void) 1236 { 1237 return sysctl_perf_event_paranoid > 1; 1238 } 1239 1240 extern void perf_event_init(void); 1241 extern void perf_tp_event(u16 event_type, u64 count, void *record, 1242 int entry_size, struct pt_regs *regs, 1243 struct hlist_head *head, int rctx, 1244 struct task_struct *task); 1245 extern void perf_bp_event(struct perf_event *event, void *data); 1246 1247 #ifndef perf_misc_flags 1248 # define perf_misc_flags(regs) \ 1249 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 1250 # define perf_instruction_pointer(regs) instruction_pointer(regs) 1251 #endif 1252 #ifndef perf_arch_bpf_user_pt_regs 1253 # define perf_arch_bpf_user_pt_regs(regs) regs 1254 #endif 1255 1256 static inline bool has_branch_stack(struct perf_event *event) 1257 { 1258 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; 1259 } 1260 1261 static inline bool needs_branch_stack(struct perf_event *event) 1262 { 1263 return event->attr.branch_sample_type != 0; 1264 } 1265 1266 static inline bool has_aux(struct perf_event *event) 1267 { 1268 return event->pmu->setup_aux; 1269 } 1270 1271 static inline bool is_write_backward(struct perf_event *event) 1272 { 1273 return !!event->attr.write_backward; 1274 } 1275 1276 static inline bool has_addr_filter(struct perf_event *event) 1277 { 1278 return event->pmu->nr_addr_filters; 1279 } 1280 1281 /* 1282 * An inherited event uses parent's filters 1283 */ 1284 static inline struct perf_addr_filters_head * 1285 perf_event_addr_filters(struct perf_event *event) 1286 { 1287 struct perf_addr_filters_head *ifh = &event->addr_filters; 1288 1289 if (event->parent) 1290 ifh = &event->parent->addr_filters; 1291 1292 return ifh; 1293 } 1294 1295 extern void perf_event_addr_filters_sync(struct perf_event *event); 1296 1297 extern int perf_output_begin(struct perf_output_handle *handle, 1298 struct perf_event *event, unsigned int size); 1299 extern int perf_output_begin_forward(struct perf_output_handle *handle, 1300 struct perf_event *event, 1301 unsigned int size); 1302 extern int perf_output_begin_backward(struct perf_output_handle *handle, 1303 struct perf_event *event, 1304 unsigned int size); 1305 1306 extern void perf_output_end(struct perf_output_handle *handle); 1307 extern unsigned int perf_output_copy(struct perf_output_handle *handle, 1308 const void *buf, unsigned int len); 1309 extern unsigned int perf_output_skip(struct perf_output_handle *handle, 1310 unsigned int len); 1311 extern int perf_swevent_get_recursion_context(void); 1312 extern void perf_swevent_put_recursion_context(int rctx); 1313 extern u64 perf_swevent_set_period(struct perf_event *event); 1314 extern void perf_event_enable(struct perf_event *event); 1315 extern void perf_event_disable(struct perf_event *event); 1316 extern void perf_event_disable_local(struct perf_event *event); 1317 extern void perf_event_disable_inatomic(struct perf_event *event); 1318 extern void perf_event_task_tick(void); 1319 extern int perf_event_account_interrupt(struct perf_event *event); 1320 #else /* !CONFIG_PERF_EVENTS: */ 1321 static inline void * 1322 perf_aux_output_begin(struct perf_output_handle *handle, 1323 struct perf_event *event) { return NULL; } 1324 static inline void 1325 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size) 1326 { } 1327 static inline int 1328 perf_aux_output_skip(struct perf_output_handle *handle, 1329 unsigned long size) { return -EINVAL; } 1330 static inline void * 1331 perf_get_aux(struct perf_output_handle *handle) { return NULL; } 1332 static inline void 1333 perf_event_task_migrate(struct task_struct *task) { } 1334 static inline void 1335 perf_event_task_sched_in(struct task_struct *prev, 1336 struct task_struct *task) { } 1337 static inline void 1338 perf_event_task_sched_out(struct task_struct *prev, 1339 struct task_struct *next) { } 1340 static inline int perf_event_init_task(struct task_struct *child) { return 0; } 1341 static inline void perf_event_exit_task(struct task_struct *child) { } 1342 static inline void perf_event_free_task(struct task_struct *task) { } 1343 static inline void perf_event_delayed_put(struct task_struct *task) { } 1344 static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); } 1345 static inline const struct perf_event *perf_get_event(struct file *file) 1346 { 1347 return ERR_PTR(-EINVAL); 1348 } 1349 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 1350 { 1351 return ERR_PTR(-EINVAL); 1352 } 1353 static inline int perf_event_read_local(struct perf_event *event, u64 *value, 1354 u64 *enabled, u64 *running) 1355 { 1356 return -EINVAL; 1357 } 1358 static inline void perf_event_print_debug(void) { } 1359 static inline int perf_event_task_disable(void) { return -EINVAL; } 1360 static inline int perf_event_task_enable(void) { return -EINVAL; } 1361 static inline int perf_event_refresh(struct perf_event *event, int refresh) 1362 { 1363 return -EINVAL; 1364 } 1365 1366 static inline void 1367 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 1368 static inline void 1369 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { } 1370 static inline void 1371 perf_bp_event(struct perf_event *event, void *data) { } 1372 1373 static inline int perf_register_guest_info_callbacks 1374 (struct perf_guest_info_callbacks *callbacks) { return 0; } 1375 static inline int perf_unregister_guest_info_callbacks 1376 (struct perf_guest_info_callbacks *callbacks) { return 0; } 1377 1378 static inline void perf_event_mmap(struct vm_area_struct *vma) { } 1379 1380 typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data); 1381 static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, 1382 bool unregister, const char *sym) { } 1383 static inline void perf_event_bpf_event(struct bpf_prog *prog, 1384 enum perf_bpf_event_type type, 1385 u16 flags) { } 1386 static inline void perf_event_exec(void) { } 1387 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { } 1388 static inline void perf_event_namespaces(struct task_struct *tsk) { } 1389 static inline void perf_event_fork(struct task_struct *tsk) { } 1390 static inline void perf_event_init(void) { } 1391 static inline int perf_swevent_get_recursion_context(void) { return -1; } 1392 static inline void perf_swevent_put_recursion_context(int rctx) { } 1393 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; } 1394 static inline void perf_event_enable(struct perf_event *event) { } 1395 static inline void perf_event_disable(struct perf_event *event) { } 1396 static inline int __perf_event_disable(void *info) { return -1; } 1397 static inline void perf_event_task_tick(void) { } 1398 static inline int perf_event_release_kernel(struct perf_event *event) { return 0; } 1399 #endif 1400 1401 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) 1402 extern void perf_restore_debug_store(void); 1403 #else 1404 static inline void perf_restore_debug_store(void) { } 1405 #endif 1406 1407 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag) 1408 { 1409 return frag->pad < sizeof(u64); 1410 } 1411 1412 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 1413 1414 struct perf_pmu_events_attr { 1415 struct device_attribute attr; 1416 u64 id; 1417 const char *event_str; 1418 }; 1419 1420 struct perf_pmu_events_ht_attr { 1421 struct device_attribute attr; 1422 u64 id; 1423 const char *event_str_ht; 1424 const char *event_str_noht; 1425 }; 1426 1427 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 1428 char *page); 1429 1430 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \ 1431 static struct perf_pmu_events_attr _var = { \ 1432 .attr = __ATTR(_name, 0444, _show, NULL), \ 1433 .id = _id, \ 1434 }; 1435 1436 #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \ 1437 static struct perf_pmu_events_attr _var = { \ 1438 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \ 1439 .id = 0, \ 1440 .event_str = _str, \ 1441 }; 1442 1443 #define PMU_FORMAT_ATTR(_name, _format) \ 1444 static ssize_t \ 1445 _name##_show(struct device *dev, \ 1446 struct device_attribute *attr, \ 1447 char *page) \ 1448 { \ 1449 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ 1450 return sprintf(page, _format "\n"); \ 1451 } \ 1452 \ 1453 static struct device_attribute format_attr_##_name = __ATTR_RO(_name) 1454 1455 /* Performance counter hotplug functions */ 1456 #ifdef CONFIG_PERF_EVENTS 1457 int perf_event_init_cpu(unsigned int cpu); 1458 int perf_event_exit_cpu(unsigned int cpu); 1459 #else 1460 #define perf_event_init_cpu NULL 1461 #define perf_event_exit_cpu NULL 1462 #endif 1463 1464 #endif /* _LINUX_PERF_EVENT_H */ 1465