xref: /linux-6.15/include/linux/perf_event.h (revision 01cfbad7)
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <[email protected]>
5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16 
17 #include <uapi/linux/perf_event.h>
18 
19 /*
20  * Kernel-internal data types and definitions:
21  */
22 
23 #ifdef CONFIG_PERF_EVENTS
24 # include <asm/perf_event.h>
25 # include <asm/local64.h>
26 #endif
27 
28 struct perf_guest_info_callbacks {
29 	int				(*is_in_guest)(void);
30 	int				(*is_user_mode)(void);
31 	unsigned long			(*get_guest_ip)(void);
32 };
33 
34 #ifdef CONFIG_HAVE_HW_BREAKPOINT
35 #include <asm/hw_breakpoint.h>
36 #endif
37 
38 #include <linux/list.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/rcupdate.h>
42 #include <linux/spinlock.h>
43 #include <linux/hrtimer.h>
44 #include <linux/fs.h>
45 #include <linux/pid_namespace.h>
46 #include <linux/workqueue.h>
47 #include <linux/ftrace.h>
48 #include <linux/cpu.h>
49 #include <linux/irq_work.h>
50 #include <linux/static_key.h>
51 #include <linux/jump_label_ratelimit.h>
52 #include <linux/atomic.h>
53 #include <linux/sysfs.h>
54 #include <linux/perf_regs.h>
55 #include <linux/workqueue.h>
56 #include <linux/cgroup.h>
57 #include <asm/local.h>
58 
59 struct perf_callchain_entry {
60 	__u64				nr;
61 	__u64				ip[PERF_MAX_STACK_DEPTH];
62 };
63 
64 struct perf_raw_record {
65 	u32				size;
66 	void				*data;
67 };
68 
69 /*
70  * branch stack layout:
71  *  nr: number of taken branches stored in entries[]
72  *
73  * Note that nr can vary from sample to sample
74  * branches (to, from) are stored from most recent
75  * to least recent, i.e., entries[0] contains the most
76  * recent branch.
77  */
78 struct perf_branch_stack {
79 	__u64				nr;
80 	struct perf_branch_entry	entries[0];
81 };
82 
83 struct task_struct;
84 
85 /*
86  * extra PMU register associated with an event
87  */
88 struct hw_perf_event_extra {
89 	u64		config;	/* register value */
90 	unsigned int	reg;	/* register address or index */
91 	int		alloc;	/* extra register already allocated */
92 	int		idx;	/* index in shared_regs->regs[] */
93 };
94 
95 /**
96  * struct hw_perf_event - performance event hardware details:
97  */
98 struct hw_perf_event {
99 #ifdef CONFIG_PERF_EVENTS
100 	union {
101 		struct { /* hardware */
102 			u64		config;
103 			u64		last_tag;
104 			unsigned long	config_base;
105 			unsigned long	event_base;
106 			int		event_base_rdpmc;
107 			int		idx;
108 			int		last_cpu;
109 			int		flags;
110 
111 			struct hw_perf_event_extra extra_reg;
112 			struct hw_perf_event_extra branch_reg;
113 		};
114 		struct { /* software */
115 			struct hrtimer	hrtimer;
116 		};
117 		struct { /* tracepoint */
118 			/* for tp_event->class */
119 			struct list_head	tp_list;
120 		};
121 		struct { /* intel_cqm */
122 			int			cqm_state;
123 			u32			cqm_rmid;
124 			struct list_head	cqm_events_entry;
125 			struct list_head	cqm_groups_entry;
126 			struct list_head	cqm_group_entry;
127 		};
128 		struct { /* itrace */
129 			int			itrace_started;
130 		};
131 #ifdef CONFIG_HAVE_HW_BREAKPOINT
132 		struct { /* breakpoint */
133 			/*
134 			 * Crufty hack to avoid the chicken and egg
135 			 * problem hw_breakpoint has with context
136 			 * creation and event initalization.
137 			 */
138 			struct arch_hw_breakpoint	info;
139 			struct list_head		bp_list;
140 		};
141 #endif
142 	};
143 	/*
144 	 * If the event is a per task event, this will point to the task in
145 	 * question. See the comment in perf_event_alloc().
146 	 */
147 	struct task_struct		*target;
148 
149 /*
150  * hw_perf_event::state flags; used to track the PERF_EF_* state.
151  */
152 #define PERF_HES_STOPPED	0x01 /* the counter is stopped */
153 #define PERF_HES_UPTODATE	0x02 /* event->count up-to-date */
154 #define PERF_HES_ARCH		0x04
155 
156 	int				state;
157 
158 	/*
159 	 * The last observed hardware counter value, updated with a
160 	 * local64_cmpxchg() such that pmu::read() can be called nested.
161 	 */
162 	local64_t			prev_count;
163 
164 	/*
165 	 * The period to start the next sample with.
166 	 */
167 	u64				sample_period;
168 
169 	/*
170 	 * The period we started this sample with.
171 	 */
172 	u64				last_period;
173 
174 	/*
175 	 * However much is left of the current period; note that this is
176 	 * a full 64bit value and allows for generation of periods longer
177 	 * than hardware might allow.
178 	 */
179 	local64_t			period_left;
180 
181 	/*
182 	 * State for throttling the event, see __perf_event_overflow() and
183 	 * perf_adjust_freq_unthr_context().
184 	 */
185 	u64                             interrupts_seq;
186 	u64				interrupts;
187 
188 	/*
189 	 * State for freq target events, see __perf_event_overflow() and
190 	 * perf_adjust_freq_unthr_context().
191 	 */
192 	u64				freq_time_stamp;
193 	u64				freq_count_stamp;
194 #endif
195 };
196 
197 struct perf_event;
198 
199 /*
200  * Common implementation detail of pmu::{start,commit,cancel}_txn
201  */
202 #define PERF_PMU_TXN_ADD  0x1		/* txn to add/schedule event on PMU */
203 #define PERF_PMU_TXN_READ 0x2		/* txn to read event group from PMU */
204 
205 /**
206  * pmu::capabilities flags
207  */
208 #define PERF_PMU_CAP_NO_INTERRUPT		0x01
209 #define PERF_PMU_CAP_NO_NMI			0x02
210 #define PERF_PMU_CAP_AUX_NO_SG			0x04
211 #define PERF_PMU_CAP_AUX_SW_DOUBLEBUF		0x08
212 #define PERF_PMU_CAP_EXCLUSIVE			0x10
213 #define PERF_PMU_CAP_ITRACE			0x20
214 
215 /**
216  * struct pmu - generic performance monitoring unit
217  */
218 struct pmu {
219 	struct list_head		entry;
220 
221 	struct module			*module;
222 	struct device			*dev;
223 	const struct attribute_group	**attr_groups;
224 	const char			*name;
225 	int				type;
226 
227 	/*
228 	 * various common per-pmu feature flags
229 	 */
230 	int				capabilities;
231 
232 	int * __percpu			pmu_disable_count;
233 	struct perf_cpu_context * __percpu pmu_cpu_context;
234 	atomic_t			exclusive_cnt; /* < 0: cpu; > 0: tsk */
235 	int				task_ctx_nr;
236 	int				hrtimer_interval_ms;
237 
238 	/*
239 	 * Fully disable/enable this PMU, can be used to protect from the PMI
240 	 * as well as for lazy/batch writing of the MSRs.
241 	 */
242 	void (*pmu_enable)		(struct pmu *pmu); /* optional */
243 	void (*pmu_disable)		(struct pmu *pmu); /* optional */
244 
245 	/*
246 	 * Try and initialize the event for this PMU.
247 	 *
248 	 * Returns:
249 	 *  -ENOENT	-- @event is not for this PMU
250 	 *
251 	 *  -ENODEV	-- @event is for this PMU but PMU not present
252 	 *  -EBUSY	-- @event is for this PMU but PMU temporarily unavailable
253 	 *  -EINVAL	-- @event is for this PMU but @event is not valid
254 	 *  -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
255 	 *  -EACCESS	-- @event is for this PMU, @event is valid, but no privilidges
256 	 *
257 	 *  0		-- @event is for this PMU and valid
258 	 *
259 	 * Other error return values are allowed.
260 	 */
261 	int (*event_init)		(struct perf_event *event);
262 
263 	/*
264 	 * Notification that the event was mapped or unmapped.  Called
265 	 * in the context of the mapping task.
266 	 */
267 	void (*event_mapped)		(struct perf_event *event); /*optional*/
268 	void (*event_unmapped)		(struct perf_event *event); /*optional*/
269 
270 	/*
271 	 * Flags for ->add()/->del()/ ->start()/->stop(). There are
272 	 * matching hw_perf_event::state flags.
273 	 */
274 #define PERF_EF_START	0x01		/* start the counter when adding    */
275 #define PERF_EF_RELOAD	0x02		/* reload the counter when starting */
276 #define PERF_EF_UPDATE	0x04		/* update the counter when stopping */
277 
278 	/*
279 	 * Adds/Removes a counter to/from the PMU, can be done inside a
280 	 * transaction, see the ->*_txn() methods.
281 	 *
282 	 * The add/del callbacks will reserve all hardware resources required
283 	 * to service the event, this includes any counter constraint
284 	 * scheduling etc.
285 	 *
286 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
287 	 * is on.
288 	 *
289 	 * ->add() called without PERF_EF_START should result in the same state
290 	 *  as ->add() followed by ->stop().
291 	 *
292 	 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
293 	 *  ->stop() that must deal with already being stopped without
294 	 *  PERF_EF_UPDATE.
295 	 */
296 	int  (*add)			(struct perf_event *event, int flags);
297 	void (*del)			(struct perf_event *event, int flags);
298 
299 	/*
300 	 * Starts/Stops a counter present on the PMU.
301 	 *
302 	 * The PMI handler should stop the counter when perf_event_overflow()
303 	 * returns !0. ->start() will be used to continue.
304 	 *
305 	 * Also used to change the sample period.
306 	 *
307 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
308 	 * is on -- will be called from NMI context with the PMU generates
309 	 * NMIs.
310 	 *
311 	 * ->stop() with PERF_EF_UPDATE will read the counter and update
312 	 *  period/count values like ->read() would.
313 	 *
314 	 * ->start() with PERF_EF_RELOAD will reprogram the the counter
315 	 *  value, must be preceded by a ->stop() with PERF_EF_UPDATE.
316 	 */
317 	void (*start)			(struct perf_event *event, int flags);
318 	void (*stop)			(struct perf_event *event, int flags);
319 
320 	/*
321 	 * Updates the counter value of the event.
322 	 *
323 	 * For sampling capable PMUs this will also update the software period
324 	 * hw_perf_event::period_left field.
325 	 */
326 	void (*read)			(struct perf_event *event);
327 
328 	/*
329 	 * Group events scheduling is treated as a transaction, add
330 	 * group events as a whole and perform one schedulability test.
331 	 * If the test fails, roll back the whole group
332 	 *
333 	 * Start the transaction, after this ->add() doesn't need to
334 	 * do schedulability tests.
335 	 *
336 	 * Optional.
337 	 */
338 	void (*start_txn)		(struct pmu *pmu, unsigned int txn_flags);
339 	/*
340 	 * If ->start_txn() disabled the ->add() schedulability test
341 	 * then ->commit_txn() is required to perform one. On success
342 	 * the transaction is closed. On error the transaction is kept
343 	 * open until ->cancel_txn() is called.
344 	 *
345 	 * Optional.
346 	 */
347 	int  (*commit_txn)		(struct pmu *pmu);
348 	/*
349 	 * Will cancel the transaction, assumes ->del() is called
350 	 * for each successful ->add() during the transaction.
351 	 *
352 	 * Optional.
353 	 */
354 	void (*cancel_txn)		(struct pmu *pmu);
355 
356 	/*
357 	 * Will return the value for perf_event_mmap_page::index for this event,
358 	 * if no implementation is provided it will default to: event->hw.idx + 1.
359 	 */
360 	int (*event_idx)		(struct perf_event *event); /*optional */
361 
362 	/*
363 	 * context-switches callback
364 	 */
365 	void (*sched_task)		(struct perf_event_context *ctx,
366 					bool sched_in);
367 	/*
368 	 * PMU specific data size
369 	 */
370 	size_t				task_ctx_size;
371 
372 
373 	/*
374 	 * Return the count value for a counter.
375 	 */
376 	u64 (*count)			(struct perf_event *event); /*optional*/
377 
378 	/*
379 	 * Set up pmu-private data structures for an AUX area
380 	 */
381 	void *(*setup_aux)		(int cpu, void **pages,
382 					 int nr_pages, bool overwrite);
383 					/* optional */
384 
385 	/*
386 	 * Free pmu-private AUX data structures
387 	 */
388 	void (*free_aux)		(void *aux); /* optional */
389 
390 	/*
391 	 * Filter events for PMU-specific reasons.
392 	 */
393 	int (*filter_match)		(struct perf_event *event); /* optional */
394 };
395 
396 /**
397  * enum perf_event_active_state - the states of a event
398  */
399 enum perf_event_active_state {
400 	PERF_EVENT_STATE_DEAD		= -4,
401 	PERF_EVENT_STATE_EXIT		= -3,
402 	PERF_EVENT_STATE_ERROR		= -2,
403 	PERF_EVENT_STATE_OFF		= -1,
404 	PERF_EVENT_STATE_INACTIVE	=  0,
405 	PERF_EVENT_STATE_ACTIVE		=  1,
406 };
407 
408 struct file;
409 struct perf_sample_data;
410 
411 typedef void (*perf_overflow_handler_t)(struct perf_event *,
412 					struct perf_sample_data *,
413 					struct pt_regs *regs);
414 
415 enum perf_group_flag {
416 	PERF_GROUP_SOFTWARE		= 0x1,
417 };
418 
419 #define SWEVENT_HLIST_BITS		8
420 #define SWEVENT_HLIST_SIZE		(1 << SWEVENT_HLIST_BITS)
421 
422 struct swevent_hlist {
423 	struct hlist_head		heads[SWEVENT_HLIST_SIZE];
424 	struct rcu_head			rcu_head;
425 };
426 
427 #define PERF_ATTACH_CONTEXT	0x01
428 #define PERF_ATTACH_GROUP	0x02
429 #define PERF_ATTACH_TASK	0x04
430 #define PERF_ATTACH_TASK_DATA	0x08
431 
432 struct perf_cgroup;
433 struct ring_buffer;
434 
435 /**
436  * struct perf_event - performance event kernel representation:
437  */
438 struct perf_event {
439 #ifdef CONFIG_PERF_EVENTS
440 	/*
441 	 * entry onto perf_event_context::event_list;
442 	 *   modifications require ctx->lock
443 	 *   RCU safe iterations.
444 	 */
445 	struct list_head		event_entry;
446 
447 	/*
448 	 * XXX: group_entry and sibling_list should be mutually exclusive;
449 	 * either you're a sibling on a group, or you're the group leader.
450 	 * Rework the code to always use the same list element.
451 	 *
452 	 * Locked for modification by both ctx->mutex and ctx->lock; holding
453 	 * either sufficies for read.
454 	 */
455 	struct list_head		group_entry;
456 	struct list_head		sibling_list;
457 
458 	/*
459 	 * We need storage to track the entries in perf_pmu_migrate_context; we
460 	 * cannot use the event_entry because of RCU and we want to keep the
461 	 * group in tact which avoids us using the other two entries.
462 	 */
463 	struct list_head		migrate_entry;
464 
465 	struct hlist_node		hlist_entry;
466 	struct list_head		active_entry;
467 	int				nr_siblings;
468 	int				group_flags;
469 	struct perf_event		*group_leader;
470 	struct pmu			*pmu;
471 
472 	enum perf_event_active_state	state;
473 	unsigned int			attach_state;
474 	local64_t			count;
475 	atomic64_t			child_count;
476 
477 	/*
478 	 * These are the total time in nanoseconds that the event
479 	 * has been enabled (i.e. eligible to run, and the task has
480 	 * been scheduled in, if this is a per-task event)
481 	 * and running (scheduled onto the CPU), respectively.
482 	 *
483 	 * They are computed from tstamp_enabled, tstamp_running and
484 	 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
485 	 */
486 	u64				total_time_enabled;
487 	u64				total_time_running;
488 
489 	/*
490 	 * These are timestamps used for computing total_time_enabled
491 	 * and total_time_running when the event is in INACTIVE or
492 	 * ACTIVE state, measured in nanoseconds from an arbitrary point
493 	 * in time.
494 	 * tstamp_enabled: the notional time when the event was enabled
495 	 * tstamp_running: the notional time when the event was scheduled on
496 	 * tstamp_stopped: in INACTIVE state, the notional time when the
497 	 *	event was scheduled off.
498 	 */
499 	u64				tstamp_enabled;
500 	u64				tstamp_running;
501 	u64				tstamp_stopped;
502 
503 	/*
504 	 * timestamp shadows the actual context timing but it can
505 	 * be safely used in NMI interrupt context. It reflects the
506 	 * context time as it was when the event was last scheduled in.
507 	 *
508 	 * ctx_time already accounts for ctx->timestamp. Therefore to
509 	 * compute ctx_time for a sample, simply add perf_clock().
510 	 */
511 	u64				shadow_ctx_time;
512 
513 	struct perf_event_attr		attr;
514 	u16				header_size;
515 	u16				id_header_size;
516 	u16				read_size;
517 	struct hw_perf_event		hw;
518 
519 	struct perf_event_context	*ctx;
520 	atomic_long_t			refcount;
521 
522 	/*
523 	 * These accumulate total time (in nanoseconds) that children
524 	 * events have been enabled and running, respectively.
525 	 */
526 	atomic64_t			child_total_time_enabled;
527 	atomic64_t			child_total_time_running;
528 
529 	/*
530 	 * Protect attach/detach and child_list:
531 	 */
532 	struct mutex			child_mutex;
533 	struct list_head		child_list;
534 	struct perf_event		*parent;
535 
536 	int				oncpu;
537 	int				cpu;
538 
539 	struct list_head		owner_entry;
540 	struct task_struct		*owner;
541 
542 	/* mmap bits */
543 	struct mutex			mmap_mutex;
544 	atomic_t			mmap_count;
545 
546 	struct ring_buffer		*rb;
547 	struct list_head		rb_entry;
548 	unsigned long			rcu_batches;
549 	int				rcu_pending;
550 
551 	/* poll related */
552 	wait_queue_head_t		waitq;
553 	struct fasync_struct		*fasync;
554 
555 	/* delayed work for NMIs and such */
556 	int				pending_wakeup;
557 	int				pending_kill;
558 	int				pending_disable;
559 	struct irq_work			pending;
560 
561 	atomic_t			event_limit;
562 
563 	void (*destroy)(struct perf_event *);
564 	struct rcu_head			rcu_head;
565 
566 	struct pid_namespace		*ns;
567 	u64				id;
568 
569 	u64				(*clock)(void);
570 	perf_overflow_handler_t		overflow_handler;
571 	void				*overflow_handler_context;
572 
573 #ifdef CONFIG_EVENT_TRACING
574 	struct trace_event_call		*tp_event;
575 	struct event_filter		*filter;
576 #ifdef CONFIG_FUNCTION_TRACER
577 	struct ftrace_ops               ftrace_ops;
578 #endif
579 #endif
580 
581 #ifdef CONFIG_CGROUP_PERF
582 	struct perf_cgroup		*cgrp; /* cgroup event is attach to */
583 	int				cgrp_defer_enabled;
584 #endif
585 
586 #endif /* CONFIG_PERF_EVENTS */
587 };
588 
589 /**
590  * struct perf_event_context - event context structure
591  *
592  * Used as a container for task events and CPU events as well:
593  */
594 struct perf_event_context {
595 	struct pmu			*pmu;
596 	/*
597 	 * Protect the states of the events in the list,
598 	 * nr_active, and the list:
599 	 */
600 	raw_spinlock_t			lock;
601 	/*
602 	 * Protect the list of events.  Locking either mutex or lock
603 	 * is sufficient to ensure the list doesn't change; to change
604 	 * the list you need to lock both the mutex and the spinlock.
605 	 */
606 	struct mutex			mutex;
607 
608 	struct list_head		active_ctx_list;
609 	struct list_head		pinned_groups;
610 	struct list_head		flexible_groups;
611 	struct list_head		event_list;
612 	int				nr_events;
613 	int				nr_active;
614 	int				is_active;
615 	int				nr_stat;
616 	int				nr_freq;
617 	int				rotate_disable;
618 	atomic_t			refcount;
619 	struct task_struct		*task;
620 
621 	/*
622 	 * Context clock, runs when context enabled.
623 	 */
624 	u64				time;
625 	u64				timestamp;
626 
627 	/*
628 	 * These fields let us detect when two contexts have both
629 	 * been cloned (inherited) from a common ancestor.
630 	 */
631 	struct perf_event_context	*parent_ctx;
632 	u64				parent_gen;
633 	u64				generation;
634 	int				pin_count;
635 	int				nr_cgroups;	 /* cgroup evts */
636 	void				*task_ctx_data; /* pmu specific data */
637 	struct rcu_head			rcu_head;
638 };
639 
640 /*
641  * Number of contexts where an event can trigger:
642  *	task, softirq, hardirq, nmi.
643  */
644 #define PERF_NR_CONTEXTS	4
645 
646 /**
647  * struct perf_event_cpu_context - per cpu event context structure
648  */
649 struct perf_cpu_context {
650 	struct perf_event_context	ctx;
651 	struct perf_event_context	*task_ctx;
652 	int				active_oncpu;
653 	int				exclusive;
654 
655 	raw_spinlock_t			hrtimer_lock;
656 	struct hrtimer			hrtimer;
657 	ktime_t				hrtimer_interval;
658 	unsigned int			hrtimer_active;
659 
660 	struct pmu			*unique_pmu;
661 	struct perf_cgroup		*cgrp;
662 };
663 
664 struct perf_output_handle {
665 	struct perf_event		*event;
666 	struct ring_buffer		*rb;
667 	unsigned long			wakeup;
668 	unsigned long			size;
669 	union {
670 		void			*addr;
671 		unsigned long		head;
672 	};
673 	int				page;
674 };
675 
676 #ifdef CONFIG_CGROUP_PERF
677 
678 /*
679  * perf_cgroup_info keeps track of time_enabled for a cgroup.
680  * This is a per-cpu dynamically allocated data structure.
681  */
682 struct perf_cgroup_info {
683 	u64				time;
684 	u64				timestamp;
685 };
686 
687 struct perf_cgroup {
688 	struct cgroup_subsys_state	css;
689 	struct perf_cgroup_info	__percpu *info;
690 };
691 
692 /*
693  * Must ensure cgroup is pinned (css_get) before calling
694  * this function. In other words, we cannot call this function
695  * if there is no cgroup event for the current CPU context.
696  */
697 static inline struct perf_cgroup *
698 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
699 {
700 	return container_of(task_css_check(task, perf_event_cgrp_id,
701 					   ctx ? lockdep_is_held(&ctx->lock)
702 					       : true),
703 			    struct perf_cgroup, css);
704 }
705 #endif /* CONFIG_CGROUP_PERF */
706 
707 #ifdef CONFIG_PERF_EVENTS
708 
709 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
710 				   struct perf_event *event);
711 extern void perf_aux_output_end(struct perf_output_handle *handle,
712 				unsigned long size, bool truncated);
713 extern int perf_aux_output_skip(struct perf_output_handle *handle,
714 				unsigned long size);
715 extern void *perf_get_aux(struct perf_output_handle *handle);
716 
717 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
718 extern void perf_pmu_unregister(struct pmu *pmu);
719 
720 extern int perf_num_counters(void);
721 extern const char *perf_pmu_name(void);
722 extern void __perf_event_task_sched_in(struct task_struct *prev,
723 				       struct task_struct *task);
724 extern void __perf_event_task_sched_out(struct task_struct *prev,
725 					struct task_struct *next);
726 extern int perf_event_init_task(struct task_struct *child);
727 extern void perf_event_exit_task(struct task_struct *child);
728 extern void perf_event_free_task(struct task_struct *task);
729 extern void perf_event_delayed_put(struct task_struct *task);
730 extern struct file *perf_event_get(unsigned int fd);
731 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
732 extern void perf_event_print_debug(void);
733 extern void perf_pmu_disable(struct pmu *pmu);
734 extern void perf_pmu_enable(struct pmu *pmu);
735 extern void perf_sched_cb_dec(struct pmu *pmu);
736 extern void perf_sched_cb_inc(struct pmu *pmu);
737 extern int perf_event_task_disable(void);
738 extern int perf_event_task_enable(void);
739 extern int perf_event_refresh(struct perf_event *event, int refresh);
740 extern void perf_event_update_userpage(struct perf_event *event);
741 extern int perf_event_release_kernel(struct perf_event *event);
742 extern struct perf_event *
743 perf_event_create_kernel_counter(struct perf_event_attr *attr,
744 				int cpu,
745 				struct task_struct *task,
746 				perf_overflow_handler_t callback,
747 				void *context);
748 extern void perf_pmu_migrate_context(struct pmu *pmu,
749 				int src_cpu, int dst_cpu);
750 extern u64 perf_event_read_local(struct perf_event *event);
751 extern u64 perf_event_read_value(struct perf_event *event,
752 				 u64 *enabled, u64 *running);
753 
754 
755 struct perf_sample_data {
756 	/*
757 	 * Fields set by perf_sample_data_init(), group so as to
758 	 * minimize the cachelines touched.
759 	 */
760 	u64				addr;
761 	struct perf_raw_record		*raw;
762 	struct perf_branch_stack	*br_stack;
763 	u64				period;
764 	u64				weight;
765 	u64				txn;
766 	union  perf_mem_data_src	data_src;
767 
768 	/*
769 	 * The other fields, optionally {set,used} by
770 	 * perf_{prepare,output}_sample().
771 	 */
772 	u64				type;
773 	u64				ip;
774 	struct {
775 		u32	pid;
776 		u32	tid;
777 	}				tid_entry;
778 	u64				time;
779 	u64				id;
780 	u64				stream_id;
781 	struct {
782 		u32	cpu;
783 		u32	reserved;
784 	}				cpu_entry;
785 	struct perf_callchain_entry	*callchain;
786 
787 	/*
788 	 * regs_user may point to task_pt_regs or to regs_user_copy, depending
789 	 * on arch details.
790 	 */
791 	struct perf_regs		regs_user;
792 	struct pt_regs			regs_user_copy;
793 
794 	struct perf_regs		regs_intr;
795 	u64				stack_user_size;
796 } ____cacheline_aligned;
797 
798 /* default value for data source */
799 #define PERF_MEM_NA (PERF_MEM_S(OP, NA)   |\
800 		    PERF_MEM_S(LVL, NA)   |\
801 		    PERF_MEM_S(SNOOP, NA) |\
802 		    PERF_MEM_S(LOCK, NA)  |\
803 		    PERF_MEM_S(TLB, NA))
804 
805 static inline void perf_sample_data_init(struct perf_sample_data *data,
806 					 u64 addr, u64 period)
807 {
808 	/* remaining struct members initialized in perf_prepare_sample() */
809 	data->addr = addr;
810 	data->raw  = NULL;
811 	data->br_stack = NULL;
812 	data->period = period;
813 	data->weight = 0;
814 	data->data_src.val = PERF_MEM_NA;
815 	data->txn = 0;
816 }
817 
818 extern void perf_output_sample(struct perf_output_handle *handle,
819 			       struct perf_event_header *header,
820 			       struct perf_sample_data *data,
821 			       struct perf_event *event);
822 extern void perf_prepare_sample(struct perf_event_header *header,
823 				struct perf_sample_data *data,
824 				struct perf_event *event,
825 				struct pt_regs *regs);
826 
827 extern int perf_event_overflow(struct perf_event *event,
828 				 struct perf_sample_data *data,
829 				 struct pt_regs *regs);
830 
831 extern void perf_event_output(struct perf_event *event,
832 				struct perf_sample_data *data,
833 				struct pt_regs *regs);
834 
835 extern void
836 perf_event_header__init_id(struct perf_event_header *header,
837 			   struct perf_sample_data *data,
838 			   struct perf_event *event);
839 extern void
840 perf_event__output_id_sample(struct perf_event *event,
841 			     struct perf_output_handle *handle,
842 			     struct perf_sample_data *sample);
843 
844 extern void
845 perf_log_lost_samples(struct perf_event *event, u64 lost);
846 
847 static inline bool is_sampling_event(struct perf_event *event)
848 {
849 	return event->attr.sample_period != 0;
850 }
851 
852 /*
853  * Return 1 for a software event, 0 for a hardware event
854  */
855 static inline int is_software_event(struct perf_event *event)
856 {
857 	return event->pmu->task_ctx_nr == perf_sw_context;
858 }
859 
860 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
861 
862 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
863 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
864 
865 #ifndef perf_arch_fetch_caller_regs
866 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
867 #endif
868 
869 /*
870  * Take a snapshot of the regs. Skip ip and frame pointer to
871  * the nth caller. We only need a few of the regs:
872  * - ip for PERF_SAMPLE_IP
873  * - cs for user_mode() tests
874  * - bp for callchains
875  * - eflags, for future purposes, just in case
876  */
877 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
878 {
879 	memset(regs, 0, sizeof(*regs));
880 
881 	perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
882 }
883 
884 static __always_inline void
885 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
886 {
887 	if (static_key_false(&perf_swevent_enabled[event_id]))
888 		__perf_sw_event(event_id, nr, regs, addr);
889 }
890 
891 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
892 
893 /*
894  * 'Special' version for the scheduler, it hard assumes no recursion,
895  * which is guaranteed by us not actually scheduling inside other swevents
896  * because those disable preemption.
897  */
898 static __always_inline void
899 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
900 {
901 	if (static_key_false(&perf_swevent_enabled[event_id])) {
902 		struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
903 
904 		perf_fetch_caller_regs(regs);
905 		___perf_sw_event(event_id, nr, regs, addr);
906 	}
907 }
908 
909 extern struct static_key_false perf_sched_events;
910 
911 static __always_inline bool
912 perf_sw_migrate_enabled(void)
913 {
914 	if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS]))
915 		return true;
916 	return false;
917 }
918 
919 static inline void perf_event_task_migrate(struct task_struct *task)
920 {
921 	if (perf_sw_migrate_enabled())
922 		task->sched_migrated = 1;
923 }
924 
925 static inline void perf_event_task_sched_in(struct task_struct *prev,
926 					    struct task_struct *task)
927 {
928 	if (static_branch_unlikely(&perf_sched_events))
929 		__perf_event_task_sched_in(prev, task);
930 
931 	if (perf_sw_migrate_enabled() && task->sched_migrated) {
932 		struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
933 
934 		perf_fetch_caller_regs(regs);
935 		___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0);
936 		task->sched_migrated = 0;
937 	}
938 }
939 
940 static inline void perf_event_task_sched_out(struct task_struct *prev,
941 					     struct task_struct *next)
942 {
943 	perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
944 
945 	if (static_branch_unlikely(&perf_sched_events))
946 		__perf_event_task_sched_out(prev, next);
947 }
948 
949 static inline u64 __perf_event_count(struct perf_event *event)
950 {
951 	return local64_read(&event->count) + atomic64_read(&event->child_count);
952 }
953 
954 extern void perf_event_mmap(struct vm_area_struct *vma);
955 extern struct perf_guest_info_callbacks *perf_guest_cbs;
956 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
957 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
958 
959 extern void perf_event_exec(void);
960 extern void perf_event_comm(struct task_struct *tsk, bool exec);
961 extern void perf_event_fork(struct task_struct *tsk);
962 
963 /* Callchains */
964 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
965 
966 extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs);
967 extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs);
968 extern struct perf_callchain_entry *
969 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
970 		   bool crosstask, bool add_mark);
971 extern int get_callchain_buffers(void);
972 extern void put_callchain_buffers(void);
973 
974 static inline int perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
975 {
976 	if (entry->nr < PERF_MAX_STACK_DEPTH) {
977 		entry->ip[entry->nr++] = ip;
978 		return 0;
979 	} else {
980 		return -1; /* no more room, stop walking the stack */
981 	}
982 }
983 
984 extern int sysctl_perf_event_paranoid;
985 extern int sysctl_perf_event_mlock;
986 extern int sysctl_perf_event_sample_rate;
987 extern int sysctl_perf_cpu_time_max_percent;
988 
989 extern void perf_sample_event_took(u64 sample_len_ns);
990 
991 extern int perf_proc_update_handler(struct ctl_table *table, int write,
992 		void __user *buffer, size_t *lenp,
993 		loff_t *ppos);
994 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
995 		void __user *buffer, size_t *lenp,
996 		loff_t *ppos);
997 
998 
999 static inline bool perf_paranoid_tracepoint_raw(void)
1000 {
1001 	return sysctl_perf_event_paranoid > -1;
1002 }
1003 
1004 static inline bool perf_paranoid_cpu(void)
1005 {
1006 	return sysctl_perf_event_paranoid > 0;
1007 }
1008 
1009 static inline bool perf_paranoid_kernel(void)
1010 {
1011 	return sysctl_perf_event_paranoid > 1;
1012 }
1013 
1014 extern void perf_event_init(void);
1015 extern void perf_tp_event(u64 addr, u64 count, void *record,
1016 			  int entry_size, struct pt_regs *regs,
1017 			  struct hlist_head *head, int rctx,
1018 			  struct task_struct *task);
1019 extern void perf_bp_event(struct perf_event *event, void *data);
1020 
1021 #ifndef perf_misc_flags
1022 # define perf_misc_flags(regs) \
1023 		(user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1024 # define perf_instruction_pointer(regs)	instruction_pointer(regs)
1025 #endif
1026 
1027 static inline bool has_branch_stack(struct perf_event *event)
1028 {
1029 	return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1030 }
1031 
1032 static inline bool needs_branch_stack(struct perf_event *event)
1033 {
1034 	return event->attr.branch_sample_type != 0;
1035 }
1036 
1037 static inline bool has_aux(struct perf_event *event)
1038 {
1039 	return event->pmu->setup_aux;
1040 }
1041 
1042 extern int perf_output_begin(struct perf_output_handle *handle,
1043 			     struct perf_event *event, unsigned int size);
1044 extern void perf_output_end(struct perf_output_handle *handle);
1045 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1046 			     const void *buf, unsigned int len);
1047 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1048 				     unsigned int len);
1049 extern int perf_swevent_get_recursion_context(void);
1050 extern void perf_swevent_put_recursion_context(int rctx);
1051 extern u64 perf_swevent_set_period(struct perf_event *event);
1052 extern void perf_event_enable(struct perf_event *event);
1053 extern void perf_event_disable(struct perf_event *event);
1054 extern void perf_event_disable_local(struct perf_event *event);
1055 extern void perf_event_task_tick(void);
1056 #else /* !CONFIG_PERF_EVENTS: */
1057 static inline void *
1058 perf_aux_output_begin(struct perf_output_handle *handle,
1059 		      struct perf_event *event)				{ return NULL; }
1060 static inline void
1061 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size,
1062 		    bool truncated)					{ }
1063 static inline int
1064 perf_aux_output_skip(struct perf_output_handle *handle,
1065 		     unsigned long size)				{ return -EINVAL; }
1066 static inline void *
1067 perf_get_aux(struct perf_output_handle *handle)				{ return NULL; }
1068 static inline void
1069 perf_event_task_migrate(struct task_struct *task)			{ }
1070 static inline void
1071 perf_event_task_sched_in(struct task_struct *prev,
1072 			 struct task_struct *task)			{ }
1073 static inline void
1074 perf_event_task_sched_out(struct task_struct *prev,
1075 			  struct task_struct *next)			{ }
1076 static inline int perf_event_init_task(struct task_struct *child)	{ return 0; }
1077 static inline void perf_event_exit_task(struct task_struct *child)	{ }
1078 static inline void perf_event_free_task(struct task_struct *task)	{ }
1079 static inline void perf_event_delayed_put(struct task_struct *task)	{ }
1080 static inline struct file *perf_event_get(unsigned int fd)	{ return ERR_PTR(-EINVAL); }
1081 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1082 {
1083 	return ERR_PTR(-EINVAL);
1084 }
1085 static inline u64 perf_event_read_local(struct perf_event *event)	{ return -EINVAL; }
1086 static inline void perf_event_print_debug(void)				{ }
1087 static inline int perf_event_task_disable(void)				{ return -EINVAL; }
1088 static inline int perf_event_task_enable(void)				{ return -EINVAL; }
1089 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1090 {
1091 	return -EINVAL;
1092 }
1093 
1094 static inline void
1095 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)	{ }
1096 static inline void
1097 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)			{ }
1098 static inline void
1099 perf_bp_event(struct perf_event *event, void *data)			{ }
1100 
1101 static inline int perf_register_guest_info_callbacks
1102 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
1103 static inline int perf_unregister_guest_info_callbacks
1104 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
1105 
1106 static inline void perf_event_mmap(struct vm_area_struct *vma)		{ }
1107 static inline void perf_event_exec(void)				{ }
1108 static inline void perf_event_comm(struct task_struct *tsk, bool exec)	{ }
1109 static inline void perf_event_fork(struct task_struct *tsk)		{ }
1110 static inline void perf_event_init(void)				{ }
1111 static inline int  perf_swevent_get_recursion_context(void)		{ return -1; }
1112 static inline void perf_swevent_put_recursion_context(int rctx)		{ }
1113 static inline u64 perf_swevent_set_period(struct perf_event *event)	{ return 0; }
1114 static inline void perf_event_enable(struct perf_event *event)		{ }
1115 static inline void perf_event_disable(struct perf_event *event)		{ }
1116 static inline int __perf_event_disable(void *info)			{ return -1; }
1117 static inline void perf_event_task_tick(void)				{ }
1118 static inline int perf_event_release_kernel(struct perf_event *event)	{ return 0; }
1119 #endif
1120 
1121 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_NO_HZ_FULL)
1122 extern bool perf_event_can_stop_tick(void);
1123 #else
1124 static inline bool perf_event_can_stop_tick(void)			{ return true; }
1125 #endif
1126 
1127 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1128 extern void perf_restore_debug_store(void);
1129 #else
1130 static inline void perf_restore_debug_store(void)			{ }
1131 #endif
1132 
1133 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1134 
1135 /*
1136  * This has to have a higher priority than migration_notifier in sched/core.c.
1137  */
1138 #define perf_cpu_notifier(fn)						\
1139 do {									\
1140 	static struct notifier_block fn##_nb =				\
1141 		{ .notifier_call = fn, .priority = CPU_PRI_PERF };	\
1142 	unsigned long cpu = smp_processor_id();				\
1143 	unsigned long flags;						\
1144 									\
1145 	cpu_notifier_register_begin();					\
1146 	fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE,			\
1147 		(void *)(unsigned long)cpu);				\
1148 	local_irq_save(flags);						\
1149 	fn(&fn##_nb, (unsigned long)CPU_STARTING,			\
1150 		(void *)(unsigned long)cpu);				\
1151 	local_irq_restore(flags);					\
1152 	fn(&fn##_nb, (unsigned long)CPU_ONLINE,				\
1153 		(void *)(unsigned long)cpu);				\
1154 	__register_cpu_notifier(&fn##_nb);				\
1155 	cpu_notifier_register_done();					\
1156 } while (0)
1157 
1158 /*
1159  * Bare-bones version of perf_cpu_notifier(), which doesn't invoke the
1160  * callback for already online CPUs.
1161  */
1162 #define __perf_cpu_notifier(fn)						\
1163 do {									\
1164 	static struct notifier_block fn##_nb =				\
1165 		{ .notifier_call = fn, .priority = CPU_PRI_PERF };	\
1166 									\
1167 	__register_cpu_notifier(&fn##_nb);				\
1168 } while (0)
1169 
1170 struct perf_pmu_events_attr {
1171 	struct device_attribute attr;
1172 	u64 id;
1173 	const char *event_str;
1174 };
1175 
1176 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1177 			      char *page);
1178 
1179 #define PMU_EVENT_ATTR(_name, _var, _id, _show)				\
1180 static struct perf_pmu_events_attr _var = {				\
1181 	.attr = __ATTR(_name, 0444, _show, NULL),			\
1182 	.id   =  _id,							\
1183 };
1184 
1185 #define PMU_EVENT_ATTR_STRING(_name, _var, _str)			    \
1186 static struct perf_pmu_events_attr _var = {				    \
1187 	.attr		= __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1188 	.id		= 0,						    \
1189 	.event_str	= _str,						    \
1190 };
1191 
1192 #define PMU_FORMAT_ATTR(_name, _format)					\
1193 static ssize_t								\
1194 _name##_show(struct device *dev,					\
1195 			       struct device_attribute *attr,		\
1196 			       char *page)				\
1197 {									\
1198 	BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE);			\
1199 	return sprintf(page, _format "\n");				\
1200 }									\
1201 									\
1202 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1203 
1204 #endif /* _LINUX_PERF_EVENT_H */
1205