1 /* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <[email protected]> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14 #ifndef _LINUX_PERF_EVENT_H 15 #define _LINUX_PERF_EVENT_H 16 17 #include <uapi/linux/perf_event.h> 18 #include <uapi/linux/bpf_perf_event.h> 19 20 /* 21 * Kernel-internal data types and definitions: 22 */ 23 24 #ifdef CONFIG_PERF_EVENTS 25 # include <asm/perf_event.h> 26 # include <asm/local64.h> 27 #endif 28 29 struct perf_guest_info_callbacks { 30 int (*is_in_guest)(void); 31 int (*is_user_mode)(void); 32 unsigned long (*get_guest_ip)(void); 33 }; 34 35 #ifdef CONFIG_HAVE_HW_BREAKPOINT 36 #include <asm/hw_breakpoint.h> 37 #endif 38 39 #include <linux/list.h> 40 #include <linux/mutex.h> 41 #include <linux/rculist.h> 42 #include <linux/rcupdate.h> 43 #include <linux/spinlock.h> 44 #include <linux/hrtimer.h> 45 #include <linux/fs.h> 46 #include <linux/pid_namespace.h> 47 #include <linux/workqueue.h> 48 #include <linux/ftrace.h> 49 #include <linux/cpu.h> 50 #include <linux/irq_work.h> 51 #include <linux/static_key.h> 52 #include <linux/jump_label_ratelimit.h> 53 #include <linux/atomic.h> 54 #include <linux/sysfs.h> 55 #include <linux/perf_regs.h> 56 #include <linux/workqueue.h> 57 #include <linux/cgroup.h> 58 #include <asm/local.h> 59 60 struct perf_callchain_entry { 61 __u64 nr; 62 __u64 ip[0]; /* /proc/sys/kernel/perf_event_max_stack */ 63 }; 64 65 struct perf_callchain_entry_ctx { 66 struct perf_callchain_entry *entry; 67 u32 max_stack; 68 u32 nr; 69 short contexts; 70 bool contexts_maxed; 71 }; 72 73 typedef unsigned long (*perf_copy_f)(void *dst, const void *src, 74 unsigned long off, unsigned long len); 75 76 struct perf_raw_frag { 77 union { 78 struct perf_raw_frag *next; 79 unsigned long pad; 80 }; 81 perf_copy_f copy; 82 void *data; 83 u32 size; 84 } __packed; 85 86 struct perf_raw_record { 87 struct perf_raw_frag frag; 88 u32 size; 89 }; 90 91 /* 92 * branch stack layout: 93 * nr: number of taken branches stored in entries[] 94 * 95 * Note that nr can vary from sample to sample 96 * branches (to, from) are stored from most recent 97 * to least recent, i.e., entries[0] contains the most 98 * recent branch. 99 */ 100 struct perf_branch_stack { 101 __u64 nr; 102 struct perf_branch_entry entries[0]; 103 }; 104 105 struct task_struct; 106 107 /* 108 * extra PMU register associated with an event 109 */ 110 struct hw_perf_event_extra { 111 u64 config; /* register value */ 112 unsigned int reg; /* register address or index */ 113 int alloc; /* extra register already allocated */ 114 int idx; /* index in shared_regs->regs[] */ 115 }; 116 117 /** 118 * struct hw_perf_event - performance event hardware details: 119 */ 120 struct hw_perf_event { 121 #ifdef CONFIG_PERF_EVENTS 122 union { 123 struct { /* hardware */ 124 u64 config; 125 u64 last_tag; 126 unsigned long config_base; 127 unsigned long event_base; 128 int event_base_rdpmc; 129 int idx; 130 int last_cpu; 131 int flags; 132 133 struct hw_perf_event_extra extra_reg; 134 struct hw_perf_event_extra branch_reg; 135 }; 136 struct { /* software */ 137 struct hrtimer hrtimer; 138 }; 139 struct { /* tracepoint */ 140 /* for tp_event->class */ 141 struct list_head tp_list; 142 }; 143 struct { /* amd_power */ 144 u64 pwr_acc; 145 u64 ptsc; 146 }; 147 #ifdef CONFIG_HAVE_HW_BREAKPOINT 148 struct { /* breakpoint */ 149 /* 150 * Crufty hack to avoid the chicken and egg 151 * problem hw_breakpoint has with context 152 * creation and event initalization. 153 */ 154 struct arch_hw_breakpoint info; 155 struct list_head bp_list; 156 }; 157 #endif 158 struct { /* amd_iommu */ 159 u8 iommu_bank; 160 u8 iommu_cntr; 161 u16 padding; 162 u64 conf; 163 u64 conf1; 164 }; 165 }; 166 /* 167 * If the event is a per task event, this will point to the task in 168 * question. See the comment in perf_event_alloc(). 169 */ 170 struct task_struct *target; 171 172 /* 173 * PMU would store hardware filter configuration 174 * here. 175 */ 176 void *addr_filters; 177 178 /* Last sync'ed generation of filters */ 179 unsigned long addr_filters_gen; 180 181 /* 182 * hw_perf_event::state flags; used to track the PERF_EF_* state. 183 */ 184 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 185 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 186 #define PERF_HES_ARCH 0x04 187 188 int state; 189 190 /* 191 * The last observed hardware counter value, updated with a 192 * local64_cmpxchg() such that pmu::read() can be called nested. 193 */ 194 local64_t prev_count; 195 196 /* 197 * The period to start the next sample with. 198 */ 199 u64 sample_period; 200 201 /* 202 * The period we started this sample with. 203 */ 204 u64 last_period; 205 206 /* 207 * However much is left of the current period; note that this is 208 * a full 64bit value and allows for generation of periods longer 209 * than hardware might allow. 210 */ 211 local64_t period_left; 212 213 /* 214 * State for throttling the event, see __perf_event_overflow() and 215 * perf_adjust_freq_unthr_context(). 216 */ 217 u64 interrupts_seq; 218 u64 interrupts; 219 220 /* 221 * State for freq target events, see __perf_event_overflow() and 222 * perf_adjust_freq_unthr_context(). 223 */ 224 u64 freq_time_stamp; 225 u64 freq_count_stamp; 226 #endif 227 }; 228 229 struct perf_event; 230 231 /* 232 * Common implementation detail of pmu::{start,commit,cancel}_txn 233 */ 234 #define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */ 235 #define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */ 236 237 /** 238 * pmu::capabilities flags 239 */ 240 #define PERF_PMU_CAP_NO_INTERRUPT 0x01 241 #define PERF_PMU_CAP_NO_NMI 0x02 242 #define PERF_PMU_CAP_AUX_NO_SG 0x04 243 #define PERF_PMU_CAP_AUX_SW_DOUBLEBUF 0x08 244 #define PERF_PMU_CAP_EXCLUSIVE 0x10 245 #define PERF_PMU_CAP_ITRACE 0x20 246 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x40 247 248 /** 249 * struct pmu - generic performance monitoring unit 250 */ 251 struct pmu { 252 struct list_head entry; 253 254 struct module *module; 255 struct device *dev; 256 const struct attribute_group **attr_groups; 257 const char *name; 258 int type; 259 260 /* 261 * various common per-pmu feature flags 262 */ 263 int capabilities; 264 265 int * __percpu pmu_disable_count; 266 struct perf_cpu_context * __percpu pmu_cpu_context; 267 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */ 268 int task_ctx_nr; 269 int hrtimer_interval_ms; 270 271 /* number of address filters this PMU can do */ 272 unsigned int nr_addr_filters; 273 274 /* 275 * Fully disable/enable this PMU, can be used to protect from the PMI 276 * as well as for lazy/batch writing of the MSRs. 277 */ 278 void (*pmu_enable) (struct pmu *pmu); /* optional */ 279 void (*pmu_disable) (struct pmu *pmu); /* optional */ 280 281 /* 282 * Try and initialize the event for this PMU. 283 * 284 * Returns: 285 * -ENOENT -- @event is not for this PMU 286 * 287 * -ENODEV -- @event is for this PMU but PMU not present 288 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable 289 * -EINVAL -- @event is for this PMU but @event is not valid 290 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported 291 * -EACCESS -- @event is for this PMU, @event is valid, but no privilidges 292 * 293 * 0 -- @event is for this PMU and valid 294 * 295 * Other error return values are allowed. 296 */ 297 int (*event_init) (struct perf_event *event); 298 299 /* 300 * Notification that the event was mapped or unmapped. Called 301 * in the context of the mapping task. 302 */ 303 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 304 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 305 306 /* 307 * Flags for ->add()/->del()/ ->start()/->stop(). There are 308 * matching hw_perf_event::state flags. 309 */ 310 #define PERF_EF_START 0x01 /* start the counter when adding */ 311 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 312 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 313 314 /* 315 * Adds/Removes a counter to/from the PMU, can be done inside a 316 * transaction, see the ->*_txn() methods. 317 * 318 * The add/del callbacks will reserve all hardware resources required 319 * to service the event, this includes any counter constraint 320 * scheduling etc. 321 * 322 * Called with IRQs disabled and the PMU disabled on the CPU the event 323 * is on. 324 * 325 * ->add() called without PERF_EF_START should result in the same state 326 * as ->add() followed by ->stop(). 327 * 328 * ->del() must always PERF_EF_UPDATE stop an event. If it calls 329 * ->stop() that must deal with already being stopped without 330 * PERF_EF_UPDATE. 331 */ 332 int (*add) (struct perf_event *event, int flags); 333 void (*del) (struct perf_event *event, int flags); 334 335 /* 336 * Starts/Stops a counter present on the PMU. 337 * 338 * The PMI handler should stop the counter when perf_event_overflow() 339 * returns !0. ->start() will be used to continue. 340 * 341 * Also used to change the sample period. 342 * 343 * Called with IRQs disabled and the PMU disabled on the CPU the event 344 * is on -- will be called from NMI context with the PMU generates 345 * NMIs. 346 * 347 * ->stop() with PERF_EF_UPDATE will read the counter and update 348 * period/count values like ->read() would. 349 * 350 * ->start() with PERF_EF_RELOAD will reprogram the the counter 351 * value, must be preceded by a ->stop() with PERF_EF_UPDATE. 352 */ 353 void (*start) (struct perf_event *event, int flags); 354 void (*stop) (struct perf_event *event, int flags); 355 356 /* 357 * Updates the counter value of the event. 358 * 359 * For sampling capable PMUs this will also update the software period 360 * hw_perf_event::period_left field. 361 */ 362 void (*read) (struct perf_event *event); 363 364 /* 365 * Group events scheduling is treated as a transaction, add 366 * group events as a whole and perform one schedulability test. 367 * If the test fails, roll back the whole group 368 * 369 * Start the transaction, after this ->add() doesn't need to 370 * do schedulability tests. 371 * 372 * Optional. 373 */ 374 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags); 375 /* 376 * If ->start_txn() disabled the ->add() schedulability test 377 * then ->commit_txn() is required to perform one. On success 378 * the transaction is closed. On error the transaction is kept 379 * open until ->cancel_txn() is called. 380 * 381 * Optional. 382 */ 383 int (*commit_txn) (struct pmu *pmu); 384 /* 385 * Will cancel the transaction, assumes ->del() is called 386 * for each successful ->add() during the transaction. 387 * 388 * Optional. 389 */ 390 void (*cancel_txn) (struct pmu *pmu); 391 392 /* 393 * Will return the value for perf_event_mmap_page::index for this event, 394 * if no implementation is provided it will default to: event->hw.idx + 1. 395 */ 396 int (*event_idx) (struct perf_event *event); /*optional */ 397 398 /* 399 * context-switches callback 400 */ 401 void (*sched_task) (struct perf_event_context *ctx, 402 bool sched_in); 403 /* 404 * PMU specific data size 405 */ 406 size_t task_ctx_size; 407 408 409 /* 410 * Set up pmu-private data structures for an AUX area 411 */ 412 void *(*setup_aux) (int cpu, void **pages, 413 int nr_pages, bool overwrite); 414 /* optional */ 415 416 /* 417 * Free pmu-private AUX data structures 418 */ 419 void (*free_aux) (void *aux); /* optional */ 420 421 /* 422 * Validate address range filters: make sure the HW supports the 423 * requested configuration and number of filters; return 0 if the 424 * supplied filters are valid, -errno otherwise. 425 * 426 * Runs in the context of the ioctl()ing process and is not serialized 427 * with the rest of the PMU callbacks. 428 */ 429 int (*addr_filters_validate) (struct list_head *filters); 430 /* optional */ 431 432 /* 433 * Synchronize address range filter configuration: 434 * translate hw-agnostic filters into hardware configuration in 435 * event::hw::addr_filters. 436 * 437 * Runs as a part of filter sync sequence that is done in ->start() 438 * callback by calling perf_event_addr_filters_sync(). 439 * 440 * May (and should) traverse event::addr_filters::list, for which its 441 * caller provides necessary serialization. 442 */ 443 void (*addr_filters_sync) (struct perf_event *event); 444 /* optional */ 445 446 /* 447 * Filter events for PMU-specific reasons. 448 */ 449 int (*filter_match) (struct perf_event *event); /* optional */ 450 }; 451 452 enum perf_addr_filter_action_t { 453 PERF_ADDR_FILTER_ACTION_STOP = 0, 454 PERF_ADDR_FILTER_ACTION_START, 455 PERF_ADDR_FILTER_ACTION_FILTER, 456 }; 457 458 /** 459 * struct perf_addr_filter - address range filter definition 460 * @entry: event's filter list linkage 461 * @inode: object file's inode for file-based filters 462 * @offset: filter range offset 463 * @size: filter range size (size==0 means single address trigger) 464 * @action: filter/start/stop 465 * 466 * This is a hardware-agnostic filter configuration as specified by the user. 467 */ 468 struct perf_addr_filter { 469 struct list_head entry; 470 struct inode *inode; 471 unsigned long offset; 472 unsigned long size; 473 enum perf_addr_filter_action_t action; 474 }; 475 476 /** 477 * struct perf_addr_filters_head - container for address range filters 478 * @list: list of filters for this event 479 * @lock: spinlock that serializes accesses to the @list and event's 480 * (and its children's) filter generations. 481 * @nr_file_filters: number of file-based filters 482 * 483 * A child event will use parent's @list (and therefore @lock), so they are 484 * bundled together; see perf_event_addr_filters(). 485 */ 486 struct perf_addr_filters_head { 487 struct list_head list; 488 raw_spinlock_t lock; 489 unsigned int nr_file_filters; 490 }; 491 492 /** 493 * enum perf_event_state - the states of a event 494 */ 495 enum perf_event_state { 496 PERF_EVENT_STATE_DEAD = -4, 497 PERF_EVENT_STATE_EXIT = -3, 498 PERF_EVENT_STATE_ERROR = -2, 499 PERF_EVENT_STATE_OFF = -1, 500 PERF_EVENT_STATE_INACTIVE = 0, 501 PERF_EVENT_STATE_ACTIVE = 1, 502 }; 503 504 struct file; 505 struct perf_sample_data; 506 507 typedef void (*perf_overflow_handler_t)(struct perf_event *, 508 struct perf_sample_data *, 509 struct pt_regs *regs); 510 511 /* 512 * Event capabilities. For event_caps and groups caps. 513 * 514 * PERF_EV_CAP_SOFTWARE: Is a software event. 515 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read 516 * from any CPU in the package where it is active. 517 */ 518 #define PERF_EV_CAP_SOFTWARE BIT(0) 519 #define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1) 520 521 #define SWEVENT_HLIST_BITS 8 522 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 523 524 struct swevent_hlist { 525 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 526 struct rcu_head rcu_head; 527 }; 528 529 #define PERF_ATTACH_CONTEXT 0x01 530 #define PERF_ATTACH_GROUP 0x02 531 #define PERF_ATTACH_TASK 0x04 532 #define PERF_ATTACH_TASK_DATA 0x08 533 #define PERF_ATTACH_ITRACE 0x10 534 535 struct perf_cgroup; 536 struct ring_buffer; 537 538 struct pmu_event_list { 539 raw_spinlock_t lock; 540 struct list_head list; 541 }; 542 543 #define for_each_sibling_event(sibling, event) \ 544 if ((event)->group_leader == (event)) \ 545 list_for_each_entry((sibling), &(event)->sibling_list, sibling_list) 546 547 /** 548 * struct perf_event - performance event kernel representation: 549 */ 550 struct perf_event { 551 #ifdef CONFIG_PERF_EVENTS 552 /* 553 * entry onto perf_event_context::event_list; 554 * modifications require ctx->lock 555 * RCU safe iterations. 556 */ 557 struct list_head event_entry; 558 559 /* 560 * Locked for modification by both ctx->mutex and ctx->lock; holding 561 * either sufficies for read. 562 */ 563 struct list_head sibling_list; 564 struct list_head active_list; 565 /* 566 * Node on the pinned or flexible tree located at the event context; 567 */ 568 struct rb_node group_node; 569 u64 group_index; 570 /* 571 * We need storage to track the entries in perf_pmu_migrate_context; we 572 * cannot use the event_entry because of RCU and we want to keep the 573 * group in tact which avoids us using the other two entries. 574 */ 575 struct list_head migrate_entry; 576 577 struct hlist_node hlist_entry; 578 struct list_head active_entry; 579 int nr_siblings; 580 581 /* Not serialized. Only written during event initialization. */ 582 int event_caps; 583 /* The cumulative AND of all event_caps for events in this group. */ 584 int group_caps; 585 586 struct perf_event *group_leader; 587 struct pmu *pmu; 588 void *pmu_private; 589 590 enum perf_event_state state; 591 unsigned int attach_state; 592 local64_t count; 593 atomic64_t child_count; 594 595 /* 596 * These are the total time in nanoseconds that the event 597 * has been enabled (i.e. eligible to run, and the task has 598 * been scheduled in, if this is a per-task event) 599 * and running (scheduled onto the CPU), respectively. 600 */ 601 u64 total_time_enabled; 602 u64 total_time_running; 603 u64 tstamp; 604 605 /* 606 * timestamp shadows the actual context timing but it can 607 * be safely used in NMI interrupt context. It reflects the 608 * context time as it was when the event was last scheduled in. 609 * 610 * ctx_time already accounts for ctx->timestamp. Therefore to 611 * compute ctx_time for a sample, simply add perf_clock(). 612 */ 613 u64 shadow_ctx_time; 614 615 struct perf_event_attr attr; 616 u16 header_size; 617 u16 id_header_size; 618 u16 read_size; 619 struct hw_perf_event hw; 620 621 struct perf_event_context *ctx; 622 atomic_long_t refcount; 623 624 /* 625 * These accumulate total time (in nanoseconds) that children 626 * events have been enabled and running, respectively. 627 */ 628 atomic64_t child_total_time_enabled; 629 atomic64_t child_total_time_running; 630 631 /* 632 * Protect attach/detach and child_list: 633 */ 634 struct mutex child_mutex; 635 struct list_head child_list; 636 struct perf_event *parent; 637 638 int oncpu; 639 int cpu; 640 641 struct list_head owner_entry; 642 struct task_struct *owner; 643 644 /* mmap bits */ 645 struct mutex mmap_mutex; 646 atomic_t mmap_count; 647 648 struct ring_buffer *rb; 649 struct list_head rb_entry; 650 unsigned long rcu_batches; 651 int rcu_pending; 652 653 /* poll related */ 654 wait_queue_head_t waitq; 655 struct fasync_struct *fasync; 656 657 /* delayed work for NMIs and such */ 658 int pending_wakeup; 659 int pending_kill; 660 int pending_disable; 661 struct irq_work pending; 662 663 atomic_t event_limit; 664 665 /* address range filters */ 666 struct perf_addr_filters_head addr_filters; 667 /* vma address array for file-based filders */ 668 unsigned long *addr_filters_offs; 669 unsigned long addr_filters_gen; 670 671 void (*destroy)(struct perf_event *); 672 struct rcu_head rcu_head; 673 674 struct pid_namespace *ns; 675 u64 id; 676 677 u64 (*clock)(void); 678 perf_overflow_handler_t overflow_handler; 679 void *overflow_handler_context; 680 #ifdef CONFIG_BPF_SYSCALL 681 perf_overflow_handler_t orig_overflow_handler; 682 struct bpf_prog *prog; 683 #endif 684 685 #ifdef CONFIG_EVENT_TRACING 686 struct trace_event_call *tp_event; 687 struct event_filter *filter; 688 #ifdef CONFIG_FUNCTION_TRACER 689 struct ftrace_ops ftrace_ops; 690 #endif 691 #endif 692 693 #ifdef CONFIG_CGROUP_PERF 694 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 695 #endif 696 697 struct list_head sb_list; 698 #endif /* CONFIG_PERF_EVENTS */ 699 }; 700 701 702 struct perf_event_groups { 703 struct rb_root tree; 704 u64 index; 705 }; 706 707 /** 708 * struct perf_event_context - event context structure 709 * 710 * Used as a container for task events and CPU events as well: 711 */ 712 struct perf_event_context { 713 struct pmu *pmu; 714 /* 715 * Protect the states of the events in the list, 716 * nr_active, and the list: 717 */ 718 raw_spinlock_t lock; 719 /* 720 * Protect the list of events. Locking either mutex or lock 721 * is sufficient to ensure the list doesn't change; to change 722 * the list you need to lock both the mutex and the spinlock. 723 */ 724 struct mutex mutex; 725 726 struct list_head active_ctx_list; 727 struct perf_event_groups pinned_groups; 728 struct perf_event_groups flexible_groups; 729 struct list_head event_list; 730 731 struct list_head pinned_active; 732 struct list_head flexible_active; 733 734 int nr_events; 735 int nr_active; 736 int is_active; 737 int nr_stat; 738 int nr_freq; 739 int rotate_disable; 740 atomic_t refcount; 741 struct task_struct *task; 742 743 /* 744 * Context clock, runs when context enabled. 745 */ 746 u64 time; 747 u64 timestamp; 748 749 /* 750 * These fields let us detect when two contexts have both 751 * been cloned (inherited) from a common ancestor. 752 */ 753 struct perf_event_context *parent_ctx; 754 u64 parent_gen; 755 u64 generation; 756 int pin_count; 757 #ifdef CONFIG_CGROUP_PERF 758 int nr_cgroups; /* cgroup evts */ 759 #endif 760 void *task_ctx_data; /* pmu specific data */ 761 struct rcu_head rcu_head; 762 }; 763 764 /* 765 * Number of contexts where an event can trigger: 766 * task, softirq, hardirq, nmi. 767 */ 768 #define PERF_NR_CONTEXTS 4 769 770 /** 771 * struct perf_event_cpu_context - per cpu event context structure 772 */ 773 struct perf_cpu_context { 774 struct perf_event_context ctx; 775 struct perf_event_context *task_ctx; 776 int active_oncpu; 777 int exclusive; 778 779 raw_spinlock_t hrtimer_lock; 780 struct hrtimer hrtimer; 781 ktime_t hrtimer_interval; 782 unsigned int hrtimer_active; 783 784 #ifdef CONFIG_CGROUP_PERF 785 struct perf_cgroup *cgrp; 786 struct list_head cgrp_cpuctx_entry; 787 #endif 788 789 struct list_head sched_cb_entry; 790 int sched_cb_usage; 791 792 int online; 793 }; 794 795 struct perf_output_handle { 796 struct perf_event *event; 797 struct ring_buffer *rb; 798 unsigned long wakeup; 799 unsigned long size; 800 u64 aux_flags; 801 union { 802 void *addr; 803 unsigned long head; 804 }; 805 int page; 806 }; 807 808 struct bpf_perf_event_data_kern { 809 bpf_user_pt_regs_t *regs; 810 struct perf_sample_data *data; 811 struct perf_event *event; 812 }; 813 814 #ifdef CONFIG_CGROUP_PERF 815 816 /* 817 * perf_cgroup_info keeps track of time_enabled for a cgroup. 818 * This is a per-cpu dynamically allocated data structure. 819 */ 820 struct perf_cgroup_info { 821 u64 time; 822 u64 timestamp; 823 }; 824 825 struct perf_cgroup { 826 struct cgroup_subsys_state css; 827 struct perf_cgroup_info __percpu *info; 828 }; 829 830 /* 831 * Must ensure cgroup is pinned (css_get) before calling 832 * this function. In other words, we cannot call this function 833 * if there is no cgroup event for the current CPU context. 834 */ 835 static inline struct perf_cgroup * 836 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx) 837 { 838 return container_of(task_css_check(task, perf_event_cgrp_id, 839 ctx ? lockdep_is_held(&ctx->lock) 840 : true), 841 struct perf_cgroup, css); 842 } 843 #endif /* CONFIG_CGROUP_PERF */ 844 845 #ifdef CONFIG_PERF_EVENTS 846 847 extern void *perf_aux_output_begin(struct perf_output_handle *handle, 848 struct perf_event *event); 849 extern void perf_aux_output_end(struct perf_output_handle *handle, 850 unsigned long size); 851 extern int perf_aux_output_skip(struct perf_output_handle *handle, 852 unsigned long size); 853 extern void *perf_get_aux(struct perf_output_handle *handle); 854 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags); 855 extern void perf_event_itrace_started(struct perf_event *event); 856 857 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); 858 extern void perf_pmu_unregister(struct pmu *pmu); 859 860 extern int perf_num_counters(void); 861 extern const char *perf_pmu_name(void); 862 extern void __perf_event_task_sched_in(struct task_struct *prev, 863 struct task_struct *task); 864 extern void __perf_event_task_sched_out(struct task_struct *prev, 865 struct task_struct *next); 866 extern int perf_event_init_task(struct task_struct *child); 867 extern void perf_event_exit_task(struct task_struct *child); 868 extern void perf_event_free_task(struct task_struct *task); 869 extern void perf_event_delayed_put(struct task_struct *task); 870 extern struct file *perf_event_get(unsigned int fd); 871 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event); 872 extern void perf_event_print_debug(void); 873 extern void perf_pmu_disable(struct pmu *pmu); 874 extern void perf_pmu_enable(struct pmu *pmu); 875 extern void perf_sched_cb_dec(struct pmu *pmu); 876 extern void perf_sched_cb_inc(struct pmu *pmu); 877 extern int perf_event_task_disable(void); 878 extern int perf_event_task_enable(void); 879 extern int perf_event_refresh(struct perf_event *event, int refresh); 880 extern void perf_event_update_userpage(struct perf_event *event); 881 extern int perf_event_release_kernel(struct perf_event *event); 882 extern struct perf_event * 883 perf_event_create_kernel_counter(struct perf_event_attr *attr, 884 int cpu, 885 struct task_struct *task, 886 perf_overflow_handler_t callback, 887 void *context); 888 extern void perf_pmu_migrate_context(struct pmu *pmu, 889 int src_cpu, int dst_cpu); 890 int perf_event_read_local(struct perf_event *event, u64 *value, 891 u64 *enabled, u64 *running); 892 extern u64 perf_event_read_value(struct perf_event *event, 893 u64 *enabled, u64 *running); 894 895 896 struct perf_sample_data { 897 /* 898 * Fields set by perf_sample_data_init(), group so as to 899 * minimize the cachelines touched. 900 */ 901 u64 addr; 902 struct perf_raw_record *raw; 903 struct perf_branch_stack *br_stack; 904 u64 period; 905 u64 weight; 906 u64 txn; 907 union perf_mem_data_src data_src; 908 909 /* 910 * The other fields, optionally {set,used} by 911 * perf_{prepare,output}_sample(). 912 */ 913 u64 type; 914 u64 ip; 915 struct { 916 u32 pid; 917 u32 tid; 918 } tid_entry; 919 u64 time; 920 u64 id; 921 u64 stream_id; 922 struct { 923 u32 cpu; 924 u32 reserved; 925 } cpu_entry; 926 struct perf_callchain_entry *callchain; 927 928 /* 929 * regs_user may point to task_pt_regs or to regs_user_copy, depending 930 * on arch details. 931 */ 932 struct perf_regs regs_user; 933 struct pt_regs regs_user_copy; 934 935 struct perf_regs regs_intr; 936 u64 stack_user_size; 937 938 u64 phys_addr; 939 } ____cacheline_aligned; 940 941 /* default value for data source */ 942 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\ 943 PERF_MEM_S(LVL, NA) |\ 944 PERF_MEM_S(SNOOP, NA) |\ 945 PERF_MEM_S(LOCK, NA) |\ 946 PERF_MEM_S(TLB, NA)) 947 948 static inline void perf_sample_data_init(struct perf_sample_data *data, 949 u64 addr, u64 period) 950 { 951 /* remaining struct members initialized in perf_prepare_sample() */ 952 data->addr = addr; 953 data->raw = NULL; 954 data->br_stack = NULL; 955 data->period = period; 956 data->weight = 0; 957 data->data_src.val = PERF_MEM_NA; 958 data->txn = 0; 959 } 960 961 extern void perf_output_sample(struct perf_output_handle *handle, 962 struct perf_event_header *header, 963 struct perf_sample_data *data, 964 struct perf_event *event); 965 extern void perf_prepare_sample(struct perf_event_header *header, 966 struct perf_sample_data *data, 967 struct perf_event *event, 968 struct pt_regs *regs); 969 970 extern int perf_event_overflow(struct perf_event *event, 971 struct perf_sample_data *data, 972 struct pt_regs *regs); 973 974 extern void perf_event_output_forward(struct perf_event *event, 975 struct perf_sample_data *data, 976 struct pt_regs *regs); 977 extern void perf_event_output_backward(struct perf_event *event, 978 struct perf_sample_data *data, 979 struct pt_regs *regs); 980 extern void perf_event_output(struct perf_event *event, 981 struct perf_sample_data *data, 982 struct pt_regs *regs); 983 984 static inline bool 985 is_default_overflow_handler(struct perf_event *event) 986 { 987 if (likely(event->overflow_handler == perf_event_output_forward)) 988 return true; 989 if (unlikely(event->overflow_handler == perf_event_output_backward)) 990 return true; 991 return false; 992 } 993 994 extern void 995 perf_event_header__init_id(struct perf_event_header *header, 996 struct perf_sample_data *data, 997 struct perf_event *event); 998 extern void 999 perf_event__output_id_sample(struct perf_event *event, 1000 struct perf_output_handle *handle, 1001 struct perf_sample_data *sample); 1002 1003 extern void 1004 perf_log_lost_samples(struct perf_event *event, u64 lost); 1005 1006 static inline bool is_sampling_event(struct perf_event *event) 1007 { 1008 return event->attr.sample_period != 0; 1009 } 1010 1011 /* 1012 * Return 1 for a software event, 0 for a hardware event 1013 */ 1014 static inline int is_software_event(struct perf_event *event) 1015 { 1016 return event->event_caps & PERF_EV_CAP_SOFTWARE; 1017 } 1018 1019 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 1020 1021 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64); 1022 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 1023 1024 #ifndef perf_arch_fetch_caller_regs 1025 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 1026 #endif 1027 1028 /* 1029 * Take a snapshot of the regs. Skip ip and frame pointer to 1030 * the nth caller. We only need a few of the regs: 1031 * - ip for PERF_SAMPLE_IP 1032 * - cs for user_mode() tests 1033 * - bp for callchains 1034 * - eflags, for future purposes, just in case 1035 */ 1036 static inline void perf_fetch_caller_regs(struct pt_regs *regs) 1037 { 1038 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 1039 } 1040 1041 static __always_inline void 1042 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 1043 { 1044 if (static_key_false(&perf_swevent_enabled[event_id])) 1045 __perf_sw_event(event_id, nr, regs, addr); 1046 } 1047 1048 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]); 1049 1050 /* 1051 * 'Special' version for the scheduler, it hard assumes no recursion, 1052 * which is guaranteed by us not actually scheduling inside other swevents 1053 * because those disable preemption. 1054 */ 1055 static __always_inline void 1056 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) 1057 { 1058 if (static_key_false(&perf_swevent_enabled[event_id])) { 1059 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1060 1061 perf_fetch_caller_regs(regs); 1062 ___perf_sw_event(event_id, nr, regs, addr); 1063 } 1064 } 1065 1066 extern struct static_key_false perf_sched_events; 1067 1068 static __always_inline bool 1069 perf_sw_migrate_enabled(void) 1070 { 1071 if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS])) 1072 return true; 1073 return false; 1074 } 1075 1076 static inline void perf_event_task_migrate(struct task_struct *task) 1077 { 1078 if (perf_sw_migrate_enabled()) 1079 task->sched_migrated = 1; 1080 } 1081 1082 static inline void perf_event_task_sched_in(struct task_struct *prev, 1083 struct task_struct *task) 1084 { 1085 if (static_branch_unlikely(&perf_sched_events)) 1086 __perf_event_task_sched_in(prev, task); 1087 1088 if (perf_sw_migrate_enabled() && task->sched_migrated) { 1089 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1090 1091 perf_fetch_caller_regs(regs); 1092 ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0); 1093 task->sched_migrated = 0; 1094 } 1095 } 1096 1097 static inline void perf_event_task_sched_out(struct task_struct *prev, 1098 struct task_struct *next) 1099 { 1100 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0); 1101 1102 if (static_branch_unlikely(&perf_sched_events)) 1103 __perf_event_task_sched_out(prev, next); 1104 } 1105 1106 extern void perf_event_mmap(struct vm_area_struct *vma); 1107 extern struct perf_guest_info_callbacks *perf_guest_cbs; 1108 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1109 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1110 1111 extern void perf_event_exec(void); 1112 extern void perf_event_comm(struct task_struct *tsk, bool exec); 1113 extern void perf_event_namespaces(struct task_struct *tsk); 1114 extern void perf_event_fork(struct task_struct *tsk); 1115 1116 /* Callchains */ 1117 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 1118 1119 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1120 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1121 extern struct perf_callchain_entry * 1122 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user, 1123 u32 max_stack, bool crosstask, bool add_mark); 1124 extern int get_callchain_buffers(int max_stack); 1125 extern void put_callchain_buffers(void); 1126 1127 extern int sysctl_perf_event_max_stack; 1128 extern int sysctl_perf_event_max_contexts_per_stack; 1129 1130 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip) 1131 { 1132 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) { 1133 struct perf_callchain_entry *entry = ctx->entry; 1134 entry->ip[entry->nr++] = ip; 1135 ++ctx->contexts; 1136 return 0; 1137 } else { 1138 ctx->contexts_maxed = true; 1139 return -1; /* no more room, stop walking the stack */ 1140 } 1141 } 1142 1143 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip) 1144 { 1145 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) { 1146 struct perf_callchain_entry *entry = ctx->entry; 1147 entry->ip[entry->nr++] = ip; 1148 ++ctx->nr; 1149 return 0; 1150 } else { 1151 return -1; /* no more room, stop walking the stack */ 1152 } 1153 } 1154 1155 extern int sysctl_perf_event_paranoid; 1156 extern int sysctl_perf_event_mlock; 1157 extern int sysctl_perf_event_sample_rate; 1158 extern int sysctl_perf_cpu_time_max_percent; 1159 1160 extern void perf_sample_event_took(u64 sample_len_ns); 1161 1162 extern int perf_proc_update_handler(struct ctl_table *table, int write, 1163 void __user *buffer, size_t *lenp, 1164 loff_t *ppos); 1165 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 1166 void __user *buffer, size_t *lenp, 1167 loff_t *ppos); 1168 1169 int perf_event_max_stack_handler(struct ctl_table *table, int write, 1170 void __user *buffer, size_t *lenp, loff_t *ppos); 1171 1172 static inline bool perf_paranoid_tracepoint_raw(void) 1173 { 1174 return sysctl_perf_event_paranoid > -1; 1175 } 1176 1177 static inline bool perf_paranoid_cpu(void) 1178 { 1179 return sysctl_perf_event_paranoid > 0; 1180 } 1181 1182 static inline bool perf_paranoid_kernel(void) 1183 { 1184 return sysctl_perf_event_paranoid > 1; 1185 } 1186 1187 extern void perf_event_init(void); 1188 extern void perf_tp_event(u16 event_type, u64 count, void *record, 1189 int entry_size, struct pt_regs *regs, 1190 struct hlist_head *head, int rctx, 1191 struct task_struct *task); 1192 extern void perf_bp_event(struct perf_event *event, void *data); 1193 1194 #ifndef perf_misc_flags 1195 # define perf_misc_flags(regs) \ 1196 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 1197 # define perf_instruction_pointer(regs) instruction_pointer(regs) 1198 #endif 1199 #ifndef perf_arch_bpf_user_pt_regs 1200 # define perf_arch_bpf_user_pt_regs(regs) regs 1201 #endif 1202 1203 static inline bool has_branch_stack(struct perf_event *event) 1204 { 1205 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; 1206 } 1207 1208 static inline bool needs_branch_stack(struct perf_event *event) 1209 { 1210 return event->attr.branch_sample_type != 0; 1211 } 1212 1213 static inline bool has_aux(struct perf_event *event) 1214 { 1215 return event->pmu->setup_aux; 1216 } 1217 1218 static inline bool is_write_backward(struct perf_event *event) 1219 { 1220 return !!event->attr.write_backward; 1221 } 1222 1223 static inline bool has_addr_filter(struct perf_event *event) 1224 { 1225 return event->pmu->nr_addr_filters; 1226 } 1227 1228 /* 1229 * An inherited event uses parent's filters 1230 */ 1231 static inline struct perf_addr_filters_head * 1232 perf_event_addr_filters(struct perf_event *event) 1233 { 1234 struct perf_addr_filters_head *ifh = &event->addr_filters; 1235 1236 if (event->parent) 1237 ifh = &event->parent->addr_filters; 1238 1239 return ifh; 1240 } 1241 1242 extern void perf_event_addr_filters_sync(struct perf_event *event); 1243 1244 extern int perf_output_begin(struct perf_output_handle *handle, 1245 struct perf_event *event, unsigned int size); 1246 extern int perf_output_begin_forward(struct perf_output_handle *handle, 1247 struct perf_event *event, 1248 unsigned int size); 1249 extern int perf_output_begin_backward(struct perf_output_handle *handle, 1250 struct perf_event *event, 1251 unsigned int size); 1252 1253 extern void perf_output_end(struct perf_output_handle *handle); 1254 extern unsigned int perf_output_copy(struct perf_output_handle *handle, 1255 const void *buf, unsigned int len); 1256 extern unsigned int perf_output_skip(struct perf_output_handle *handle, 1257 unsigned int len); 1258 extern int perf_swevent_get_recursion_context(void); 1259 extern void perf_swevent_put_recursion_context(int rctx); 1260 extern u64 perf_swevent_set_period(struct perf_event *event); 1261 extern void perf_event_enable(struct perf_event *event); 1262 extern void perf_event_disable(struct perf_event *event); 1263 extern void perf_event_disable_local(struct perf_event *event); 1264 extern void perf_event_disable_inatomic(struct perf_event *event); 1265 extern void perf_event_task_tick(void); 1266 extern int perf_event_account_interrupt(struct perf_event *event); 1267 #else /* !CONFIG_PERF_EVENTS: */ 1268 static inline void * 1269 perf_aux_output_begin(struct perf_output_handle *handle, 1270 struct perf_event *event) { return NULL; } 1271 static inline void 1272 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size) 1273 { } 1274 static inline int 1275 perf_aux_output_skip(struct perf_output_handle *handle, 1276 unsigned long size) { return -EINVAL; } 1277 static inline void * 1278 perf_get_aux(struct perf_output_handle *handle) { return NULL; } 1279 static inline void 1280 perf_event_task_migrate(struct task_struct *task) { } 1281 static inline void 1282 perf_event_task_sched_in(struct task_struct *prev, 1283 struct task_struct *task) { } 1284 static inline void 1285 perf_event_task_sched_out(struct task_struct *prev, 1286 struct task_struct *next) { } 1287 static inline int perf_event_init_task(struct task_struct *child) { return 0; } 1288 static inline void perf_event_exit_task(struct task_struct *child) { } 1289 static inline void perf_event_free_task(struct task_struct *task) { } 1290 static inline void perf_event_delayed_put(struct task_struct *task) { } 1291 static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); } 1292 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 1293 { 1294 return ERR_PTR(-EINVAL); 1295 } 1296 static inline int perf_event_read_local(struct perf_event *event, u64 *value, 1297 u64 *enabled, u64 *running) 1298 { 1299 return -EINVAL; 1300 } 1301 static inline void perf_event_print_debug(void) { } 1302 static inline int perf_event_task_disable(void) { return -EINVAL; } 1303 static inline int perf_event_task_enable(void) { return -EINVAL; } 1304 static inline int perf_event_refresh(struct perf_event *event, int refresh) 1305 { 1306 return -EINVAL; 1307 } 1308 1309 static inline void 1310 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 1311 static inline void 1312 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { } 1313 static inline void 1314 perf_bp_event(struct perf_event *event, void *data) { } 1315 1316 static inline int perf_register_guest_info_callbacks 1317 (struct perf_guest_info_callbacks *callbacks) { return 0; } 1318 static inline int perf_unregister_guest_info_callbacks 1319 (struct perf_guest_info_callbacks *callbacks) { return 0; } 1320 1321 static inline void perf_event_mmap(struct vm_area_struct *vma) { } 1322 static inline void perf_event_exec(void) { } 1323 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { } 1324 static inline void perf_event_namespaces(struct task_struct *tsk) { } 1325 static inline void perf_event_fork(struct task_struct *tsk) { } 1326 static inline void perf_event_init(void) { } 1327 static inline int perf_swevent_get_recursion_context(void) { return -1; } 1328 static inline void perf_swevent_put_recursion_context(int rctx) { } 1329 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; } 1330 static inline void perf_event_enable(struct perf_event *event) { } 1331 static inline void perf_event_disable(struct perf_event *event) { } 1332 static inline int __perf_event_disable(void *info) { return -1; } 1333 static inline void perf_event_task_tick(void) { } 1334 static inline int perf_event_release_kernel(struct perf_event *event) { return 0; } 1335 #endif 1336 1337 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) 1338 extern void perf_restore_debug_store(void); 1339 #else 1340 static inline void perf_restore_debug_store(void) { } 1341 #endif 1342 1343 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag) 1344 { 1345 return frag->pad < sizeof(u64); 1346 } 1347 1348 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 1349 1350 struct perf_pmu_events_attr { 1351 struct device_attribute attr; 1352 u64 id; 1353 const char *event_str; 1354 }; 1355 1356 struct perf_pmu_events_ht_attr { 1357 struct device_attribute attr; 1358 u64 id; 1359 const char *event_str_ht; 1360 const char *event_str_noht; 1361 }; 1362 1363 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 1364 char *page); 1365 1366 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \ 1367 static struct perf_pmu_events_attr _var = { \ 1368 .attr = __ATTR(_name, 0444, _show, NULL), \ 1369 .id = _id, \ 1370 }; 1371 1372 #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \ 1373 static struct perf_pmu_events_attr _var = { \ 1374 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \ 1375 .id = 0, \ 1376 .event_str = _str, \ 1377 }; 1378 1379 #define PMU_FORMAT_ATTR(_name, _format) \ 1380 static ssize_t \ 1381 _name##_show(struct device *dev, \ 1382 struct device_attribute *attr, \ 1383 char *page) \ 1384 { \ 1385 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ 1386 return sprintf(page, _format "\n"); \ 1387 } \ 1388 \ 1389 static struct device_attribute format_attr_##_name = __ATTR_RO(_name) 1390 1391 /* Performance counter hotplug functions */ 1392 #ifdef CONFIG_PERF_EVENTS 1393 int perf_event_init_cpu(unsigned int cpu); 1394 int perf_event_exit_cpu(unsigned int cpu); 1395 #else 1396 #define perf_event_init_cpu NULL 1397 #define perf_event_exit_cpu NULL 1398 #endif 1399 1400 #endif /* _LINUX_PERF_EVENT_H */ 1401