xref: /linux-6.15/include/linux/perf_event.h (revision 00a62703)
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <[email protected]>
5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16 
17 #include <uapi/linux/perf_event.h>
18 #include <uapi/linux/bpf_perf_event.h>
19 
20 /*
21  * Kernel-internal data types and definitions:
22  */
23 
24 #ifdef CONFIG_PERF_EVENTS
25 # include <asm/perf_event.h>
26 # include <asm/local64.h>
27 #endif
28 
29 struct perf_guest_info_callbacks {
30 	int				(*is_in_guest)(void);
31 	int				(*is_user_mode)(void);
32 	unsigned long			(*get_guest_ip)(void);
33 };
34 
35 #ifdef CONFIG_HAVE_HW_BREAKPOINT
36 #include <asm/hw_breakpoint.h>
37 #endif
38 
39 #include <linux/list.h>
40 #include <linux/mutex.h>
41 #include <linux/rculist.h>
42 #include <linux/rcupdate.h>
43 #include <linux/spinlock.h>
44 #include <linux/hrtimer.h>
45 #include <linux/fs.h>
46 #include <linux/pid_namespace.h>
47 #include <linux/workqueue.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/irq_work.h>
51 #include <linux/static_key.h>
52 #include <linux/jump_label_ratelimit.h>
53 #include <linux/atomic.h>
54 #include <linux/sysfs.h>
55 #include <linux/perf_regs.h>
56 #include <linux/workqueue.h>
57 #include <linux/cgroup.h>
58 #include <asm/local.h>
59 
60 struct perf_callchain_entry {
61 	__u64				nr;
62 	__u64				ip[0]; /* /proc/sys/kernel/perf_event_max_stack */
63 };
64 
65 struct perf_callchain_entry_ctx {
66 	struct perf_callchain_entry *entry;
67 	u32			    max_stack;
68 	u32			    nr;
69 	short			    contexts;
70 	bool			    contexts_maxed;
71 };
72 
73 typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
74 				     unsigned long off, unsigned long len);
75 
76 struct perf_raw_frag {
77 	union {
78 		struct perf_raw_frag	*next;
79 		unsigned long		pad;
80 	};
81 	perf_copy_f			copy;
82 	void				*data;
83 	u32				size;
84 } __packed;
85 
86 struct perf_raw_record {
87 	struct perf_raw_frag		frag;
88 	u32				size;
89 };
90 
91 /*
92  * branch stack layout:
93  *  nr: number of taken branches stored in entries[]
94  *
95  * Note that nr can vary from sample to sample
96  * branches (to, from) are stored from most recent
97  * to least recent, i.e., entries[0] contains the most
98  * recent branch.
99  */
100 struct perf_branch_stack {
101 	__u64				nr;
102 	struct perf_branch_entry	entries[0];
103 };
104 
105 struct task_struct;
106 
107 /*
108  * extra PMU register associated with an event
109  */
110 struct hw_perf_event_extra {
111 	u64		config;	/* register value */
112 	unsigned int	reg;	/* register address or index */
113 	int		alloc;	/* extra register already allocated */
114 	int		idx;	/* index in shared_regs->regs[] */
115 };
116 
117 /**
118  * struct hw_perf_event - performance event hardware details:
119  */
120 struct hw_perf_event {
121 #ifdef CONFIG_PERF_EVENTS
122 	union {
123 		struct { /* hardware */
124 			u64		config;
125 			u64		last_tag;
126 			unsigned long	config_base;
127 			unsigned long	event_base;
128 			int		event_base_rdpmc;
129 			int		idx;
130 			int		last_cpu;
131 			int		flags;
132 
133 			struct hw_perf_event_extra extra_reg;
134 			struct hw_perf_event_extra branch_reg;
135 		};
136 		struct { /* software */
137 			struct hrtimer	hrtimer;
138 		};
139 		struct { /* tracepoint */
140 			/* for tp_event->class */
141 			struct list_head	tp_list;
142 		};
143 		struct { /* amd_power */
144 			u64	pwr_acc;
145 			u64	ptsc;
146 		};
147 #ifdef CONFIG_HAVE_HW_BREAKPOINT
148 		struct { /* breakpoint */
149 			/*
150 			 * Crufty hack to avoid the chicken and egg
151 			 * problem hw_breakpoint has with context
152 			 * creation and event initalization.
153 			 */
154 			struct arch_hw_breakpoint	info;
155 			struct list_head		bp_list;
156 		};
157 #endif
158 		struct { /* amd_iommu */
159 			u8	iommu_bank;
160 			u8	iommu_cntr;
161 			u16	padding;
162 			u64	conf;
163 			u64	conf1;
164 		};
165 	};
166 	/*
167 	 * If the event is a per task event, this will point to the task in
168 	 * question. See the comment in perf_event_alloc().
169 	 */
170 	struct task_struct		*target;
171 
172 	/*
173 	 * PMU would store hardware filter configuration
174 	 * here.
175 	 */
176 	void				*addr_filters;
177 
178 	/* Last sync'ed generation of filters */
179 	unsigned long			addr_filters_gen;
180 
181 /*
182  * hw_perf_event::state flags; used to track the PERF_EF_* state.
183  */
184 #define PERF_HES_STOPPED	0x01 /* the counter is stopped */
185 #define PERF_HES_UPTODATE	0x02 /* event->count up-to-date */
186 #define PERF_HES_ARCH		0x04
187 
188 	int				state;
189 
190 	/*
191 	 * The last observed hardware counter value, updated with a
192 	 * local64_cmpxchg() such that pmu::read() can be called nested.
193 	 */
194 	local64_t			prev_count;
195 
196 	/*
197 	 * The period to start the next sample with.
198 	 */
199 	u64				sample_period;
200 
201 	/*
202 	 * The period we started this sample with.
203 	 */
204 	u64				last_period;
205 
206 	/*
207 	 * However much is left of the current period; note that this is
208 	 * a full 64bit value and allows for generation of periods longer
209 	 * than hardware might allow.
210 	 */
211 	local64_t			period_left;
212 
213 	/*
214 	 * State for throttling the event, see __perf_event_overflow() and
215 	 * perf_adjust_freq_unthr_context().
216 	 */
217 	u64                             interrupts_seq;
218 	u64				interrupts;
219 
220 	/*
221 	 * State for freq target events, see __perf_event_overflow() and
222 	 * perf_adjust_freq_unthr_context().
223 	 */
224 	u64				freq_time_stamp;
225 	u64				freq_count_stamp;
226 #endif
227 };
228 
229 struct perf_event;
230 
231 /*
232  * Common implementation detail of pmu::{start,commit,cancel}_txn
233  */
234 #define PERF_PMU_TXN_ADD  0x1		/* txn to add/schedule event on PMU */
235 #define PERF_PMU_TXN_READ 0x2		/* txn to read event group from PMU */
236 
237 /**
238  * pmu::capabilities flags
239  */
240 #define PERF_PMU_CAP_NO_INTERRUPT		0x01
241 #define PERF_PMU_CAP_NO_NMI			0x02
242 #define PERF_PMU_CAP_AUX_NO_SG			0x04
243 #define PERF_PMU_CAP_AUX_SW_DOUBLEBUF		0x08
244 #define PERF_PMU_CAP_EXCLUSIVE			0x10
245 #define PERF_PMU_CAP_ITRACE			0x20
246 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS		0x40
247 
248 /**
249  * struct pmu - generic performance monitoring unit
250  */
251 struct pmu {
252 	struct list_head		entry;
253 
254 	struct module			*module;
255 	struct device			*dev;
256 	const struct attribute_group	**attr_groups;
257 	const char			*name;
258 	int				type;
259 
260 	/*
261 	 * various common per-pmu feature flags
262 	 */
263 	int				capabilities;
264 
265 	int * __percpu			pmu_disable_count;
266 	struct perf_cpu_context * __percpu pmu_cpu_context;
267 	atomic_t			exclusive_cnt; /* < 0: cpu; > 0: tsk */
268 	int				task_ctx_nr;
269 	int				hrtimer_interval_ms;
270 
271 	/* number of address filters this PMU can do */
272 	unsigned int			nr_addr_filters;
273 
274 	/*
275 	 * Fully disable/enable this PMU, can be used to protect from the PMI
276 	 * as well as for lazy/batch writing of the MSRs.
277 	 */
278 	void (*pmu_enable)		(struct pmu *pmu); /* optional */
279 	void (*pmu_disable)		(struct pmu *pmu); /* optional */
280 
281 	/*
282 	 * Try and initialize the event for this PMU.
283 	 *
284 	 * Returns:
285 	 *  -ENOENT	-- @event is not for this PMU
286 	 *
287 	 *  -ENODEV	-- @event is for this PMU but PMU not present
288 	 *  -EBUSY	-- @event is for this PMU but PMU temporarily unavailable
289 	 *  -EINVAL	-- @event is for this PMU but @event is not valid
290 	 *  -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
291 	 *  -EACCESS	-- @event is for this PMU, @event is valid, but no privilidges
292 	 *
293 	 *  0		-- @event is for this PMU and valid
294 	 *
295 	 * Other error return values are allowed.
296 	 */
297 	int (*event_init)		(struct perf_event *event);
298 
299 	/*
300 	 * Notification that the event was mapped or unmapped.  Called
301 	 * in the context of the mapping task.
302 	 */
303 	void (*event_mapped)		(struct perf_event *event, struct mm_struct *mm); /* optional */
304 	void (*event_unmapped)		(struct perf_event *event, struct mm_struct *mm); /* optional */
305 
306 	/*
307 	 * Flags for ->add()/->del()/ ->start()/->stop(). There are
308 	 * matching hw_perf_event::state flags.
309 	 */
310 #define PERF_EF_START	0x01		/* start the counter when adding    */
311 #define PERF_EF_RELOAD	0x02		/* reload the counter when starting */
312 #define PERF_EF_UPDATE	0x04		/* update the counter when stopping */
313 
314 	/*
315 	 * Adds/Removes a counter to/from the PMU, can be done inside a
316 	 * transaction, see the ->*_txn() methods.
317 	 *
318 	 * The add/del callbacks will reserve all hardware resources required
319 	 * to service the event, this includes any counter constraint
320 	 * scheduling etc.
321 	 *
322 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
323 	 * is on.
324 	 *
325 	 * ->add() called without PERF_EF_START should result in the same state
326 	 *  as ->add() followed by ->stop().
327 	 *
328 	 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
329 	 *  ->stop() that must deal with already being stopped without
330 	 *  PERF_EF_UPDATE.
331 	 */
332 	int  (*add)			(struct perf_event *event, int flags);
333 	void (*del)			(struct perf_event *event, int flags);
334 
335 	/*
336 	 * Starts/Stops a counter present on the PMU.
337 	 *
338 	 * The PMI handler should stop the counter when perf_event_overflow()
339 	 * returns !0. ->start() will be used to continue.
340 	 *
341 	 * Also used to change the sample period.
342 	 *
343 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
344 	 * is on -- will be called from NMI context with the PMU generates
345 	 * NMIs.
346 	 *
347 	 * ->stop() with PERF_EF_UPDATE will read the counter and update
348 	 *  period/count values like ->read() would.
349 	 *
350 	 * ->start() with PERF_EF_RELOAD will reprogram the the counter
351 	 *  value, must be preceded by a ->stop() with PERF_EF_UPDATE.
352 	 */
353 	void (*start)			(struct perf_event *event, int flags);
354 	void (*stop)			(struct perf_event *event, int flags);
355 
356 	/*
357 	 * Updates the counter value of the event.
358 	 *
359 	 * For sampling capable PMUs this will also update the software period
360 	 * hw_perf_event::period_left field.
361 	 */
362 	void (*read)			(struct perf_event *event);
363 
364 	/*
365 	 * Group events scheduling is treated as a transaction, add
366 	 * group events as a whole and perform one schedulability test.
367 	 * If the test fails, roll back the whole group
368 	 *
369 	 * Start the transaction, after this ->add() doesn't need to
370 	 * do schedulability tests.
371 	 *
372 	 * Optional.
373 	 */
374 	void (*start_txn)		(struct pmu *pmu, unsigned int txn_flags);
375 	/*
376 	 * If ->start_txn() disabled the ->add() schedulability test
377 	 * then ->commit_txn() is required to perform one. On success
378 	 * the transaction is closed. On error the transaction is kept
379 	 * open until ->cancel_txn() is called.
380 	 *
381 	 * Optional.
382 	 */
383 	int  (*commit_txn)		(struct pmu *pmu);
384 	/*
385 	 * Will cancel the transaction, assumes ->del() is called
386 	 * for each successful ->add() during the transaction.
387 	 *
388 	 * Optional.
389 	 */
390 	void (*cancel_txn)		(struct pmu *pmu);
391 
392 	/*
393 	 * Will return the value for perf_event_mmap_page::index for this event,
394 	 * if no implementation is provided it will default to: event->hw.idx + 1.
395 	 */
396 	int (*event_idx)		(struct perf_event *event); /*optional */
397 
398 	/*
399 	 * context-switches callback
400 	 */
401 	void (*sched_task)		(struct perf_event_context *ctx,
402 					bool sched_in);
403 	/*
404 	 * PMU specific data size
405 	 */
406 	size_t				task_ctx_size;
407 
408 
409 	/*
410 	 * Set up pmu-private data structures for an AUX area
411 	 */
412 	void *(*setup_aux)		(int cpu, void **pages,
413 					 int nr_pages, bool overwrite);
414 					/* optional */
415 
416 	/*
417 	 * Free pmu-private AUX data structures
418 	 */
419 	void (*free_aux)		(void *aux); /* optional */
420 
421 	/*
422 	 * Validate address range filters: make sure the HW supports the
423 	 * requested configuration and number of filters; return 0 if the
424 	 * supplied filters are valid, -errno otherwise.
425 	 *
426 	 * Runs in the context of the ioctl()ing process and is not serialized
427 	 * with the rest of the PMU callbacks.
428 	 */
429 	int (*addr_filters_validate)	(struct list_head *filters);
430 					/* optional */
431 
432 	/*
433 	 * Synchronize address range filter configuration:
434 	 * translate hw-agnostic filters into hardware configuration in
435 	 * event::hw::addr_filters.
436 	 *
437 	 * Runs as a part of filter sync sequence that is done in ->start()
438 	 * callback by calling perf_event_addr_filters_sync().
439 	 *
440 	 * May (and should) traverse event::addr_filters::list, for which its
441 	 * caller provides necessary serialization.
442 	 */
443 	void (*addr_filters_sync)	(struct perf_event *event);
444 					/* optional */
445 
446 	/*
447 	 * Filter events for PMU-specific reasons.
448 	 */
449 	int (*filter_match)		(struct perf_event *event); /* optional */
450 };
451 
452 enum perf_addr_filter_action_t {
453 	PERF_ADDR_FILTER_ACTION_STOP = 0,
454 	PERF_ADDR_FILTER_ACTION_START,
455 	PERF_ADDR_FILTER_ACTION_FILTER,
456 };
457 
458 /**
459  * struct perf_addr_filter - address range filter definition
460  * @entry:	event's filter list linkage
461  * @inode:	object file's inode for file-based filters
462  * @offset:	filter range offset
463  * @size:	filter range size (size==0 means single address trigger)
464  * @action:	filter/start/stop
465  *
466  * This is a hardware-agnostic filter configuration as specified by the user.
467  */
468 struct perf_addr_filter {
469 	struct list_head	entry;
470 	struct inode		*inode;
471 	unsigned long		offset;
472 	unsigned long		size;
473 	enum perf_addr_filter_action_t	action;
474 };
475 
476 /**
477  * struct perf_addr_filters_head - container for address range filters
478  * @list:	list of filters for this event
479  * @lock:	spinlock that serializes accesses to the @list and event's
480  *		(and its children's) filter generations.
481  * @nr_file_filters:	number of file-based filters
482  *
483  * A child event will use parent's @list (and therefore @lock), so they are
484  * bundled together; see perf_event_addr_filters().
485  */
486 struct perf_addr_filters_head {
487 	struct list_head	list;
488 	raw_spinlock_t		lock;
489 	unsigned int		nr_file_filters;
490 };
491 
492 /**
493  * enum perf_event_state - the states of a event
494  */
495 enum perf_event_state {
496 	PERF_EVENT_STATE_DEAD		= -4,
497 	PERF_EVENT_STATE_EXIT		= -3,
498 	PERF_EVENT_STATE_ERROR		= -2,
499 	PERF_EVENT_STATE_OFF		= -1,
500 	PERF_EVENT_STATE_INACTIVE	=  0,
501 	PERF_EVENT_STATE_ACTIVE		=  1,
502 };
503 
504 struct file;
505 struct perf_sample_data;
506 
507 typedef void (*perf_overflow_handler_t)(struct perf_event *,
508 					struct perf_sample_data *,
509 					struct pt_regs *regs);
510 
511 /*
512  * Event capabilities. For event_caps and groups caps.
513  *
514  * PERF_EV_CAP_SOFTWARE: Is a software event.
515  * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
516  * from any CPU in the package where it is active.
517  */
518 #define PERF_EV_CAP_SOFTWARE		BIT(0)
519 #define PERF_EV_CAP_READ_ACTIVE_PKG	BIT(1)
520 
521 #define SWEVENT_HLIST_BITS		8
522 #define SWEVENT_HLIST_SIZE		(1 << SWEVENT_HLIST_BITS)
523 
524 struct swevent_hlist {
525 	struct hlist_head		heads[SWEVENT_HLIST_SIZE];
526 	struct rcu_head			rcu_head;
527 };
528 
529 #define PERF_ATTACH_CONTEXT	0x01
530 #define PERF_ATTACH_GROUP	0x02
531 #define PERF_ATTACH_TASK	0x04
532 #define PERF_ATTACH_TASK_DATA	0x08
533 #define PERF_ATTACH_ITRACE	0x10
534 
535 struct perf_cgroup;
536 struct ring_buffer;
537 
538 struct pmu_event_list {
539 	raw_spinlock_t		lock;
540 	struct list_head	list;
541 };
542 
543 #define for_each_sibling_event(sibling, event)			\
544 	if ((event)->group_leader == (event))			\
545 		list_for_each_entry((sibling), &(event)->sibling_list, sibling_list)
546 
547 /**
548  * struct perf_event - performance event kernel representation:
549  */
550 struct perf_event {
551 #ifdef CONFIG_PERF_EVENTS
552 	/*
553 	 * entry onto perf_event_context::event_list;
554 	 *   modifications require ctx->lock
555 	 *   RCU safe iterations.
556 	 */
557 	struct list_head		event_entry;
558 
559 	/*
560 	 * Locked for modification by both ctx->mutex and ctx->lock; holding
561 	 * either sufficies for read.
562 	 */
563 	struct list_head		sibling_list;
564 	struct list_head		active_list;
565 	/*
566 	 * Node on the pinned or flexible tree located at the event context;
567 	 */
568 	struct rb_node			group_node;
569 	u64				group_index;
570 	/*
571 	 * We need storage to track the entries in perf_pmu_migrate_context; we
572 	 * cannot use the event_entry because of RCU and we want to keep the
573 	 * group in tact which avoids us using the other two entries.
574 	 */
575 	struct list_head		migrate_entry;
576 
577 	struct hlist_node		hlist_entry;
578 	struct list_head		active_entry;
579 	int				nr_siblings;
580 
581 	/* Not serialized. Only written during event initialization. */
582 	int				event_caps;
583 	/* The cumulative AND of all event_caps for events in this group. */
584 	int				group_caps;
585 
586 	struct perf_event		*group_leader;
587 	struct pmu			*pmu;
588 	void				*pmu_private;
589 
590 	enum perf_event_state		state;
591 	unsigned int			attach_state;
592 	local64_t			count;
593 	atomic64_t			child_count;
594 
595 	/*
596 	 * These are the total time in nanoseconds that the event
597 	 * has been enabled (i.e. eligible to run, and the task has
598 	 * been scheduled in, if this is a per-task event)
599 	 * and running (scheduled onto the CPU), respectively.
600 	 */
601 	u64				total_time_enabled;
602 	u64				total_time_running;
603 	u64				tstamp;
604 
605 	/*
606 	 * timestamp shadows the actual context timing but it can
607 	 * be safely used in NMI interrupt context. It reflects the
608 	 * context time as it was when the event was last scheduled in.
609 	 *
610 	 * ctx_time already accounts for ctx->timestamp. Therefore to
611 	 * compute ctx_time for a sample, simply add perf_clock().
612 	 */
613 	u64				shadow_ctx_time;
614 
615 	struct perf_event_attr		attr;
616 	u16				header_size;
617 	u16				id_header_size;
618 	u16				read_size;
619 	struct hw_perf_event		hw;
620 
621 	struct perf_event_context	*ctx;
622 	atomic_long_t			refcount;
623 
624 	/*
625 	 * These accumulate total time (in nanoseconds) that children
626 	 * events have been enabled and running, respectively.
627 	 */
628 	atomic64_t			child_total_time_enabled;
629 	atomic64_t			child_total_time_running;
630 
631 	/*
632 	 * Protect attach/detach and child_list:
633 	 */
634 	struct mutex			child_mutex;
635 	struct list_head		child_list;
636 	struct perf_event		*parent;
637 
638 	int				oncpu;
639 	int				cpu;
640 
641 	struct list_head		owner_entry;
642 	struct task_struct		*owner;
643 
644 	/* mmap bits */
645 	struct mutex			mmap_mutex;
646 	atomic_t			mmap_count;
647 
648 	struct ring_buffer		*rb;
649 	struct list_head		rb_entry;
650 	unsigned long			rcu_batches;
651 	int				rcu_pending;
652 
653 	/* poll related */
654 	wait_queue_head_t		waitq;
655 	struct fasync_struct		*fasync;
656 
657 	/* delayed work for NMIs and such */
658 	int				pending_wakeup;
659 	int				pending_kill;
660 	int				pending_disable;
661 	struct irq_work			pending;
662 
663 	atomic_t			event_limit;
664 
665 	/* address range filters */
666 	struct perf_addr_filters_head	addr_filters;
667 	/* vma address array for file-based filders */
668 	unsigned long			*addr_filters_offs;
669 	unsigned long			addr_filters_gen;
670 
671 	void (*destroy)(struct perf_event *);
672 	struct rcu_head			rcu_head;
673 
674 	struct pid_namespace		*ns;
675 	u64				id;
676 
677 	u64				(*clock)(void);
678 	perf_overflow_handler_t		overflow_handler;
679 	void				*overflow_handler_context;
680 #ifdef CONFIG_BPF_SYSCALL
681 	perf_overflow_handler_t		orig_overflow_handler;
682 	struct bpf_prog			*prog;
683 #endif
684 
685 #ifdef CONFIG_EVENT_TRACING
686 	struct trace_event_call		*tp_event;
687 	struct event_filter		*filter;
688 #ifdef CONFIG_FUNCTION_TRACER
689 	struct ftrace_ops               ftrace_ops;
690 #endif
691 #endif
692 
693 #ifdef CONFIG_CGROUP_PERF
694 	struct perf_cgroup		*cgrp; /* cgroup event is attach to */
695 #endif
696 
697 	struct list_head		sb_list;
698 #endif /* CONFIG_PERF_EVENTS */
699 };
700 
701 
702 struct perf_event_groups {
703 	struct rb_root	tree;
704 	u64		index;
705 };
706 
707 /**
708  * struct perf_event_context - event context structure
709  *
710  * Used as a container for task events and CPU events as well:
711  */
712 struct perf_event_context {
713 	struct pmu			*pmu;
714 	/*
715 	 * Protect the states of the events in the list,
716 	 * nr_active, and the list:
717 	 */
718 	raw_spinlock_t			lock;
719 	/*
720 	 * Protect the list of events.  Locking either mutex or lock
721 	 * is sufficient to ensure the list doesn't change; to change
722 	 * the list you need to lock both the mutex and the spinlock.
723 	 */
724 	struct mutex			mutex;
725 
726 	struct list_head		active_ctx_list;
727 	struct perf_event_groups	pinned_groups;
728 	struct perf_event_groups	flexible_groups;
729 	struct list_head		event_list;
730 
731 	struct list_head		pinned_active;
732 	struct list_head		flexible_active;
733 
734 	int				nr_events;
735 	int				nr_active;
736 	int				is_active;
737 	int				nr_stat;
738 	int				nr_freq;
739 	int				rotate_disable;
740 	atomic_t			refcount;
741 	struct task_struct		*task;
742 
743 	/*
744 	 * Context clock, runs when context enabled.
745 	 */
746 	u64				time;
747 	u64				timestamp;
748 
749 	/*
750 	 * These fields let us detect when two contexts have both
751 	 * been cloned (inherited) from a common ancestor.
752 	 */
753 	struct perf_event_context	*parent_ctx;
754 	u64				parent_gen;
755 	u64				generation;
756 	int				pin_count;
757 #ifdef CONFIG_CGROUP_PERF
758 	int				nr_cgroups;	 /* cgroup evts */
759 #endif
760 	void				*task_ctx_data; /* pmu specific data */
761 	struct rcu_head			rcu_head;
762 };
763 
764 /*
765  * Number of contexts where an event can trigger:
766  *	task, softirq, hardirq, nmi.
767  */
768 #define PERF_NR_CONTEXTS	4
769 
770 /**
771  * struct perf_event_cpu_context - per cpu event context structure
772  */
773 struct perf_cpu_context {
774 	struct perf_event_context	ctx;
775 	struct perf_event_context	*task_ctx;
776 	int				active_oncpu;
777 	int				exclusive;
778 
779 	raw_spinlock_t			hrtimer_lock;
780 	struct hrtimer			hrtimer;
781 	ktime_t				hrtimer_interval;
782 	unsigned int			hrtimer_active;
783 
784 #ifdef CONFIG_CGROUP_PERF
785 	struct perf_cgroup		*cgrp;
786 	struct list_head		cgrp_cpuctx_entry;
787 #endif
788 
789 	struct list_head		sched_cb_entry;
790 	int				sched_cb_usage;
791 
792 	int				online;
793 };
794 
795 struct perf_output_handle {
796 	struct perf_event		*event;
797 	struct ring_buffer		*rb;
798 	unsigned long			wakeup;
799 	unsigned long			size;
800 	u64				aux_flags;
801 	union {
802 		void			*addr;
803 		unsigned long		head;
804 	};
805 	int				page;
806 };
807 
808 struct bpf_perf_event_data_kern {
809 	bpf_user_pt_regs_t *regs;
810 	struct perf_sample_data *data;
811 	struct perf_event *event;
812 };
813 
814 #ifdef CONFIG_CGROUP_PERF
815 
816 /*
817  * perf_cgroup_info keeps track of time_enabled for a cgroup.
818  * This is a per-cpu dynamically allocated data structure.
819  */
820 struct perf_cgroup_info {
821 	u64				time;
822 	u64				timestamp;
823 };
824 
825 struct perf_cgroup {
826 	struct cgroup_subsys_state	css;
827 	struct perf_cgroup_info	__percpu *info;
828 };
829 
830 /*
831  * Must ensure cgroup is pinned (css_get) before calling
832  * this function. In other words, we cannot call this function
833  * if there is no cgroup event for the current CPU context.
834  */
835 static inline struct perf_cgroup *
836 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
837 {
838 	return container_of(task_css_check(task, perf_event_cgrp_id,
839 					   ctx ? lockdep_is_held(&ctx->lock)
840 					       : true),
841 			    struct perf_cgroup, css);
842 }
843 #endif /* CONFIG_CGROUP_PERF */
844 
845 #ifdef CONFIG_PERF_EVENTS
846 
847 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
848 				   struct perf_event *event);
849 extern void perf_aux_output_end(struct perf_output_handle *handle,
850 				unsigned long size);
851 extern int perf_aux_output_skip(struct perf_output_handle *handle,
852 				unsigned long size);
853 extern void *perf_get_aux(struct perf_output_handle *handle);
854 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
855 extern void perf_event_itrace_started(struct perf_event *event);
856 
857 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
858 extern void perf_pmu_unregister(struct pmu *pmu);
859 
860 extern int perf_num_counters(void);
861 extern const char *perf_pmu_name(void);
862 extern void __perf_event_task_sched_in(struct task_struct *prev,
863 				       struct task_struct *task);
864 extern void __perf_event_task_sched_out(struct task_struct *prev,
865 					struct task_struct *next);
866 extern int perf_event_init_task(struct task_struct *child);
867 extern void perf_event_exit_task(struct task_struct *child);
868 extern void perf_event_free_task(struct task_struct *task);
869 extern void perf_event_delayed_put(struct task_struct *task);
870 extern struct file *perf_event_get(unsigned int fd);
871 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
872 extern void perf_event_print_debug(void);
873 extern void perf_pmu_disable(struct pmu *pmu);
874 extern void perf_pmu_enable(struct pmu *pmu);
875 extern void perf_sched_cb_dec(struct pmu *pmu);
876 extern void perf_sched_cb_inc(struct pmu *pmu);
877 extern int perf_event_task_disable(void);
878 extern int perf_event_task_enable(void);
879 extern int perf_event_refresh(struct perf_event *event, int refresh);
880 extern void perf_event_update_userpage(struct perf_event *event);
881 extern int perf_event_release_kernel(struct perf_event *event);
882 extern struct perf_event *
883 perf_event_create_kernel_counter(struct perf_event_attr *attr,
884 				int cpu,
885 				struct task_struct *task,
886 				perf_overflow_handler_t callback,
887 				void *context);
888 extern void perf_pmu_migrate_context(struct pmu *pmu,
889 				int src_cpu, int dst_cpu);
890 int perf_event_read_local(struct perf_event *event, u64 *value,
891 			  u64 *enabled, u64 *running);
892 extern u64 perf_event_read_value(struct perf_event *event,
893 				 u64 *enabled, u64 *running);
894 
895 
896 struct perf_sample_data {
897 	/*
898 	 * Fields set by perf_sample_data_init(), group so as to
899 	 * minimize the cachelines touched.
900 	 */
901 	u64				addr;
902 	struct perf_raw_record		*raw;
903 	struct perf_branch_stack	*br_stack;
904 	u64				period;
905 	u64				weight;
906 	u64				txn;
907 	union  perf_mem_data_src	data_src;
908 
909 	/*
910 	 * The other fields, optionally {set,used} by
911 	 * perf_{prepare,output}_sample().
912 	 */
913 	u64				type;
914 	u64				ip;
915 	struct {
916 		u32	pid;
917 		u32	tid;
918 	}				tid_entry;
919 	u64				time;
920 	u64				id;
921 	u64				stream_id;
922 	struct {
923 		u32	cpu;
924 		u32	reserved;
925 	}				cpu_entry;
926 	struct perf_callchain_entry	*callchain;
927 
928 	/*
929 	 * regs_user may point to task_pt_regs or to regs_user_copy, depending
930 	 * on arch details.
931 	 */
932 	struct perf_regs		regs_user;
933 	struct pt_regs			regs_user_copy;
934 
935 	struct perf_regs		regs_intr;
936 	u64				stack_user_size;
937 
938 	u64				phys_addr;
939 } ____cacheline_aligned;
940 
941 /* default value for data source */
942 #define PERF_MEM_NA (PERF_MEM_S(OP, NA)   |\
943 		    PERF_MEM_S(LVL, NA)   |\
944 		    PERF_MEM_S(SNOOP, NA) |\
945 		    PERF_MEM_S(LOCK, NA)  |\
946 		    PERF_MEM_S(TLB, NA))
947 
948 static inline void perf_sample_data_init(struct perf_sample_data *data,
949 					 u64 addr, u64 period)
950 {
951 	/* remaining struct members initialized in perf_prepare_sample() */
952 	data->addr = addr;
953 	data->raw  = NULL;
954 	data->br_stack = NULL;
955 	data->period = period;
956 	data->weight = 0;
957 	data->data_src.val = PERF_MEM_NA;
958 	data->txn = 0;
959 }
960 
961 extern void perf_output_sample(struct perf_output_handle *handle,
962 			       struct perf_event_header *header,
963 			       struct perf_sample_data *data,
964 			       struct perf_event *event);
965 extern void perf_prepare_sample(struct perf_event_header *header,
966 				struct perf_sample_data *data,
967 				struct perf_event *event,
968 				struct pt_regs *regs);
969 
970 extern int perf_event_overflow(struct perf_event *event,
971 				 struct perf_sample_data *data,
972 				 struct pt_regs *regs);
973 
974 extern void perf_event_output_forward(struct perf_event *event,
975 				     struct perf_sample_data *data,
976 				     struct pt_regs *regs);
977 extern void perf_event_output_backward(struct perf_event *event,
978 				       struct perf_sample_data *data,
979 				       struct pt_regs *regs);
980 extern void perf_event_output(struct perf_event *event,
981 			      struct perf_sample_data *data,
982 			      struct pt_regs *regs);
983 
984 static inline bool
985 is_default_overflow_handler(struct perf_event *event)
986 {
987 	if (likely(event->overflow_handler == perf_event_output_forward))
988 		return true;
989 	if (unlikely(event->overflow_handler == perf_event_output_backward))
990 		return true;
991 	return false;
992 }
993 
994 extern void
995 perf_event_header__init_id(struct perf_event_header *header,
996 			   struct perf_sample_data *data,
997 			   struct perf_event *event);
998 extern void
999 perf_event__output_id_sample(struct perf_event *event,
1000 			     struct perf_output_handle *handle,
1001 			     struct perf_sample_data *sample);
1002 
1003 extern void
1004 perf_log_lost_samples(struct perf_event *event, u64 lost);
1005 
1006 static inline bool is_sampling_event(struct perf_event *event)
1007 {
1008 	return event->attr.sample_period != 0;
1009 }
1010 
1011 /*
1012  * Return 1 for a software event, 0 for a hardware event
1013  */
1014 static inline int is_software_event(struct perf_event *event)
1015 {
1016 	return event->event_caps & PERF_EV_CAP_SOFTWARE;
1017 }
1018 
1019 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1020 
1021 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1022 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1023 
1024 #ifndef perf_arch_fetch_caller_regs
1025 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1026 #endif
1027 
1028 /*
1029  * Take a snapshot of the regs. Skip ip and frame pointer to
1030  * the nth caller. We only need a few of the regs:
1031  * - ip for PERF_SAMPLE_IP
1032  * - cs for user_mode() tests
1033  * - bp for callchains
1034  * - eflags, for future purposes, just in case
1035  */
1036 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1037 {
1038 	perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1039 }
1040 
1041 static __always_inline void
1042 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1043 {
1044 	if (static_key_false(&perf_swevent_enabled[event_id]))
1045 		__perf_sw_event(event_id, nr, regs, addr);
1046 }
1047 
1048 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1049 
1050 /*
1051  * 'Special' version for the scheduler, it hard assumes no recursion,
1052  * which is guaranteed by us not actually scheduling inside other swevents
1053  * because those disable preemption.
1054  */
1055 static __always_inline void
1056 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1057 {
1058 	if (static_key_false(&perf_swevent_enabled[event_id])) {
1059 		struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1060 
1061 		perf_fetch_caller_regs(regs);
1062 		___perf_sw_event(event_id, nr, regs, addr);
1063 	}
1064 }
1065 
1066 extern struct static_key_false perf_sched_events;
1067 
1068 static __always_inline bool
1069 perf_sw_migrate_enabled(void)
1070 {
1071 	if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS]))
1072 		return true;
1073 	return false;
1074 }
1075 
1076 static inline void perf_event_task_migrate(struct task_struct *task)
1077 {
1078 	if (perf_sw_migrate_enabled())
1079 		task->sched_migrated = 1;
1080 }
1081 
1082 static inline void perf_event_task_sched_in(struct task_struct *prev,
1083 					    struct task_struct *task)
1084 {
1085 	if (static_branch_unlikely(&perf_sched_events))
1086 		__perf_event_task_sched_in(prev, task);
1087 
1088 	if (perf_sw_migrate_enabled() && task->sched_migrated) {
1089 		struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1090 
1091 		perf_fetch_caller_regs(regs);
1092 		___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0);
1093 		task->sched_migrated = 0;
1094 	}
1095 }
1096 
1097 static inline void perf_event_task_sched_out(struct task_struct *prev,
1098 					     struct task_struct *next)
1099 {
1100 	perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1101 
1102 	if (static_branch_unlikely(&perf_sched_events))
1103 		__perf_event_task_sched_out(prev, next);
1104 }
1105 
1106 extern void perf_event_mmap(struct vm_area_struct *vma);
1107 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1108 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1109 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1110 
1111 extern void perf_event_exec(void);
1112 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1113 extern void perf_event_namespaces(struct task_struct *tsk);
1114 extern void perf_event_fork(struct task_struct *tsk);
1115 
1116 /* Callchains */
1117 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1118 
1119 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1120 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1121 extern struct perf_callchain_entry *
1122 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1123 		   u32 max_stack, bool crosstask, bool add_mark);
1124 extern int get_callchain_buffers(int max_stack);
1125 extern void put_callchain_buffers(void);
1126 
1127 extern int sysctl_perf_event_max_stack;
1128 extern int sysctl_perf_event_max_contexts_per_stack;
1129 
1130 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1131 {
1132 	if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1133 		struct perf_callchain_entry *entry = ctx->entry;
1134 		entry->ip[entry->nr++] = ip;
1135 		++ctx->contexts;
1136 		return 0;
1137 	} else {
1138 		ctx->contexts_maxed = true;
1139 		return -1; /* no more room, stop walking the stack */
1140 	}
1141 }
1142 
1143 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1144 {
1145 	if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1146 		struct perf_callchain_entry *entry = ctx->entry;
1147 		entry->ip[entry->nr++] = ip;
1148 		++ctx->nr;
1149 		return 0;
1150 	} else {
1151 		return -1; /* no more room, stop walking the stack */
1152 	}
1153 }
1154 
1155 extern int sysctl_perf_event_paranoid;
1156 extern int sysctl_perf_event_mlock;
1157 extern int sysctl_perf_event_sample_rate;
1158 extern int sysctl_perf_cpu_time_max_percent;
1159 
1160 extern void perf_sample_event_took(u64 sample_len_ns);
1161 
1162 extern int perf_proc_update_handler(struct ctl_table *table, int write,
1163 		void __user *buffer, size_t *lenp,
1164 		loff_t *ppos);
1165 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1166 		void __user *buffer, size_t *lenp,
1167 		loff_t *ppos);
1168 
1169 int perf_event_max_stack_handler(struct ctl_table *table, int write,
1170 				 void __user *buffer, size_t *lenp, loff_t *ppos);
1171 
1172 static inline bool perf_paranoid_tracepoint_raw(void)
1173 {
1174 	return sysctl_perf_event_paranoid > -1;
1175 }
1176 
1177 static inline bool perf_paranoid_cpu(void)
1178 {
1179 	return sysctl_perf_event_paranoid > 0;
1180 }
1181 
1182 static inline bool perf_paranoid_kernel(void)
1183 {
1184 	return sysctl_perf_event_paranoid > 1;
1185 }
1186 
1187 extern void perf_event_init(void);
1188 extern void perf_tp_event(u16 event_type, u64 count, void *record,
1189 			  int entry_size, struct pt_regs *regs,
1190 			  struct hlist_head *head, int rctx,
1191 			  struct task_struct *task);
1192 extern void perf_bp_event(struct perf_event *event, void *data);
1193 
1194 #ifndef perf_misc_flags
1195 # define perf_misc_flags(regs) \
1196 		(user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1197 # define perf_instruction_pointer(regs)	instruction_pointer(regs)
1198 #endif
1199 #ifndef perf_arch_bpf_user_pt_regs
1200 # define perf_arch_bpf_user_pt_regs(regs) regs
1201 #endif
1202 
1203 static inline bool has_branch_stack(struct perf_event *event)
1204 {
1205 	return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1206 }
1207 
1208 static inline bool needs_branch_stack(struct perf_event *event)
1209 {
1210 	return event->attr.branch_sample_type != 0;
1211 }
1212 
1213 static inline bool has_aux(struct perf_event *event)
1214 {
1215 	return event->pmu->setup_aux;
1216 }
1217 
1218 static inline bool is_write_backward(struct perf_event *event)
1219 {
1220 	return !!event->attr.write_backward;
1221 }
1222 
1223 static inline bool has_addr_filter(struct perf_event *event)
1224 {
1225 	return event->pmu->nr_addr_filters;
1226 }
1227 
1228 /*
1229  * An inherited event uses parent's filters
1230  */
1231 static inline struct perf_addr_filters_head *
1232 perf_event_addr_filters(struct perf_event *event)
1233 {
1234 	struct perf_addr_filters_head *ifh = &event->addr_filters;
1235 
1236 	if (event->parent)
1237 		ifh = &event->parent->addr_filters;
1238 
1239 	return ifh;
1240 }
1241 
1242 extern void perf_event_addr_filters_sync(struct perf_event *event);
1243 
1244 extern int perf_output_begin(struct perf_output_handle *handle,
1245 			     struct perf_event *event, unsigned int size);
1246 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1247 				    struct perf_event *event,
1248 				    unsigned int size);
1249 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1250 				      struct perf_event *event,
1251 				      unsigned int size);
1252 
1253 extern void perf_output_end(struct perf_output_handle *handle);
1254 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1255 			     const void *buf, unsigned int len);
1256 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1257 				     unsigned int len);
1258 extern int perf_swevent_get_recursion_context(void);
1259 extern void perf_swevent_put_recursion_context(int rctx);
1260 extern u64 perf_swevent_set_period(struct perf_event *event);
1261 extern void perf_event_enable(struct perf_event *event);
1262 extern void perf_event_disable(struct perf_event *event);
1263 extern void perf_event_disable_local(struct perf_event *event);
1264 extern void perf_event_disable_inatomic(struct perf_event *event);
1265 extern void perf_event_task_tick(void);
1266 extern int perf_event_account_interrupt(struct perf_event *event);
1267 #else /* !CONFIG_PERF_EVENTS: */
1268 static inline void *
1269 perf_aux_output_begin(struct perf_output_handle *handle,
1270 		      struct perf_event *event)				{ return NULL; }
1271 static inline void
1272 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1273 									{ }
1274 static inline int
1275 perf_aux_output_skip(struct perf_output_handle *handle,
1276 		     unsigned long size)				{ return -EINVAL; }
1277 static inline void *
1278 perf_get_aux(struct perf_output_handle *handle)				{ return NULL; }
1279 static inline void
1280 perf_event_task_migrate(struct task_struct *task)			{ }
1281 static inline void
1282 perf_event_task_sched_in(struct task_struct *prev,
1283 			 struct task_struct *task)			{ }
1284 static inline void
1285 perf_event_task_sched_out(struct task_struct *prev,
1286 			  struct task_struct *next)			{ }
1287 static inline int perf_event_init_task(struct task_struct *child)	{ return 0; }
1288 static inline void perf_event_exit_task(struct task_struct *child)	{ }
1289 static inline void perf_event_free_task(struct task_struct *task)	{ }
1290 static inline void perf_event_delayed_put(struct task_struct *task)	{ }
1291 static inline struct file *perf_event_get(unsigned int fd)	{ return ERR_PTR(-EINVAL); }
1292 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1293 {
1294 	return ERR_PTR(-EINVAL);
1295 }
1296 static inline int perf_event_read_local(struct perf_event *event, u64 *value,
1297 					u64 *enabled, u64 *running)
1298 {
1299 	return -EINVAL;
1300 }
1301 static inline void perf_event_print_debug(void)				{ }
1302 static inline int perf_event_task_disable(void)				{ return -EINVAL; }
1303 static inline int perf_event_task_enable(void)				{ return -EINVAL; }
1304 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1305 {
1306 	return -EINVAL;
1307 }
1308 
1309 static inline void
1310 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)	{ }
1311 static inline void
1312 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)			{ }
1313 static inline void
1314 perf_bp_event(struct perf_event *event, void *data)			{ }
1315 
1316 static inline int perf_register_guest_info_callbacks
1317 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
1318 static inline int perf_unregister_guest_info_callbacks
1319 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
1320 
1321 static inline void perf_event_mmap(struct vm_area_struct *vma)		{ }
1322 static inline void perf_event_exec(void)				{ }
1323 static inline void perf_event_comm(struct task_struct *tsk, bool exec)	{ }
1324 static inline void perf_event_namespaces(struct task_struct *tsk)	{ }
1325 static inline void perf_event_fork(struct task_struct *tsk)		{ }
1326 static inline void perf_event_init(void)				{ }
1327 static inline int  perf_swevent_get_recursion_context(void)		{ return -1; }
1328 static inline void perf_swevent_put_recursion_context(int rctx)		{ }
1329 static inline u64 perf_swevent_set_period(struct perf_event *event)	{ return 0; }
1330 static inline void perf_event_enable(struct perf_event *event)		{ }
1331 static inline void perf_event_disable(struct perf_event *event)		{ }
1332 static inline int __perf_event_disable(void *info)			{ return -1; }
1333 static inline void perf_event_task_tick(void)				{ }
1334 static inline int perf_event_release_kernel(struct perf_event *event)	{ return 0; }
1335 #endif
1336 
1337 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1338 extern void perf_restore_debug_store(void);
1339 #else
1340 static inline void perf_restore_debug_store(void)			{ }
1341 #endif
1342 
1343 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
1344 {
1345 	return frag->pad < sizeof(u64);
1346 }
1347 
1348 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1349 
1350 struct perf_pmu_events_attr {
1351 	struct device_attribute attr;
1352 	u64 id;
1353 	const char *event_str;
1354 };
1355 
1356 struct perf_pmu_events_ht_attr {
1357 	struct device_attribute			attr;
1358 	u64					id;
1359 	const char				*event_str_ht;
1360 	const char				*event_str_noht;
1361 };
1362 
1363 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1364 			      char *page);
1365 
1366 #define PMU_EVENT_ATTR(_name, _var, _id, _show)				\
1367 static struct perf_pmu_events_attr _var = {				\
1368 	.attr = __ATTR(_name, 0444, _show, NULL),			\
1369 	.id   =  _id,							\
1370 };
1371 
1372 #define PMU_EVENT_ATTR_STRING(_name, _var, _str)			    \
1373 static struct perf_pmu_events_attr _var = {				    \
1374 	.attr		= __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1375 	.id		= 0,						    \
1376 	.event_str	= _str,						    \
1377 };
1378 
1379 #define PMU_FORMAT_ATTR(_name, _format)					\
1380 static ssize_t								\
1381 _name##_show(struct device *dev,					\
1382 			       struct device_attribute *attr,		\
1383 			       char *page)				\
1384 {									\
1385 	BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE);			\
1386 	return sprintf(page, _format "\n");				\
1387 }									\
1388 									\
1389 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1390 
1391 /* Performance counter hotplug functions */
1392 #ifdef CONFIG_PERF_EVENTS
1393 int perf_event_init_cpu(unsigned int cpu);
1394 int perf_event_exit_cpu(unsigned int cpu);
1395 #else
1396 #define perf_event_init_cpu	NULL
1397 #define perf_event_exit_cpu	NULL
1398 #endif
1399 
1400 #endif /* _LINUX_PERF_EVENT_H */
1401