1 #ifndef __LINUX_PERCPU_H 2 #define __LINUX_PERCPU_H 3 4 #include <linux/preempt.h> 5 #include <linux/smp.h> 6 #include <linux/cpumask.h> 7 #include <linux/pfn.h> 8 #include <linux/init.h> 9 10 #include <asm/percpu.h> 11 12 /* enough to cover all DEFINE_PER_CPUs in modules */ 13 #ifdef CONFIG_MODULES 14 #define PERCPU_MODULE_RESERVE (8 << 10) 15 #else 16 #define PERCPU_MODULE_RESERVE 0 17 #endif 18 19 #ifndef PERCPU_ENOUGH_ROOM 20 #define PERCPU_ENOUGH_ROOM \ 21 (ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) + \ 22 PERCPU_MODULE_RESERVE) 23 #endif 24 25 /* 26 * Must be an lvalue. Since @var must be a simple identifier, 27 * we force a syntax error here if it isn't. 28 */ 29 #define get_cpu_var(var) (*({ \ 30 preempt_disable(); \ 31 &__get_cpu_var(var); })) 32 33 /* 34 * The weird & is necessary because sparse considers (void)(var) to be 35 * a direct dereference of percpu variable (var). 36 */ 37 #define put_cpu_var(var) do { \ 38 (void)&(var); \ 39 preempt_enable(); \ 40 } while (0) 41 42 #define get_cpu_ptr(var) ({ \ 43 preempt_disable(); \ 44 this_cpu_ptr(var); }) 45 46 #define put_cpu_ptr(var) do { \ 47 (void)(var); \ 48 preempt_enable(); \ 49 } while (0) 50 51 #ifdef CONFIG_SMP 52 53 /* minimum unit size, also is the maximum supported allocation size */ 54 #define PCPU_MIN_UNIT_SIZE PFN_ALIGN(64 << 10) 55 56 /* 57 * Percpu allocator can serve percpu allocations before slab is 58 * initialized which allows slab to depend on the percpu allocator. 59 * The following two parameters decide how much resource to 60 * preallocate for this. Keep PERCPU_DYNAMIC_RESERVE equal to or 61 * larger than PERCPU_DYNAMIC_EARLY_SIZE. 62 */ 63 #define PERCPU_DYNAMIC_EARLY_SLOTS 128 64 #define PERCPU_DYNAMIC_EARLY_SIZE (12 << 10) 65 66 /* 67 * PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy 68 * back on the first chunk for dynamic percpu allocation if arch is 69 * manually allocating and mapping it for faster access (as a part of 70 * large page mapping for example). 71 * 72 * The following values give between one and two pages of free space 73 * after typical minimal boot (2-way SMP, single disk and NIC) with 74 * both defconfig and a distro config on x86_64 and 32. More 75 * intelligent way to determine this would be nice. 76 */ 77 #if BITS_PER_LONG > 32 78 #define PERCPU_DYNAMIC_RESERVE (20 << 10) 79 #else 80 #define PERCPU_DYNAMIC_RESERVE (12 << 10) 81 #endif 82 83 extern void *pcpu_base_addr; 84 extern const unsigned long *pcpu_unit_offsets; 85 86 struct pcpu_group_info { 87 int nr_units; /* aligned # of units */ 88 unsigned long base_offset; /* base address offset */ 89 unsigned int *cpu_map; /* unit->cpu map, empty 90 * entries contain NR_CPUS */ 91 }; 92 93 struct pcpu_alloc_info { 94 size_t static_size; 95 size_t reserved_size; 96 size_t dyn_size; 97 size_t unit_size; 98 size_t atom_size; 99 size_t alloc_size; 100 size_t __ai_size; /* internal, don't use */ 101 int nr_groups; /* 0 if grouping unnecessary */ 102 struct pcpu_group_info groups[]; 103 }; 104 105 enum pcpu_fc { 106 PCPU_FC_AUTO, 107 PCPU_FC_EMBED, 108 PCPU_FC_PAGE, 109 110 PCPU_FC_NR, 111 }; 112 extern const char *pcpu_fc_names[PCPU_FC_NR]; 113 114 extern enum pcpu_fc pcpu_chosen_fc; 115 116 typedef void * (*pcpu_fc_alloc_fn_t)(unsigned int cpu, size_t size, 117 size_t align); 118 typedef void (*pcpu_fc_free_fn_t)(void *ptr, size_t size); 119 typedef void (*pcpu_fc_populate_pte_fn_t)(unsigned long addr); 120 typedef int (pcpu_fc_cpu_distance_fn_t)(unsigned int from, unsigned int to); 121 122 extern struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, 123 int nr_units); 124 extern void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai); 125 126 extern int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, 127 void *base_addr); 128 129 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK 130 extern int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, 131 size_t atom_size, 132 pcpu_fc_cpu_distance_fn_t cpu_distance_fn, 133 pcpu_fc_alloc_fn_t alloc_fn, 134 pcpu_fc_free_fn_t free_fn); 135 #endif 136 137 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 138 extern int __init pcpu_page_first_chunk(size_t reserved_size, 139 pcpu_fc_alloc_fn_t alloc_fn, 140 pcpu_fc_free_fn_t free_fn, 141 pcpu_fc_populate_pte_fn_t populate_pte_fn); 142 #endif 143 144 /* 145 * Use this to get to a cpu's version of the per-cpu object 146 * dynamically allocated. Non-atomic access to the current CPU's 147 * version should probably be combined with get_cpu()/put_cpu(). 148 */ 149 #define per_cpu_ptr(ptr, cpu) SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu))) 150 151 extern void __percpu *__alloc_reserved_percpu(size_t size, size_t align); 152 extern bool is_kernel_percpu_address(unsigned long addr); 153 154 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA 155 extern void __init setup_per_cpu_areas(void); 156 #endif 157 extern void __init percpu_init_late(void); 158 159 #else /* CONFIG_SMP */ 160 161 #define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); VERIFY_PERCPU_PTR((ptr)); }) 162 163 /* can't distinguish from other static vars, always false */ 164 static inline bool is_kernel_percpu_address(unsigned long addr) 165 { 166 return false; 167 } 168 169 static inline void __init setup_per_cpu_areas(void) { } 170 171 static inline void __init percpu_init_late(void) { } 172 173 static inline void *pcpu_lpage_remapped(void *kaddr) 174 { 175 return NULL; 176 } 177 178 #endif /* CONFIG_SMP */ 179 180 extern void __percpu *__alloc_percpu(size_t size, size_t align); 181 extern void free_percpu(void __percpu *__pdata); 182 extern phys_addr_t per_cpu_ptr_to_phys(void *addr); 183 184 #define alloc_percpu(type) \ 185 (typeof(type) __percpu *)__alloc_percpu(sizeof(type), __alignof__(type)) 186 187 /* 188 * Optional methods for optimized non-lvalue per-cpu variable access. 189 * 190 * @var can be a percpu variable or a field of it and its size should 191 * equal char, int or long. percpu_read() evaluates to a lvalue and 192 * all others to void. 193 * 194 * These operations are guaranteed to be atomic w.r.t. preemption. 195 * The generic versions use plain get/put_cpu_var(). Archs are 196 * encouraged to implement single-instruction alternatives which don't 197 * require preemption protection. 198 */ 199 #ifndef percpu_read 200 # define percpu_read(var) \ 201 ({ \ 202 typeof(var) *pr_ptr__ = &(var); \ 203 typeof(var) pr_ret__; \ 204 pr_ret__ = get_cpu_var(*pr_ptr__); \ 205 put_cpu_var(*pr_ptr__); \ 206 pr_ret__; \ 207 }) 208 #endif 209 210 #define __percpu_generic_to_op(var, val, op) \ 211 do { \ 212 typeof(var) *pgto_ptr__ = &(var); \ 213 get_cpu_var(*pgto_ptr__) op val; \ 214 put_cpu_var(*pgto_ptr__); \ 215 } while (0) 216 217 #ifndef percpu_write 218 # define percpu_write(var, val) __percpu_generic_to_op(var, (val), =) 219 #endif 220 221 #ifndef percpu_add 222 # define percpu_add(var, val) __percpu_generic_to_op(var, (val), +=) 223 #endif 224 225 #ifndef percpu_sub 226 # define percpu_sub(var, val) __percpu_generic_to_op(var, (val), -=) 227 #endif 228 229 #ifndef percpu_and 230 # define percpu_and(var, val) __percpu_generic_to_op(var, (val), &=) 231 #endif 232 233 #ifndef percpu_or 234 # define percpu_or(var, val) __percpu_generic_to_op(var, (val), |=) 235 #endif 236 237 #ifndef percpu_xor 238 # define percpu_xor(var, val) __percpu_generic_to_op(var, (val), ^=) 239 #endif 240 241 /* 242 * Branching function to split up a function into a set of functions that 243 * are called for different scalar sizes of the objects handled. 244 */ 245 246 extern void __bad_size_call_parameter(void); 247 248 #define __pcpu_size_call_return(stem, variable) \ 249 ({ typeof(variable) pscr_ret__; \ 250 __verify_pcpu_ptr(&(variable)); \ 251 switch(sizeof(variable)) { \ 252 case 1: pscr_ret__ = stem##1(variable);break; \ 253 case 2: pscr_ret__ = stem##2(variable);break; \ 254 case 4: pscr_ret__ = stem##4(variable);break; \ 255 case 8: pscr_ret__ = stem##8(variable);break; \ 256 default: \ 257 __bad_size_call_parameter();break; \ 258 } \ 259 pscr_ret__; \ 260 }) 261 262 #define __pcpu_size_call(stem, variable, ...) \ 263 do { \ 264 __verify_pcpu_ptr(&(variable)); \ 265 switch(sizeof(variable)) { \ 266 case 1: stem##1(variable, __VA_ARGS__);break; \ 267 case 2: stem##2(variable, __VA_ARGS__);break; \ 268 case 4: stem##4(variable, __VA_ARGS__);break; \ 269 case 8: stem##8(variable, __VA_ARGS__);break; \ 270 default: \ 271 __bad_size_call_parameter();break; \ 272 } \ 273 } while (0) 274 275 /* 276 * Optimized manipulation for memory allocated through the per cpu 277 * allocator or for addresses of per cpu variables. 278 * 279 * These operation guarantee exclusivity of access for other operations 280 * on the *same* processor. The assumption is that per cpu data is only 281 * accessed by a single processor instance (the current one). 282 * 283 * The first group is used for accesses that must be done in a 284 * preemption safe way since we know that the context is not preempt 285 * safe. Interrupts may occur. If the interrupt modifies the variable 286 * too then RMW actions will not be reliable. 287 * 288 * The arch code can provide optimized functions in two ways: 289 * 290 * 1. Override the function completely. F.e. define this_cpu_add(). 291 * The arch must then ensure that the various scalar format passed 292 * are handled correctly. 293 * 294 * 2. Provide functions for certain scalar sizes. F.e. provide 295 * this_cpu_add_2() to provide per cpu atomic operations for 2 byte 296 * sized RMW actions. If arch code does not provide operations for 297 * a scalar size then the fallback in the generic code will be 298 * used. 299 */ 300 301 #define _this_cpu_generic_read(pcp) \ 302 ({ typeof(pcp) ret__; \ 303 preempt_disable(); \ 304 ret__ = *this_cpu_ptr(&(pcp)); \ 305 preempt_enable(); \ 306 ret__; \ 307 }) 308 309 #ifndef this_cpu_read 310 # ifndef this_cpu_read_1 311 # define this_cpu_read_1(pcp) _this_cpu_generic_read(pcp) 312 # endif 313 # ifndef this_cpu_read_2 314 # define this_cpu_read_2(pcp) _this_cpu_generic_read(pcp) 315 # endif 316 # ifndef this_cpu_read_4 317 # define this_cpu_read_4(pcp) _this_cpu_generic_read(pcp) 318 # endif 319 # ifndef this_cpu_read_8 320 # define this_cpu_read_8(pcp) _this_cpu_generic_read(pcp) 321 # endif 322 # define this_cpu_read(pcp) __pcpu_size_call_return(this_cpu_read_, (pcp)) 323 #endif 324 325 #define _this_cpu_generic_to_op(pcp, val, op) \ 326 do { \ 327 preempt_disable(); \ 328 *__this_cpu_ptr(&(pcp)) op val; \ 329 preempt_enable(); \ 330 } while (0) 331 332 #ifndef this_cpu_write 333 # ifndef this_cpu_write_1 334 # define this_cpu_write_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 335 # endif 336 # ifndef this_cpu_write_2 337 # define this_cpu_write_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 338 # endif 339 # ifndef this_cpu_write_4 340 # define this_cpu_write_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 341 # endif 342 # ifndef this_cpu_write_8 343 # define this_cpu_write_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 344 # endif 345 # define this_cpu_write(pcp, val) __pcpu_size_call(this_cpu_write_, (pcp), (val)) 346 #endif 347 348 #ifndef this_cpu_add 349 # ifndef this_cpu_add_1 350 # define this_cpu_add_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 351 # endif 352 # ifndef this_cpu_add_2 353 # define this_cpu_add_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 354 # endif 355 # ifndef this_cpu_add_4 356 # define this_cpu_add_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 357 # endif 358 # ifndef this_cpu_add_8 359 # define this_cpu_add_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 360 # endif 361 # define this_cpu_add(pcp, val) __pcpu_size_call(this_cpu_add_, (pcp), (val)) 362 #endif 363 364 #ifndef this_cpu_sub 365 # define this_cpu_sub(pcp, val) this_cpu_add((pcp), -(val)) 366 #endif 367 368 #ifndef this_cpu_inc 369 # define this_cpu_inc(pcp) this_cpu_add((pcp), 1) 370 #endif 371 372 #ifndef this_cpu_dec 373 # define this_cpu_dec(pcp) this_cpu_sub((pcp), 1) 374 #endif 375 376 #ifndef this_cpu_and 377 # ifndef this_cpu_and_1 378 # define this_cpu_and_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 379 # endif 380 # ifndef this_cpu_and_2 381 # define this_cpu_and_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 382 # endif 383 # ifndef this_cpu_and_4 384 # define this_cpu_and_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 385 # endif 386 # ifndef this_cpu_and_8 387 # define this_cpu_and_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 388 # endif 389 # define this_cpu_and(pcp, val) __pcpu_size_call(this_cpu_and_, (pcp), (val)) 390 #endif 391 392 #ifndef this_cpu_or 393 # ifndef this_cpu_or_1 394 # define this_cpu_or_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 395 # endif 396 # ifndef this_cpu_or_2 397 # define this_cpu_or_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 398 # endif 399 # ifndef this_cpu_or_4 400 # define this_cpu_or_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 401 # endif 402 # ifndef this_cpu_or_8 403 # define this_cpu_or_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 404 # endif 405 # define this_cpu_or(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val)) 406 #endif 407 408 #ifndef this_cpu_xor 409 # ifndef this_cpu_xor_1 410 # define this_cpu_xor_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 411 # endif 412 # ifndef this_cpu_xor_2 413 # define this_cpu_xor_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 414 # endif 415 # ifndef this_cpu_xor_4 416 # define this_cpu_xor_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 417 # endif 418 # ifndef this_cpu_xor_8 419 # define this_cpu_xor_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 420 # endif 421 # define this_cpu_xor(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val)) 422 #endif 423 424 /* 425 * Generic percpu operations that do not require preemption handling. 426 * Either we do not care about races or the caller has the 427 * responsibility of handling preemptions issues. Arch code can still 428 * override these instructions since the arch per cpu code may be more 429 * efficient and may actually get race freeness for free (that is the 430 * case for x86 for example). 431 * 432 * If there is no other protection through preempt disable and/or 433 * disabling interupts then one of these RMW operations can show unexpected 434 * behavior because the execution thread was rescheduled on another processor 435 * or an interrupt occurred and the same percpu variable was modified from 436 * the interrupt context. 437 */ 438 #ifndef __this_cpu_read 439 # ifndef __this_cpu_read_1 440 # define __this_cpu_read_1(pcp) (*__this_cpu_ptr(&(pcp))) 441 # endif 442 # ifndef __this_cpu_read_2 443 # define __this_cpu_read_2(pcp) (*__this_cpu_ptr(&(pcp))) 444 # endif 445 # ifndef __this_cpu_read_4 446 # define __this_cpu_read_4(pcp) (*__this_cpu_ptr(&(pcp))) 447 # endif 448 # ifndef __this_cpu_read_8 449 # define __this_cpu_read_8(pcp) (*__this_cpu_ptr(&(pcp))) 450 # endif 451 # define __this_cpu_read(pcp) __pcpu_size_call_return(__this_cpu_read_, (pcp)) 452 #endif 453 454 #define __this_cpu_generic_to_op(pcp, val, op) \ 455 do { \ 456 *__this_cpu_ptr(&(pcp)) op val; \ 457 } while (0) 458 459 #ifndef __this_cpu_write 460 # ifndef __this_cpu_write_1 461 # define __this_cpu_write_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 462 # endif 463 # ifndef __this_cpu_write_2 464 # define __this_cpu_write_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 465 # endif 466 # ifndef __this_cpu_write_4 467 # define __this_cpu_write_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 468 # endif 469 # ifndef __this_cpu_write_8 470 # define __this_cpu_write_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 471 # endif 472 # define __this_cpu_write(pcp, val) __pcpu_size_call(__this_cpu_write_, (pcp), (val)) 473 #endif 474 475 #ifndef __this_cpu_add 476 # ifndef __this_cpu_add_1 477 # define __this_cpu_add_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 478 # endif 479 # ifndef __this_cpu_add_2 480 # define __this_cpu_add_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 481 # endif 482 # ifndef __this_cpu_add_4 483 # define __this_cpu_add_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 484 # endif 485 # ifndef __this_cpu_add_8 486 # define __this_cpu_add_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 487 # endif 488 # define __this_cpu_add(pcp, val) __pcpu_size_call(__this_cpu_add_, (pcp), (val)) 489 #endif 490 491 #ifndef __this_cpu_sub 492 # define __this_cpu_sub(pcp, val) __this_cpu_add((pcp), -(val)) 493 #endif 494 495 #ifndef __this_cpu_inc 496 # define __this_cpu_inc(pcp) __this_cpu_add((pcp), 1) 497 #endif 498 499 #ifndef __this_cpu_dec 500 # define __this_cpu_dec(pcp) __this_cpu_sub((pcp), 1) 501 #endif 502 503 #ifndef __this_cpu_and 504 # ifndef __this_cpu_and_1 505 # define __this_cpu_and_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 506 # endif 507 # ifndef __this_cpu_and_2 508 # define __this_cpu_and_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 509 # endif 510 # ifndef __this_cpu_and_4 511 # define __this_cpu_and_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 512 # endif 513 # ifndef __this_cpu_and_8 514 # define __this_cpu_and_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 515 # endif 516 # define __this_cpu_and(pcp, val) __pcpu_size_call(__this_cpu_and_, (pcp), (val)) 517 #endif 518 519 #ifndef __this_cpu_or 520 # ifndef __this_cpu_or_1 521 # define __this_cpu_or_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 522 # endif 523 # ifndef __this_cpu_or_2 524 # define __this_cpu_or_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 525 # endif 526 # ifndef __this_cpu_or_4 527 # define __this_cpu_or_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 528 # endif 529 # ifndef __this_cpu_or_8 530 # define __this_cpu_or_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 531 # endif 532 # define __this_cpu_or(pcp, val) __pcpu_size_call(__this_cpu_or_, (pcp), (val)) 533 #endif 534 535 #ifndef __this_cpu_xor 536 # ifndef __this_cpu_xor_1 537 # define __this_cpu_xor_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 538 # endif 539 # ifndef __this_cpu_xor_2 540 # define __this_cpu_xor_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 541 # endif 542 # ifndef __this_cpu_xor_4 543 # define __this_cpu_xor_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 544 # endif 545 # ifndef __this_cpu_xor_8 546 # define __this_cpu_xor_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 547 # endif 548 # define __this_cpu_xor(pcp, val) __pcpu_size_call(__this_cpu_xor_, (pcp), (val)) 549 #endif 550 551 /* 552 * IRQ safe versions of the per cpu RMW operations. Note that these operations 553 * are *not* safe against modification of the same variable from another 554 * processors (which one gets when using regular atomic operations) 555 . They are guaranteed to be atomic vs. local interrupts and 556 * preemption only. 557 */ 558 #define irqsafe_cpu_generic_to_op(pcp, val, op) \ 559 do { \ 560 unsigned long flags; \ 561 local_irq_save(flags); \ 562 *__this_cpu_ptr(&(pcp)) op val; \ 563 local_irq_restore(flags); \ 564 } while (0) 565 566 #ifndef irqsafe_cpu_add 567 # ifndef irqsafe_cpu_add_1 568 # define irqsafe_cpu_add_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) 569 # endif 570 # ifndef irqsafe_cpu_add_2 571 # define irqsafe_cpu_add_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) 572 # endif 573 # ifndef irqsafe_cpu_add_4 574 # define irqsafe_cpu_add_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) 575 # endif 576 # ifndef irqsafe_cpu_add_8 577 # define irqsafe_cpu_add_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) 578 # endif 579 # define irqsafe_cpu_add(pcp, val) __pcpu_size_call(irqsafe_cpu_add_, (pcp), (val)) 580 #endif 581 582 #ifndef irqsafe_cpu_sub 583 # define irqsafe_cpu_sub(pcp, val) irqsafe_cpu_add((pcp), -(val)) 584 #endif 585 586 #ifndef irqsafe_cpu_inc 587 # define irqsafe_cpu_inc(pcp) irqsafe_cpu_add((pcp), 1) 588 #endif 589 590 #ifndef irqsafe_cpu_dec 591 # define irqsafe_cpu_dec(pcp) irqsafe_cpu_sub((pcp), 1) 592 #endif 593 594 #ifndef irqsafe_cpu_and 595 # ifndef irqsafe_cpu_and_1 596 # define irqsafe_cpu_and_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) 597 # endif 598 # ifndef irqsafe_cpu_and_2 599 # define irqsafe_cpu_and_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) 600 # endif 601 # ifndef irqsafe_cpu_and_4 602 # define irqsafe_cpu_and_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) 603 # endif 604 # ifndef irqsafe_cpu_and_8 605 # define irqsafe_cpu_and_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) 606 # endif 607 # define irqsafe_cpu_and(pcp, val) __pcpu_size_call(irqsafe_cpu_and_, (val)) 608 #endif 609 610 #ifndef irqsafe_cpu_or 611 # ifndef irqsafe_cpu_or_1 612 # define irqsafe_cpu_or_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) 613 # endif 614 # ifndef irqsafe_cpu_or_2 615 # define irqsafe_cpu_or_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) 616 # endif 617 # ifndef irqsafe_cpu_or_4 618 # define irqsafe_cpu_or_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) 619 # endif 620 # ifndef irqsafe_cpu_or_8 621 # define irqsafe_cpu_or_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) 622 # endif 623 # define irqsafe_cpu_or(pcp, val) __pcpu_size_call(irqsafe_cpu_or_, (val)) 624 #endif 625 626 #ifndef irqsafe_cpu_xor 627 # ifndef irqsafe_cpu_xor_1 628 # define irqsafe_cpu_xor_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) 629 # endif 630 # ifndef irqsafe_cpu_xor_2 631 # define irqsafe_cpu_xor_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) 632 # endif 633 # ifndef irqsafe_cpu_xor_4 634 # define irqsafe_cpu_xor_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) 635 # endif 636 # ifndef irqsafe_cpu_xor_8 637 # define irqsafe_cpu_xor_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) 638 # endif 639 # define irqsafe_cpu_xor(pcp, val) __pcpu_size_call(irqsafe_cpu_xor_, (val)) 640 #endif 641 642 #endif /* __LINUX_PERCPU_H */ 643