xref: /linux-6.15/include/linux/percpu.h (revision b595076a)
1 #ifndef __LINUX_PERCPU_H
2 #define __LINUX_PERCPU_H
3 
4 #include <linux/preempt.h>
5 #include <linux/smp.h>
6 #include <linux/cpumask.h>
7 #include <linux/pfn.h>
8 #include <linux/init.h>
9 
10 #include <asm/percpu.h>
11 
12 /* enough to cover all DEFINE_PER_CPUs in modules */
13 #ifdef CONFIG_MODULES
14 #define PERCPU_MODULE_RESERVE		(8 << 10)
15 #else
16 #define PERCPU_MODULE_RESERVE		0
17 #endif
18 
19 #ifndef PERCPU_ENOUGH_ROOM
20 #define PERCPU_ENOUGH_ROOM						\
21 	(ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) +	\
22 	 PERCPU_MODULE_RESERVE)
23 #endif
24 
25 /*
26  * Must be an lvalue. Since @var must be a simple identifier,
27  * we force a syntax error here if it isn't.
28  */
29 #define get_cpu_var(var) (*({				\
30 	preempt_disable();				\
31 	&__get_cpu_var(var); }))
32 
33 /*
34  * The weird & is necessary because sparse considers (void)(var) to be
35  * a direct dereference of percpu variable (var).
36  */
37 #define put_cpu_var(var) do {				\
38 	(void)&(var);					\
39 	preempt_enable();				\
40 } while (0)
41 
42 #define get_cpu_ptr(var) ({				\
43 	preempt_disable();				\
44 	this_cpu_ptr(var); })
45 
46 #define put_cpu_ptr(var) do {				\
47 	(void)(var);					\
48 	preempt_enable();				\
49 } while (0)
50 
51 /* minimum unit size, also is the maximum supported allocation size */
52 #define PCPU_MIN_UNIT_SIZE		PFN_ALIGN(32 << 10)
53 
54 /*
55  * Percpu allocator can serve percpu allocations before slab is
56  * initialized which allows slab to depend on the percpu allocator.
57  * The following two parameters decide how much resource to
58  * preallocate for this.  Keep PERCPU_DYNAMIC_RESERVE equal to or
59  * larger than PERCPU_DYNAMIC_EARLY_SIZE.
60  */
61 #define PERCPU_DYNAMIC_EARLY_SLOTS	128
62 #define PERCPU_DYNAMIC_EARLY_SIZE	(12 << 10)
63 
64 /*
65  * PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy
66  * back on the first chunk for dynamic percpu allocation if arch is
67  * manually allocating and mapping it for faster access (as a part of
68  * large page mapping for example).
69  *
70  * The following values give between one and two pages of free space
71  * after typical minimal boot (2-way SMP, single disk and NIC) with
72  * both defconfig and a distro config on x86_64 and 32.  More
73  * intelligent way to determine this would be nice.
74  */
75 #if BITS_PER_LONG > 32
76 #define PERCPU_DYNAMIC_RESERVE		(20 << 10)
77 #else
78 #define PERCPU_DYNAMIC_RESERVE		(12 << 10)
79 #endif
80 
81 extern void *pcpu_base_addr;
82 extern const unsigned long *pcpu_unit_offsets;
83 
84 struct pcpu_group_info {
85 	int			nr_units;	/* aligned # of units */
86 	unsigned long		base_offset;	/* base address offset */
87 	unsigned int		*cpu_map;	/* unit->cpu map, empty
88 						 * entries contain NR_CPUS */
89 };
90 
91 struct pcpu_alloc_info {
92 	size_t			static_size;
93 	size_t			reserved_size;
94 	size_t			dyn_size;
95 	size_t			unit_size;
96 	size_t			atom_size;
97 	size_t			alloc_size;
98 	size_t			__ai_size;	/* internal, don't use */
99 	int			nr_groups;	/* 0 if grouping unnecessary */
100 	struct pcpu_group_info	groups[];
101 };
102 
103 enum pcpu_fc {
104 	PCPU_FC_AUTO,
105 	PCPU_FC_EMBED,
106 	PCPU_FC_PAGE,
107 
108 	PCPU_FC_NR,
109 };
110 extern const char *pcpu_fc_names[PCPU_FC_NR];
111 
112 extern enum pcpu_fc pcpu_chosen_fc;
113 
114 typedef void * (*pcpu_fc_alloc_fn_t)(unsigned int cpu, size_t size,
115 				     size_t align);
116 typedef void (*pcpu_fc_free_fn_t)(void *ptr, size_t size);
117 typedef void (*pcpu_fc_populate_pte_fn_t)(unsigned long addr);
118 typedef int (pcpu_fc_cpu_distance_fn_t)(unsigned int from, unsigned int to);
119 
120 extern struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
121 							     int nr_units);
122 extern void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai);
123 
124 extern int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
125 					 void *base_addr);
126 
127 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
128 extern int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
129 				size_t atom_size,
130 				pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
131 				pcpu_fc_alloc_fn_t alloc_fn,
132 				pcpu_fc_free_fn_t free_fn);
133 #endif
134 
135 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
136 extern int __init pcpu_page_first_chunk(size_t reserved_size,
137 				pcpu_fc_alloc_fn_t alloc_fn,
138 				pcpu_fc_free_fn_t free_fn,
139 				pcpu_fc_populate_pte_fn_t populate_pte_fn);
140 #endif
141 
142 /*
143  * Use this to get to a cpu's version of the per-cpu object
144  * dynamically allocated. Non-atomic access to the current CPU's
145  * version should probably be combined with get_cpu()/put_cpu().
146  */
147 #ifdef CONFIG_SMP
148 #define per_cpu_ptr(ptr, cpu)	SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu)))
149 #else
150 #define per_cpu_ptr(ptr, cpu)	({ (void)(cpu); VERIFY_PERCPU_PTR((ptr)); })
151 #endif
152 
153 extern void __percpu *__alloc_reserved_percpu(size_t size, size_t align);
154 extern bool is_kernel_percpu_address(unsigned long addr);
155 
156 #if !defined(CONFIG_SMP) || !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
157 extern void __init setup_per_cpu_areas(void);
158 #endif
159 extern void __init percpu_init_late(void);
160 
161 extern void __percpu *__alloc_percpu(size_t size, size_t align);
162 extern void free_percpu(void __percpu *__pdata);
163 extern phys_addr_t per_cpu_ptr_to_phys(void *addr);
164 
165 #define alloc_percpu(type)	\
166 	(typeof(type) __percpu *)__alloc_percpu(sizeof(type), __alignof__(type))
167 
168 /*
169  * Optional methods for optimized non-lvalue per-cpu variable access.
170  *
171  * @var can be a percpu variable or a field of it and its size should
172  * equal char, int or long.  percpu_read() evaluates to a lvalue and
173  * all others to void.
174  *
175  * These operations are guaranteed to be atomic w.r.t. preemption.
176  * The generic versions use plain get/put_cpu_var().  Archs are
177  * encouraged to implement single-instruction alternatives which don't
178  * require preemption protection.
179  */
180 #ifndef percpu_read
181 # define percpu_read(var)						\
182   ({									\
183 	typeof(var) *pr_ptr__ = &(var);					\
184 	typeof(var) pr_ret__;						\
185 	pr_ret__ = get_cpu_var(*pr_ptr__);				\
186 	put_cpu_var(*pr_ptr__);						\
187 	pr_ret__;							\
188   })
189 #endif
190 
191 #define __percpu_generic_to_op(var, val, op)				\
192 do {									\
193 	typeof(var) *pgto_ptr__ = &(var);				\
194 	get_cpu_var(*pgto_ptr__) op val;				\
195 	put_cpu_var(*pgto_ptr__);					\
196 } while (0)
197 
198 #ifndef percpu_write
199 # define percpu_write(var, val)		__percpu_generic_to_op(var, (val), =)
200 #endif
201 
202 #ifndef percpu_add
203 # define percpu_add(var, val)		__percpu_generic_to_op(var, (val), +=)
204 #endif
205 
206 #ifndef percpu_sub
207 # define percpu_sub(var, val)		__percpu_generic_to_op(var, (val), -=)
208 #endif
209 
210 #ifndef percpu_and
211 # define percpu_and(var, val)		__percpu_generic_to_op(var, (val), &=)
212 #endif
213 
214 #ifndef percpu_or
215 # define percpu_or(var, val)		__percpu_generic_to_op(var, (val), |=)
216 #endif
217 
218 #ifndef percpu_xor
219 # define percpu_xor(var, val)		__percpu_generic_to_op(var, (val), ^=)
220 #endif
221 
222 /*
223  * Branching function to split up a function into a set of functions that
224  * are called for different scalar sizes of the objects handled.
225  */
226 
227 extern void __bad_size_call_parameter(void);
228 
229 #define __pcpu_size_call_return(stem, variable)				\
230 ({	typeof(variable) pscr_ret__;					\
231 	__verify_pcpu_ptr(&(variable));					\
232 	switch(sizeof(variable)) {					\
233 	case 1: pscr_ret__ = stem##1(variable);break;			\
234 	case 2: pscr_ret__ = stem##2(variable);break;			\
235 	case 4: pscr_ret__ = stem##4(variable);break;			\
236 	case 8: pscr_ret__ = stem##8(variable);break;			\
237 	default:							\
238 		__bad_size_call_parameter();break;			\
239 	}								\
240 	pscr_ret__;							\
241 })
242 
243 #define __pcpu_size_call(stem, variable, ...)				\
244 do {									\
245 	__verify_pcpu_ptr(&(variable));					\
246 	switch(sizeof(variable)) {					\
247 		case 1: stem##1(variable, __VA_ARGS__);break;		\
248 		case 2: stem##2(variable, __VA_ARGS__);break;		\
249 		case 4: stem##4(variable, __VA_ARGS__);break;		\
250 		case 8: stem##8(variable, __VA_ARGS__);break;		\
251 		default: 						\
252 			__bad_size_call_parameter();break;		\
253 	}								\
254 } while (0)
255 
256 /*
257  * Optimized manipulation for memory allocated through the per cpu
258  * allocator or for addresses of per cpu variables.
259  *
260  * These operation guarantee exclusivity of access for other operations
261  * on the *same* processor. The assumption is that per cpu data is only
262  * accessed by a single processor instance (the current one).
263  *
264  * The first group is used for accesses that must be done in a
265  * preemption safe way since we know that the context is not preempt
266  * safe. Interrupts may occur. If the interrupt modifies the variable
267  * too then RMW actions will not be reliable.
268  *
269  * The arch code can provide optimized functions in two ways:
270  *
271  * 1. Override the function completely. F.e. define this_cpu_add().
272  *    The arch must then ensure that the various scalar format passed
273  *    are handled correctly.
274  *
275  * 2. Provide functions for certain scalar sizes. F.e. provide
276  *    this_cpu_add_2() to provide per cpu atomic operations for 2 byte
277  *    sized RMW actions. If arch code does not provide operations for
278  *    a scalar size then the fallback in the generic code will be
279  *    used.
280  */
281 
282 #define _this_cpu_generic_read(pcp)					\
283 ({	typeof(pcp) ret__;						\
284 	preempt_disable();						\
285 	ret__ = *this_cpu_ptr(&(pcp));					\
286 	preempt_enable();						\
287 	ret__;								\
288 })
289 
290 #ifndef this_cpu_read
291 # ifndef this_cpu_read_1
292 #  define this_cpu_read_1(pcp)	_this_cpu_generic_read(pcp)
293 # endif
294 # ifndef this_cpu_read_2
295 #  define this_cpu_read_2(pcp)	_this_cpu_generic_read(pcp)
296 # endif
297 # ifndef this_cpu_read_4
298 #  define this_cpu_read_4(pcp)	_this_cpu_generic_read(pcp)
299 # endif
300 # ifndef this_cpu_read_8
301 #  define this_cpu_read_8(pcp)	_this_cpu_generic_read(pcp)
302 # endif
303 # define this_cpu_read(pcp)	__pcpu_size_call_return(this_cpu_read_, (pcp))
304 #endif
305 
306 #define _this_cpu_generic_to_op(pcp, val, op)				\
307 do {									\
308 	preempt_disable();						\
309 	*__this_cpu_ptr(&(pcp)) op val;					\
310 	preempt_enable();						\
311 } while (0)
312 
313 #ifndef this_cpu_write
314 # ifndef this_cpu_write_1
315 #  define this_cpu_write_1(pcp, val)	_this_cpu_generic_to_op((pcp), (val), =)
316 # endif
317 # ifndef this_cpu_write_2
318 #  define this_cpu_write_2(pcp, val)	_this_cpu_generic_to_op((pcp), (val), =)
319 # endif
320 # ifndef this_cpu_write_4
321 #  define this_cpu_write_4(pcp, val)	_this_cpu_generic_to_op((pcp), (val), =)
322 # endif
323 # ifndef this_cpu_write_8
324 #  define this_cpu_write_8(pcp, val)	_this_cpu_generic_to_op((pcp), (val), =)
325 # endif
326 # define this_cpu_write(pcp, val)	__pcpu_size_call(this_cpu_write_, (pcp), (val))
327 #endif
328 
329 #ifndef this_cpu_add
330 # ifndef this_cpu_add_1
331 #  define this_cpu_add_1(pcp, val)	_this_cpu_generic_to_op((pcp), (val), +=)
332 # endif
333 # ifndef this_cpu_add_2
334 #  define this_cpu_add_2(pcp, val)	_this_cpu_generic_to_op((pcp), (val), +=)
335 # endif
336 # ifndef this_cpu_add_4
337 #  define this_cpu_add_4(pcp, val)	_this_cpu_generic_to_op((pcp), (val), +=)
338 # endif
339 # ifndef this_cpu_add_8
340 #  define this_cpu_add_8(pcp, val)	_this_cpu_generic_to_op((pcp), (val), +=)
341 # endif
342 # define this_cpu_add(pcp, val)		__pcpu_size_call(this_cpu_add_, (pcp), (val))
343 #endif
344 
345 #ifndef this_cpu_sub
346 # define this_cpu_sub(pcp, val)		this_cpu_add((pcp), -(val))
347 #endif
348 
349 #ifndef this_cpu_inc
350 # define this_cpu_inc(pcp)		this_cpu_add((pcp), 1)
351 #endif
352 
353 #ifndef this_cpu_dec
354 # define this_cpu_dec(pcp)		this_cpu_sub((pcp), 1)
355 #endif
356 
357 #ifndef this_cpu_and
358 # ifndef this_cpu_and_1
359 #  define this_cpu_and_1(pcp, val)	_this_cpu_generic_to_op((pcp), (val), &=)
360 # endif
361 # ifndef this_cpu_and_2
362 #  define this_cpu_and_2(pcp, val)	_this_cpu_generic_to_op((pcp), (val), &=)
363 # endif
364 # ifndef this_cpu_and_4
365 #  define this_cpu_and_4(pcp, val)	_this_cpu_generic_to_op((pcp), (val), &=)
366 # endif
367 # ifndef this_cpu_and_8
368 #  define this_cpu_and_8(pcp, val)	_this_cpu_generic_to_op((pcp), (val), &=)
369 # endif
370 # define this_cpu_and(pcp, val)		__pcpu_size_call(this_cpu_and_, (pcp), (val))
371 #endif
372 
373 #ifndef this_cpu_or
374 # ifndef this_cpu_or_1
375 #  define this_cpu_or_1(pcp, val)	_this_cpu_generic_to_op((pcp), (val), |=)
376 # endif
377 # ifndef this_cpu_or_2
378 #  define this_cpu_or_2(pcp, val)	_this_cpu_generic_to_op((pcp), (val), |=)
379 # endif
380 # ifndef this_cpu_or_4
381 #  define this_cpu_or_4(pcp, val)	_this_cpu_generic_to_op((pcp), (val), |=)
382 # endif
383 # ifndef this_cpu_or_8
384 #  define this_cpu_or_8(pcp, val)	_this_cpu_generic_to_op((pcp), (val), |=)
385 # endif
386 # define this_cpu_or(pcp, val)		__pcpu_size_call(this_cpu_or_, (pcp), (val))
387 #endif
388 
389 #ifndef this_cpu_xor
390 # ifndef this_cpu_xor_1
391 #  define this_cpu_xor_1(pcp, val)	_this_cpu_generic_to_op((pcp), (val), ^=)
392 # endif
393 # ifndef this_cpu_xor_2
394 #  define this_cpu_xor_2(pcp, val)	_this_cpu_generic_to_op((pcp), (val), ^=)
395 # endif
396 # ifndef this_cpu_xor_4
397 #  define this_cpu_xor_4(pcp, val)	_this_cpu_generic_to_op((pcp), (val), ^=)
398 # endif
399 # ifndef this_cpu_xor_8
400 #  define this_cpu_xor_8(pcp, val)	_this_cpu_generic_to_op((pcp), (val), ^=)
401 # endif
402 # define this_cpu_xor(pcp, val)		__pcpu_size_call(this_cpu_or_, (pcp), (val))
403 #endif
404 
405 /*
406  * Generic percpu operations that do not require preemption handling.
407  * Either we do not care about races or the caller has the
408  * responsibility of handling preemptions issues. Arch code can still
409  * override these instructions since the arch per cpu code may be more
410  * efficient and may actually get race freeness for free (that is the
411  * case for x86 for example).
412  *
413  * If there is no other protection through preempt disable and/or
414  * disabling interupts then one of these RMW operations can show unexpected
415  * behavior because the execution thread was rescheduled on another processor
416  * or an interrupt occurred and the same percpu variable was modified from
417  * the interrupt context.
418  */
419 #ifndef __this_cpu_read
420 # ifndef __this_cpu_read_1
421 #  define __this_cpu_read_1(pcp)	(*__this_cpu_ptr(&(pcp)))
422 # endif
423 # ifndef __this_cpu_read_2
424 #  define __this_cpu_read_2(pcp)	(*__this_cpu_ptr(&(pcp)))
425 # endif
426 # ifndef __this_cpu_read_4
427 #  define __this_cpu_read_4(pcp)	(*__this_cpu_ptr(&(pcp)))
428 # endif
429 # ifndef __this_cpu_read_8
430 #  define __this_cpu_read_8(pcp)	(*__this_cpu_ptr(&(pcp)))
431 # endif
432 # define __this_cpu_read(pcp)	__pcpu_size_call_return(__this_cpu_read_, (pcp))
433 #endif
434 
435 #define __this_cpu_generic_to_op(pcp, val, op)				\
436 do {									\
437 	*__this_cpu_ptr(&(pcp)) op val;					\
438 } while (0)
439 
440 #ifndef __this_cpu_write
441 # ifndef __this_cpu_write_1
442 #  define __this_cpu_write_1(pcp, val)	__this_cpu_generic_to_op((pcp), (val), =)
443 # endif
444 # ifndef __this_cpu_write_2
445 #  define __this_cpu_write_2(pcp, val)	__this_cpu_generic_to_op((pcp), (val), =)
446 # endif
447 # ifndef __this_cpu_write_4
448 #  define __this_cpu_write_4(pcp, val)	__this_cpu_generic_to_op((pcp), (val), =)
449 # endif
450 # ifndef __this_cpu_write_8
451 #  define __this_cpu_write_8(pcp, val)	__this_cpu_generic_to_op((pcp), (val), =)
452 # endif
453 # define __this_cpu_write(pcp, val)	__pcpu_size_call(__this_cpu_write_, (pcp), (val))
454 #endif
455 
456 #ifndef __this_cpu_add
457 # ifndef __this_cpu_add_1
458 #  define __this_cpu_add_1(pcp, val)	__this_cpu_generic_to_op((pcp), (val), +=)
459 # endif
460 # ifndef __this_cpu_add_2
461 #  define __this_cpu_add_2(pcp, val)	__this_cpu_generic_to_op((pcp), (val), +=)
462 # endif
463 # ifndef __this_cpu_add_4
464 #  define __this_cpu_add_4(pcp, val)	__this_cpu_generic_to_op((pcp), (val), +=)
465 # endif
466 # ifndef __this_cpu_add_8
467 #  define __this_cpu_add_8(pcp, val)	__this_cpu_generic_to_op((pcp), (val), +=)
468 # endif
469 # define __this_cpu_add(pcp, val)	__pcpu_size_call(__this_cpu_add_, (pcp), (val))
470 #endif
471 
472 #ifndef __this_cpu_sub
473 # define __this_cpu_sub(pcp, val)	__this_cpu_add((pcp), -(val))
474 #endif
475 
476 #ifndef __this_cpu_inc
477 # define __this_cpu_inc(pcp)		__this_cpu_add((pcp), 1)
478 #endif
479 
480 #ifndef __this_cpu_dec
481 # define __this_cpu_dec(pcp)		__this_cpu_sub((pcp), 1)
482 #endif
483 
484 #ifndef __this_cpu_and
485 # ifndef __this_cpu_and_1
486 #  define __this_cpu_and_1(pcp, val)	__this_cpu_generic_to_op((pcp), (val), &=)
487 # endif
488 # ifndef __this_cpu_and_2
489 #  define __this_cpu_and_2(pcp, val)	__this_cpu_generic_to_op((pcp), (val), &=)
490 # endif
491 # ifndef __this_cpu_and_4
492 #  define __this_cpu_and_4(pcp, val)	__this_cpu_generic_to_op((pcp), (val), &=)
493 # endif
494 # ifndef __this_cpu_and_8
495 #  define __this_cpu_and_8(pcp, val)	__this_cpu_generic_to_op((pcp), (val), &=)
496 # endif
497 # define __this_cpu_and(pcp, val)	__pcpu_size_call(__this_cpu_and_, (pcp), (val))
498 #endif
499 
500 #ifndef __this_cpu_or
501 # ifndef __this_cpu_or_1
502 #  define __this_cpu_or_1(pcp, val)	__this_cpu_generic_to_op((pcp), (val), |=)
503 # endif
504 # ifndef __this_cpu_or_2
505 #  define __this_cpu_or_2(pcp, val)	__this_cpu_generic_to_op((pcp), (val), |=)
506 # endif
507 # ifndef __this_cpu_or_4
508 #  define __this_cpu_or_4(pcp, val)	__this_cpu_generic_to_op((pcp), (val), |=)
509 # endif
510 # ifndef __this_cpu_or_8
511 #  define __this_cpu_or_8(pcp, val)	__this_cpu_generic_to_op((pcp), (val), |=)
512 # endif
513 # define __this_cpu_or(pcp, val)	__pcpu_size_call(__this_cpu_or_, (pcp), (val))
514 #endif
515 
516 #ifndef __this_cpu_xor
517 # ifndef __this_cpu_xor_1
518 #  define __this_cpu_xor_1(pcp, val)	__this_cpu_generic_to_op((pcp), (val), ^=)
519 # endif
520 # ifndef __this_cpu_xor_2
521 #  define __this_cpu_xor_2(pcp, val)	__this_cpu_generic_to_op((pcp), (val), ^=)
522 # endif
523 # ifndef __this_cpu_xor_4
524 #  define __this_cpu_xor_4(pcp, val)	__this_cpu_generic_to_op((pcp), (val), ^=)
525 # endif
526 # ifndef __this_cpu_xor_8
527 #  define __this_cpu_xor_8(pcp, val)	__this_cpu_generic_to_op((pcp), (val), ^=)
528 # endif
529 # define __this_cpu_xor(pcp, val)	__pcpu_size_call(__this_cpu_xor_, (pcp), (val))
530 #endif
531 
532 /*
533  * IRQ safe versions of the per cpu RMW operations. Note that these operations
534  * are *not* safe against modification of the same variable from another
535  * processors (which one gets when using regular atomic operations)
536  . They are guaranteed to be atomic vs. local interrupts and
537  * preemption only.
538  */
539 #define irqsafe_cpu_generic_to_op(pcp, val, op)				\
540 do {									\
541 	unsigned long flags;						\
542 	local_irq_save(flags);						\
543 	*__this_cpu_ptr(&(pcp)) op val;					\
544 	local_irq_restore(flags);					\
545 } while (0)
546 
547 #ifndef irqsafe_cpu_add
548 # ifndef irqsafe_cpu_add_1
549 #  define irqsafe_cpu_add_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
550 # endif
551 # ifndef irqsafe_cpu_add_2
552 #  define irqsafe_cpu_add_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
553 # endif
554 # ifndef irqsafe_cpu_add_4
555 #  define irqsafe_cpu_add_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
556 # endif
557 # ifndef irqsafe_cpu_add_8
558 #  define irqsafe_cpu_add_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
559 # endif
560 # define irqsafe_cpu_add(pcp, val) __pcpu_size_call(irqsafe_cpu_add_, (pcp), (val))
561 #endif
562 
563 #ifndef irqsafe_cpu_sub
564 # define irqsafe_cpu_sub(pcp, val)	irqsafe_cpu_add((pcp), -(val))
565 #endif
566 
567 #ifndef irqsafe_cpu_inc
568 # define irqsafe_cpu_inc(pcp)	irqsafe_cpu_add((pcp), 1)
569 #endif
570 
571 #ifndef irqsafe_cpu_dec
572 # define irqsafe_cpu_dec(pcp)	irqsafe_cpu_sub((pcp), 1)
573 #endif
574 
575 #ifndef irqsafe_cpu_and
576 # ifndef irqsafe_cpu_and_1
577 #  define irqsafe_cpu_and_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
578 # endif
579 # ifndef irqsafe_cpu_and_2
580 #  define irqsafe_cpu_and_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
581 # endif
582 # ifndef irqsafe_cpu_and_4
583 #  define irqsafe_cpu_and_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
584 # endif
585 # ifndef irqsafe_cpu_and_8
586 #  define irqsafe_cpu_and_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
587 # endif
588 # define irqsafe_cpu_and(pcp, val) __pcpu_size_call(irqsafe_cpu_and_, (val))
589 #endif
590 
591 #ifndef irqsafe_cpu_or
592 # ifndef irqsafe_cpu_or_1
593 #  define irqsafe_cpu_or_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
594 # endif
595 # ifndef irqsafe_cpu_or_2
596 #  define irqsafe_cpu_or_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
597 # endif
598 # ifndef irqsafe_cpu_or_4
599 #  define irqsafe_cpu_or_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
600 # endif
601 # ifndef irqsafe_cpu_or_8
602 #  define irqsafe_cpu_or_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
603 # endif
604 # define irqsafe_cpu_or(pcp, val) __pcpu_size_call(irqsafe_cpu_or_, (val))
605 #endif
606 
607 #ifndef irqsafe_cpu_xor
608 # ifndef irqsafe_cpu_xor_1
609 #  define irqsafe_cpu_xor_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
610 # endif
611 # ifndef irqsafe_cpu_xor_2
612 #  define irqsafe_cpu_xor_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
613 # endif
614 # ifndef irqsafe_cpu_xor_4
615 #  define irqsafe_cpu_xor_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
616 # endif
617 # ifndef irqsafe_cpu_xor_8
618 #  define irqsafe_cpu_xor_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
619 # endif
620 # define irqsafe_cpu_xor(pcp, val) __pcpu_size_call(irqsafe_cpu_xor_, (val))
621 #endif
622 
623 #endif /* __LINUX_PERCPU_H */
624