1 #ifndef __LINUX_PERCPU_H 2 #define __LINUX_PERCPU_H 3 4 #include <linux/preempt.h> 5 #include <linux/smp.h> 6 #include <linux/cpumask.h> 7 #include <linux/pfn.h> 8 #include <linux/init.h> 9 10 #include <asm/percpu.h> 11 12 /* enough to cover all DEFINE_PER_CPUs in modules */ 13 #ifdef CONFIG_MODULES 14 #define PERCPU_MODULE_RESERVE (8 << 10) 15 #else 16 #define PERCPU_MODULE_RESERVE 0 17 #endif 18 19 #ifndef PERCPU_ENOUGH_ROOM 20 #define PERCPU_ENOUGH_ROOM \ 21 (ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) + \ 22 PERCPU_MODULE_RESERVE) 23 #endif 24 25 /* 26 * Must be an lvalue. Since @var must be a simple identifier, 27 * we force a syntax error here if it isn't. 28 */ 29 #define get_cpu_var(var) (*({ \ 30 preempt_disable(); \ 31 &__get_cpu_var(var); })) 32 33 /* 34 * The weird & is necessary because sparse considers (void)(var) to be 35 * a direct dereference of percpu variable (var). 36 */ 37 #define put_cpu_var(var) do { \ 38 (void)&(var); \ 39 preempt_enable(); \ 40 } while (0) 41 42 #define get_cpu_ptr(var) ({ \ 43 preempt_disable(); \ 44 this_cpu_ptr(var); }) 45 46 #define put_cpu_ptr(var) do { \ 47 (void)(var); \ 48 preempt_enable(); \ 49 } while (0) 50 51 /* minimum unit size, also is the maximum supported allocation size */ 52 #define PCPU_MIN_UNIT_SIZE PFN_ALIGN(32 << 10) 53 54 /* 55 * Percpu allocator can serve percpu allocations before slab is 56 * initialized which allows slab to depend on the percpu allocator. 57 * The following two parameters decide how much resource to 58 * preallocate for this. Keep PERCPU_DYNAMIC_RESERVE equal to or 59 * larger than PERCPU_DYNAMIC_EARLY_SIZE. 60 */ 61 #define PERCPU_DYNAMIC_EARLY_SLOTS 128 62 #define PERCPU_DYNAMIC_EARLY_SIZE (12 << 10) 63 64 /* 65 * PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy 66 * back on the first chunk for dynamic percpu allocation if arch is 67 * manually allocating and mapping it for faster access (as a part of 68 * large page mapping for example). 69 * 70 * The following values give between one and two pages of free space 71 * after typical minimal boot (2-way SMP, single disk and NIC) with 72 * both defconfig and a distro config on x86_64 and 32. More 73 * intelligent way to determine this would be nice. 74 */ 75 #if BITS_PER_LONG > 32 76 #define PERCPU_DYNAMIC_RESERVE (20 << 10) 77 #else 78 #define PERCPU_DYNAMIC_RESERVE (12 << 10) 79 #endif 80 81 extern void *pcpu_base_addr; 82 extern const unsigned long *pcpu_unit_offsets; 83 84 struct pcpu_group_info { 85 int nr_units; /* aligned # of units */ 86 unsigned long base_offset; /* base address offset */ 87 unsigned int *cpu_map; /* unit->cpu map, empty 88 * entries contain NR_CPUS */ 89 }; 90 91 struct pcpu_alloc_info { 92 size_t static_size; 93 size_t reserved_size; 94 size_t dyn_size; 95 size_t unit_size; 96 size_t atom_size; 97 size_t alloc_size; 98 size_t __ai_size; /* internal, don't use */ 99 int nr_groups; /* 0 if grouping unnecessary */ 100 struct pcpu_group_info groups[]; 101 }; 102 103 enum pcpu_fc { 104 PCPU_FC_AUTO, 105 PCPU_FC_EMBED, 106 PCPU_FC_PAGE, 107 108 PCPU_FC_NR, 109 }; 110 extern const char *pcpu_fc_names[PCPU_FC_NR]; 111 112 extern enum pcpu_fc pcpu_chosen_fc; 113 114 typedef void * (*pcpu_fc_alloc_fn_t)(unsigned int cpu, size_t size, 115 size_t align); 116 typedef void (*pcpu_fc_free_fn_t)(void *ptr, size_t size); 117 typedef void (*pcpu_fc_populate_pte_fn_t)(unsigned long addr); 118 typedef int (pcpu_fc_cpu_distance_fn_t)(unsigned int from, unsigned int to); 119 120 extern struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, 121 int nr_units); 122 extern void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai); 123 124 extern int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, 125 void *base_addr); 126 127 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK 128 extern int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, 129 size_t atom_size, 130 pcpu_fc_cpu_distance_fn_t cpu_distance_fn, 131 pcpu_fc_alloc_fn_t alloc_fn, 132 pcpu_fc_free_fn_t free_fn); 133 #endif 134 135 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 136 extern int __init pcpu_page_first_chunk(size_t reserved_size, 137 pcpu_fc_alloc_fn_t alloc_fn, 138 pcpu_fc_free_fn_t free_fn, 139 pcpu_fc_populate_pte_fn_t populate_pte_fn); 140 #endif 141 142 /* 143 * Use this to get to a cpu's version of the per-cpu object 144 * dynamically allocated. Non-atomic access to the current CPU's 145 * version should probably be combined with get_cpu()/put_cpu(). 146 */ 147 #ifdef CONFIG_SMP 148 #define per_cpu_ptr(ptr, cpu) SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu))) 149 #else 150 #define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); VERIFY_PERCPU_PTR((ptr)); }) 151 #endif 152 153 extern void __percpu *__alloc_reserved_percpu(size_t size, size_t align); 154 extern bool is_kernel_percpu_address(unsigned long addr); 155 156 #if !defined(CONFIG_SMP) || !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA) 157 extern void __init setup_per_cpu_areas(void); 158 #endif 159 extern void __init percpu_init_late(void); 160 161 extern void __percpu *__alloc_percpu(size_t size, size_t align); 162 extern void free_percpu(void __percpu *__pdata); 163 extern phys_addr_t per_cpu_ptr_to_phys(void *addr); 164 165 #define alloc_percpu(type) \ 166 (typeof(type) __percpu *)__alloc_percpu(sizeof(type), __alignof__(type)) 167 168 /* 169 * Optional methods for optimized non-lvalue per-cpu variable access. 170 * 171 * @var can be a percpu variable or a field of it and its size should 172 * equal char, int or long. percpu_read() evaluates to a lvalue and 173 * all others to void. 174 * 175 * These operations are guaranteed to be atomic w.r.t. preemption. 176 * The generic versions use plain get/put_cpu_var(). Archs are 177 * encouraged to implement single-instruction alternatives which don't 178 * require preemption protection. 179 */ 180 #ifndef percpu_read 181 # define percpu_read(var) \ 182 ({ \ 183 typeof(var) *pr_ptr__ = &(var); \ 184 typeof(var) pr_ret__; \ 185 pr_ret__ = get_cpu_var(*pr_ptr__); \ 186 put_cpu_var(*pr_ptr__); \ 187 pr_ret__; \ 188 }) 189 #endif 190 191 #define __percpu_generic_to_op(var, val, op) \ 192 do { \ 193 typeof(var) *pgto_ptr__ = &(var); \ 194 get_cpu_var(*pgto_ptr__) op val; \ 195 put_cpu_var(*pgto_ptr__); \ 196 } while (0) 197 198 #ifndef percpu_write 199 # define percpu_write(var, val) __percpu_generic_to_op(var, (val), =) 200 #endif 201 202 #ifndef percpu_add 203 # define percpu_add(var, val) __percpu_generic_to_op(var, (val), +=) 204 #endif 205 206 #ifndef percpu_sub 207 # define percpu_sub(var, val) __percpu_generic_to_op(var, (val), -=) 208 #endif 209 210 #ifndef percpu_and 211 # define percpu_and(var, val) __percpu_generic_to_op(var, (val), &=) 212 #endif 213 214 #ifndef percpu_or 215 # define percpu_or(var, val) __percpu_generic_to_op(var, (val), |=) 216 #endif 217 218 #ifndef percpu_xor 219 # define percpu_xor(var, val) __percpu_generic_to_op(var, (val), ^=) 220 #endif 221 222 /* 223 * Branching function to split up a function into a set of functions that 224 * are called for different scalar sizes of the objects handled. 225 */ 226 227 extern void __bad_size_call_parameter(void); 228 229 #define __pcpu_size_call_return(stem, variable) \ 230 ({ typeof(variable) pscr_ret__; \ 231 __verify_pcpu_ptr(&(variable)); \ 232 switch(sizeof(variable)) { \ 233 case 1: pscr_ret__ = stem##1(variable);break; \ 234 case 2: pscr_ret__ = stem##2(variable);break; \ 235 case 4: pscr_ret__ = stem##4(variable);break; \ 236 case 8: pscr_ret__ = stem##8(variable);break; \ 237 default: \ 238 __bad_size_call_parameter();break; \ 239 } \ 240 pscr_ret__; \ 241 }) 242 243 #define __pcpu_size_call(stem, variable, ...) \ 244 do { \ 245 __verify_pcpu_ptr(&(variable)); \ 246 switch(sizeof(variable)) { \ 247 case 1: stem##1(variable, __VA_ARGS__);break; \ 248 case 2: stem##2(variable, __VA_ARGS__);break; \ 249 case 4: stem##4(variable, __VA_ARGS__);break; \ 250 case 8: stem##8(variable, __VA_ARGS__);break; \ 251 default: \ 252 __bad_size_call_parameter();break; \ 253 } \ 254 } while (0) 255 256 /* 257 * Optimized manipulation for memory allocated through the per cpu 258 * allocator or for addresses of per cpu variables. 259 * 260 * These operation guarantee exclusivity of access for other operations 261 * on the *same* processor. The assumption is that per cpu data is only 262 * accessed by a single processor instance (the current one). 263 * 264 * The first group is used for accesses that must be done in a 265 * preemption safe way since we know that the context is not preempt 266 * safe. Interrupts may occur. If the interrupt modifies the variable 267 * too then RMW actions will not be reliable. 268 * 269 * The arch code can provide optimized functions in two ways: 270 * 271 * 1. Override the function completely. F.e. define this_cpu_add(). 272 * The arch must then ensure that the various scalar format passed 273 * are handled correctly. 274 * 275 * 2. Provide functions for certain scalar sizes. F.e. provide 276 * this_cpu_add_2() to provide per cpu atomic operations for 2 byte 277 * sized RMW actions. If arch code does not provide operations for 278 * a scalar size then the fallback in the generic code will be 279 * used. 280 */ 281 282 #define _this_cpu_generic_read(pcp) \ 283 ({ typeof(pcp) ret__; \ 284 preempt_disable(); \ 285 ret__ = *this_cpu_ptr(&(pcp)); \ 286 preempt_enable(); \ 287 ret__; \ 288 }) 289 290 #ifndef this_cpu_read 291 # ifndef this_cpu_read_1 292 # define this_cpu_read_1(pcp) _this_cpu_generic_read(pcp) 293 # endif 294 # ifndef this_cpu_read_2 295 # define this_cpu_read_2(pcp) _this_cpu_generic_read(pcp) 296 # endif 297 # ifndef this_cpu_read_4 298 # define this_cpu_read_4(pcp) _this_cpu_generic_read(pcp) 299 # endif 300 # ifndef this_cpu_read_8 301 # define this_cpu_read_8(pcp) _this_cpu_generic_read(pcp) 302 # endif 303 # define this_cpu_read(pcp) __pcpu_size_call_return(this_cpu_read_, (pcp)) 304 #endif 305 306 #define _this_cpu_generic_to_op(pcp, val, op) \ 307 do { \ 308 preempt_disable(); \ 309 *__this_cpu_ptr(&(pcp)) op val; \ 310 preempt_enable(); \ 311 } while (0) 312 313 #ifndef this_cpu_write 314 # ifndef this_cpu_write_1 315 # define this_cpu_write_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 316 # endif 317 # ifndef this_cpu_write_2 318 # define this_cpu_write_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 319 # endif 320 # ifndef this_cpu_write_4 321 # define this_cpu_write_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 322 # endif 323 # ifndef this_cpu_write_8 324 # define this_cpu_write_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 325 # endif 326 # define this_cpu_write(pcp, val) __pcpu_size_call(this_cpu_write_, (pcp), (val)) 327 #endif 328 329 #ifndef this_cpu_add 330 # ifndef this_cpu_add_1 331 # define this_cpu_add_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 332 # endif 333 # ifndef this_cpu_add_2 334 # define this_cpu_add_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 335 # endif 336 # ifndef this_cpu_add_4 337 # define this_cpu_add_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 338 # endif 339 # ifndef this_cpu_add_8 340 # define this_cpu_add_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 341 # endif 342 # define this_cpu_add(pcp, val) __pcpu_size_call(this_cpu_add_, (pcp), (val)) 343 #endif 344 345 #ifndef this_cpu_sub 346 # define this_cpu_sub(pcp, val) this_cpu_add((pcp), -(val)) 347 #endif 348 349 #ifndef this_cpu_inc 350 # define this_cpu_inc(pcp) this_cpu_add((pcp), 1) 351 #endif 352 353 #ifndef this_cpu_dec 354 # define this_cpu_dec(pcp) this_cpu_sub((pcp), 1) 355 #endif 356 357 #ifndef this_cpu_and 358 # ifndef this_cpu_and_1 359 # define this_cpu_and_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 360 # endif 361 # ifndef this_cpu_and_2 362 # define this_cpu_and_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 363 # endif 364 # ifndef this_cpu_and_4 365 # define this_cpu_and_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 366 # endif 367 # ifndef this_cpu_and_8 368 # define this_cpu_and_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 369 # endif 370 # define this_cpu_and(pcp, val) __pcpu_size_call(this_cpu_and_, (pcp), (val)) 371 #endif 372 373 #ifndef this_cpu_or 374 # ifndef this_cpu_or_1 375 # define this_cpu_or_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 376 # endif 377 # ifndef this_cpu_or_2 378 # define this_cpu_or_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 379 # endif 380 # ifndef this_cpu_or_4 381 # define this_cpu_or_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 382 # endif 383 # ifndef this_cpu_or_8 384 # define this_cpu_or_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 385 # endif 386 # define this_cpu_or(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val)) 387 #endif 388 389 #ifndef this_cpu_xor 390 # ifndef this_cpu_xor_1 391 # define this_cpu_xor_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 392 # endif 393 # ifndef this_cpu_xor_2 394 # define this_cpu_xor_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 395 # endif 396 # ifndef this_cpu_xor_4 397 # define this_cpu_xor_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 398 # endif 399 # ifndef this_cpu_xor_8 400 # define this_cpu_xor_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 401 # endif 402 # define this_cpu_xor(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val)) 403 #endif 404 405 /* 406 * Generic percpu operations that do not require preemption handling. 407 * Either we do not care about races or the caller has the 408 * responsibility of handling preemptions issues. Arch code can still 409 * override these instructions since the arch per cpu code may be more 410 * efficient and may actually get race freeness for free (that is the 411 * case for x86 for example). 412 * 413 * If there is no other protection through preempt disable and/or 414 * disabling interupts then one of these RMW operations can show unexpected 415 * behavior because the execution thread was rescheduled on another processor 416 * or an interrupt occurred and the same percpu variable was modified from 417 * the interrupt context. 418 */ 419 #ifndef __this_cpu_read 420 # ifndef __this_cpu_read_1 421 # define __this_cpu_read_1(pcp) (*__this_cpu_ptr(&(pcp))) 422 # endif 423 # ifndef __this_cpu_read_2 424 # define __this_cpu_read_2(pcp) (*__this_cpu_ptr(&(pcp))) 425 # endif 426 # ifndef __this_cpu_read_4 427 # define __this_cpu_read_4(pcp) (*__this_cpu_ptr(&(pcp))) 428 # endif 429 # ifndef __this_cpu_read_8 430 # define __this_cpu_read_8(pcp) (*__this_cpu_ptr(&(pcp))) 431 # endif 432 # define __this_cpu_read(pcp) __pcpu_size_call_return(__this_cpu_read_, (pcp)) 433 #endif 434 435 #define __this_cpu_generic_to_op(pcp, val, op) \ 436 do { \ 437 *__this_cpu_ptr(&(pcp)) op val; \ 438 } while (0) 439 440 #ifndef __this_cpu_write 441 # ifndef __this_cpu_write_1 442 # define __this_cpu_write_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 443 # endif 444 # ifndef __this_cpu_write_2 445 # define __this_cpu_write_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 446 # endif 447 # ifndef __this_cpu_write_4 448 # define __this_cpu_write_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 449 # endif 450 # ifndef __this_cpu_write_8 451 # define __this_cpu_write_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 452 # endif 453 # define __this_cpu_write(pcp, val) __pcpu_size_call(__this_cpu_write_, (pcp), (val)) 454 #endif 455 456 #ifndef __this_cpu_add 457 # ifndef __this_cpu_add_1 458 # define __this_cpu_add_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 459 # endif 460 # ifndef __this_cpu_add_2 461 # define __this_cpu_add_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 462 # endif 463 # ifndef __this_cpu_add_4 464 # define __this_cpu_add_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 465 # endif 466 # ifndef __this_cpu_add_8 467 # define __this_cpu_add_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 468 # endif 469 # define __this_cpu_add(pcp, val) __pcpu_size_call(__this_cpu_add_, (pcp), (val)) 470 #endif 471 472 #ifndef __this_cpu_sub 473 # define __this_cpu_sub(pcp, val) __this_cpu_add((pcp), -(val)) 474 #endif 475 476 #ifndef __this_cpu_inc 477 # define __this_cpu_inc(pcp) __this_cpu_add((pcp), 1) 478 #endif 479 480 #ifndef __this_cpu_dec 481 # define __this_cpu_dec(pcp) __this_cpu_sub((pcp), 1) 482 #endif 483 484 #ifndef __this_cpu_and 485 # ifndef __this_cpu_and_1 486 # define __this_cpu_and_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 487 # endif 488 # ifndef __this_cpu_and_2 489 # define __this_cpu_and_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 490 # endif 491 # ifndef __this_cpu_and_4 492 # define __this_cpu_and_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 493 # endif 494 # ifndef __this_cpu_and_8 495 # define __this_cpu_and_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 496 # endif 497 # define __this_cpu_and(pcp, val) __pcpu_size_call(__this_cpu_and_, (pcp), (val)) 498 #endif 499 500 #ifndef __this_cpu_or 501 # ifndef __this_cpu_or_1 502 # define __this_cpu_or_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 503 # endif 504 # ifndef __this_cpu_or_2 505 # define __this_cpu_or_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 506 # endif 507 # ifndef __this_cpu_or_4 508 # define __this_cpu_or_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 509 # endif 510 # ifndef __this_cpu_or_8 511 # define __this_cpu_or_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 512 # endif 513 # define __this_cpu_or(pcp, val) __pcpu_size_call(__this_cpu_or_, (pcp), (val)) 514 #endif 515 516 #ifndef __this_cpu_xor 517 # ifndef __this_cpu_xor_1 518 # define __this_cpu_xor_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 519 # endif 520 # ifndef __this_cpu_xor_2 521 # define __this_cpu_xor_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 522 # endif 523 # ifndef __this_cpu_xor_4 524 # define __this_cpu_xor_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 525 # endif 526 # ifndef __this_cpu_xor_8 527 # define __this_cpu_xor_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 528 # endif 529 # define __this_cpu_xor(pcp, val) __pcpu_size_call(__this_cpu_xor_, (pcp), (val)) 530 #endif 531 532 /* 533 * IRQ safe versions of the per cpu RMW operations. Note that these operations 534 * are *not* safe against modification of the same variable from another 535 * processors (which one gets when using regular atomic operations) 536 . They are guaranteed to be atomic vs. local interrupts and 537 * preemption only. 538 */ 539 #define irqsafe_cpu_generic_to_op(pcp, val, op) \ 540 do { \ 541 unsigned long flags; \ 542 local_irq_save(flags); \ 543 *__this_cpu_ptr(&(pcp)) op val; \ 544 local_irq_restore(flags); \ 545 } while (0) 546 547 #ifndef irqsafe_cpu_add 548 # ifndef irqsafe_cpu_add_1 549 # define irqsafe_cpu_add_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) 550 # endif 551 # ifndef irqsafe_cpu_add_2 552 # define irqsafe_cpu_add_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) 553 # endif 554 # ifndef irqsafe_cpu_add_4 555 # define irqsafe_cpu_add_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) 556 # endif 557 # ifndef irqsafe_cpu_add_8 558 # define irqsafe_cpu_add_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) 559 # endif 560 # define irqsafe_cpu_add(pcp, val) __pcpu_size_call(irqsafe_cpu_add_, (pcp), (val)) 561 #endif 562 563 #ifndef irqsafe_cpu_sub 564 # define irqsafe_cpu_sub(pcp, val) irqsafe_cpu_add((pcp), -(val)) 565 #endif 566 567 #ifndef irqsafe_cpu_inc 568 # define irqsafe_cpu_inc(pcp) irqsafe_cpu_add((pcp), 1) 569 #endif 570 571 #ifndef irqsafe_cpu_dec 572 # define irqsafe_cpu_dec(pcp) irqsafe_cpu_sub((pcp), 1) 573 #endif 574 575 #ifndef irqsafe_cpu_and 576 # ifndef irqsafe_cpu_and_1 577 # define irqsafe_cpu_and_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) 578 # endif 579 # ifndef irqsafe_cpu_and_2 580 # define irqsafe_cpu_and_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) 581 # endif 582 # ifndef irqsafe_cpu_and_4 583 # define irqsafe_cpu_and_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) 584 # endif 585 # ifndef irqsafe_cpu_and_8 586 # define irqsafe_cpu_and_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) 587 # endif 588 # define irqsafe_cpu_and(pcp, val) __pcpu_size_call(irqsafe_cpu_and_, (val)) 589 #endif 590 591 #ifndef irqsafe_cpu_or 592 # ifndef irqsafe_cpu_or_1 593 # define irqsafe_cpu_or_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) 594 # endif 595 # ifndef irqsafe_cpu_or_2 596 # define irqsafe_cpu_or_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) 597 # endif 598 # ifndef irqsafe_cpu_or_4 599 # define irqsafe_cpu_or_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) 600 # endif 601 # ifndef irqsafe_cpu_or_8 602 # define irqsafe_cpu_or_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) 603 # endif 604 # define irqsafe_cpu_or(pcp, val) __pcpu_size_call(irqsafe_cpu_or_, (val)) 605 #endif 606 607 #ifndef irqsafe_cpu_xor 608 # ifndef irqsafe_cpu_xor_1 609 # define irqsafe_cpu_xor_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) 610 # endif 611 # ifndef irqsafe_cpu_xor_2 612 # define irqsafe_cpu_xor_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) 613 # endif 614 # ifndef irqsafe_cpu_xor_4 615 # define irqsafe_cpu_xor_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) 616 # endif 617 # ifndef irqsafe_cpu_xor_8 618 # define irqsafe_cpu_xor_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) 619 # endif 620 # define irqsafe_cpu_xor(pcp, val) __pcpu_size_call(irqsafe_cpu_xor_, (val)) 621 #endif 622 623 #endif /* __LINUX_PERCPU_H */ 624