1 #ifndef __LINUX_PERCPU_H 2 #define __LINUX_PERCPU_H 3 4 #include <linux/preempt.h> 5 #include <linux/slab.h> /* For kmalloc() */ 6 #include <linux/smp.h> 7 #include <linux/cpumask.h> 8 #include <linux/pfn.h> 9 10 #include <asm/percpu.h> 11 12 /* enough to cover all DEFINE_PER_CPUs in modules */ 13 #ifdef CONFIG_MODULES 14 #define PERCPU_MODULE_RESERVE (8 << 10) 15 #else 16 #define PERCPU_MODULE_RESERVE 0 17 #endif 18 19 #ifndef PERCPU_ENOUGH_ROOM 20 #define PERCPU_ENOUGH_ROOM \ 21 (ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) + \ 22 PERCPU_MODULE_RESERVE) 23 #endif 24 25 /* 26 * Must be an lvalue. Since @var must be a simple identifier, 27 * we force a syntax error here if it isn't. 28 */ 29 #define get_cpu_var(var) (*({ \ 30 preempt_disable(); \ 31 &__get_cpu_var(var); })) 32 33 /* 34 * The weird & is necessary because sparse considers (void)(var) to be 35 * a direct dereference of percpu variable (var). 36 */ 37 #define put_cpu_var(var) do { \ 38 (void)&(var); \ 39 preempt_enable(); \ 40 } while (0) 41 42 #ifdef CONFIG_SMP 43 44 /* minimum unit size, also is the maximum supported allocation size */ 45 #define PCPU_MIN_UNIT_SIZE PFN_ALIGN(64 << 10) 46 47 /* 48 * PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy 49 * back on the first chunk for dynamic percpu allocation if arch is 50 * manually allocating and mapping it for faster access (as a part of 51 * large page mapping for example). 52 * 53 * The following values give between one and two pages of free space 54 * after typical minimal boot (2-way SMP, single disk and NIC) with 55 * both defconfig and a distro config on x86_64 and 32. More 56 * intelligent way to determine this would be nice. 57 */ 58 #if BITS_PER_LONG > 32 59 #define PERCPU_DYNAMIC_RESERVE (20 << 10) 60 #else 61 #define PERCPU_DYNAMIC_RESERVE (12 << 10) 62 #endif 63 64 extern void *pcpu_base_addr; 65 extern const unsigned long *pcpu_unit_offsets; 66 67 struct pcpu_group_info { 68 int nr_units; /* aligned # of units */ 69 unsigned long base_offset; /* base address offset */ 70 unsigned int *cpu_map; /* unit->cpu map, empty 71 * entries contain NR_CPUS */ 72 }; 73 74 struct pcpu_alloc_info { 75 size_t static_size; 76 size_t reserved_size; 77 size_t dyn_size; 78 size_t unit_size; 79 size_t atom_size; 80 size_t alloc_size; 81 size_t __ai_size; /* internal, don't use */ 82 int nr_groups; /* 0 if grouping unnecessary */ 83 struct pcpu_group_info groups[]; 84 }; 85 86 enum pcpu_fc { 87 PCPU_FC_AUTO, 88 PCPU_FC_EMBED, 89 PCPU_FC_PAGE, 90 91 PCPU_FC_NR, 92 }; 93 extern const char *pcpu_fc_names[PCPU_FC_NR]; 94 95 extern enum pcpu_fc pcpu_chosen_fc; 96 97 typedef void * (*pcpu_fc_alloc_fn_t)(unsigned int cpu, size_t size, 98 size_t align); 99 typedef void (*pcpu_fc_free_fn_t)(void *ptr, size_t size); 100 typedef void (*pcpu_fc_populate_pte_fn_t)(unsigned long addr); 101 typedef int (pcpu_fc_cpu_distance_fn_t)(unsigned int from, unsigned int to); 102 103 extern struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, 104 int nr_units); 105 extern void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai); 106 107 extern struct pcpu_alloc_info * __init pcpu_build_alloc_info( 108 size_t reserved_size, ssize_t dyn_size, 109 size_t atom_size, 110 pcpu_fc_cpu_distance_fn_t cpu_distance_fn); 111 112 extern int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, 113 void *base_addr); 114 115 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK 116 extern int __init pcpu_embed_first_chunk(size_t reserved_size, ssize_t dyn_size, 117 size_t atom_size, 118 pcpu_fc_cpu_distance_fn_t cpu_distance_fn, 119 pcpu_fc_alloc_fn_t alloc_fn, 120 pcpu_fc_free_fn_t free_fn); 121 #endif 122 123 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 124 extern int __init pcpu_page_first_chunk(size_t reserved_size, 125 pcpu_fc_alloc_fn_t alloc_fn, 126 pcpu_fc_free_fn_t free_fn, 127 pcpu_fc_populate_pte_fn_t populate_pte_fn); 128 #endif 129 130 /* 131 * Use this to get to a cpu's version of the per-cpu object 132 * dynamically allocated. Non-atomic access to the current CPU's 133 * version should probably be combined with get_cpu()/put_cpu(). 134 */ 135 #define per_cpu_ptr(ptr, cpu) SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu))) 136 137 extern void __percpu *__alloc_reserved_percpu(size_t size, size_t align); 138 extern void __percpu *__alloc_percpu(size_t size, size_t align); 139 extern void free_percpu(void __percpu *__pdata); 140 extern phys_addr_t per_cpu_ptr_to_phys(void *addr); 141 142 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA 143 extern void __init setup_per_cpu_areas(void); 144 #endif 145 146 #else /* CONFIG_SMP */ 147 148 #define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); (ptr); }) 149 150 static inline void __percpu *__alloc_percpu(size_t size, size_t align) 151 { 152 /* 153 * Can't easily make larger alignment work with kmalloc. WARN 154 * on it. Larger alignment should only be used for module 155 * percpu sections on SMP for which this path isn't used. 156 */ 157 WARN_ON_ONCE(align > SMP_CACHE_BYTES); 158 return kzalloc(size, GFP_KERNEL); 159 } 160 161 static inline void free_percpu(void __percpu *p) 162 { 163 kfree(p); 164 } 165 166 static inline phys_addr_t per_cpu_ptr_to_phys(void *addr) 167 { 168 return __pa(addr); 169 } 170 171 static inline void __init setup_per_cpu_areas(void) { } 172 173 static inline void *pcpu_lpage_remapped(void *kaddr) 174 { 175 return NULL; 176 } 177 178 #endif /* CONFIG_SMP */ 179 180 #define alloc_percpu(type) \ 181 (typeof(type) __percpu *)__alloc_percpu(sizeof(type), __alignof__(type)) 182 183 /* 184 * Optional methods for optimized non-lvalue per-cpu variable access. 185 * 186 * @var can be a percpu variable or a field of it and its size should 187 * equal char, int or long. percpu_read() evaluates to a lvalue and 188 * all others to void. 189 * 190 * These operations are guaranteed to be atomic w.r.t. preemption. 191 * The generic versions use plain get/put_cpu_var(). Archs are 192 * encouraged to implement single-instruction alternatives which don't 193 * require preemption protection. 194 */ 195 #ifndef percpu_read 196 # define percpu_read(var) \ 197 ({ \ 198 typeof(var) *pr_ptr__ = &(var); \ 199 typeof(var) pr_ret__; \ 200 pr_ret__ = get_cpu_var(*pr_ptr__); \ 201 put_cpu_var(*pr_ptr__); \ 202 pr_ret__; \ 203 }) 204 #endif 205 206 #define __percpu_generic_to_op(var, val, op) \ 207 do { \ 208 typeof(var) *pgto_ptr__ = &(var); \ 209 get_cpu_var(*pgto_ptr__) op val; \ 210 put_cpu_var(*pgto_ptr__); \ 211 } while (0) 212 213 #ifndef percpu_write 214 # define percpu_write(var, val) __percpu_generic_to_op(var, (val), =) 215 #endif 216 217 #ifndef percpu_add 218 # define percpu_add(var, val) __percpu_generic_to_op(var, (val), +=) 219 #endif 220 221 #ifndef percpu_sub 222 # define percpu_sub(var, val) __percpu_generic_to_op(var, (val), -=) 223 #endif 224 225 #ifndef percpu_and 226 # define percpu_and(var, val) __percpu_generic_to_op(var, (val), &=) 227 #endif 228 229 #ifndef percpu_or 230 # define percpu_or(var, val) __percpu_generic_to_op(var, (val), |=) 231 #endif 232 233 #ifndef percpu_xor 234 # define percpu_xor(var, val) __percpu_generic_to_op(var, (val), ^=) 235 #endif 236 237 /* 238 * Branching function to split up a function into a set of functions that 239 * are called for different scalar sizes of the objects handled. 240 */ 241 242 extern void __bad_size_call_parameter(void); 243 244 #define __pcpu_size_call_return(stem, variable) \ 245 ({ typeof(variable) pscr_ret__; \ 246 __verify_pcpu_ptr(&(variable)); \ 247 switch(sizeof(variable)) { \ 248 case 1: pscr_ret__ = stem##1(variable);break; \ 249 case 2: pscr_ret__ = stem##2(variable);break; \ 250 case 4: pscr_ret__ = stem##4(variable);break; \ 251 case 8: pscr_ret__ = stem##8(variable);break; \ 252 default: \ 253 __bad_size_call_parameter();break; \ 254 } \ 255 pscr_ret__; \ 256 }) 257 258 #define __pcpu_size_call(stem, variable, ...) \ 259 do { \ 260 __verify_pcpu_ptr(&(variable)); \ 261 switch(sizeof(variable)) { \ 262 case 1: stem##1(variable, __VA_ARGS__);break; \ 263 case 2: stem##2(variable, __VA_ARGS__);break; \ 264 case 4: stem##4(variable, __VA_ARGS__);break; \ 265 case 8: stem##8(variable, __VA_ARGS__);break; \ 266 default: \ 267 __bad_size_call_parameter();break; \ 268 } \ 269 } while (0) 270 271 /* 272 * Optimized manipulation for memory allocated through the per cpu 273 * allocator or for addresses of per cpu variables. 274 * 275 * These operation guarantee exclusivity of access for other operations 276 * on the *same* processor. The assumption is that per cpu data is only 277 * accessed by a single processor instance (the current one). 278 * 279 * The first group is used for accesses that must be done in a 280 * preemption safe way since we know that the context is not preempt 281 * safe. Interrupts may occur. If the interrupt modifies the variable 282 * too then RMW actions will not be reliable. 283 * 284 * The arch code can provide optimized functions in two ways: 285 * 286 * 1. Override the function completely. F.e. define this_cpu_add(). 287 * The arch must then ensure that the various scalar format passed 288 * are handled correctly. 289 * 290 * 2. Provide functions for certain scalar sizes. F.e. provide 291 * this_cpu_add_2() to provide per cpu atomic operations for 2 byte 292 * sized RMW actions. If arch code does not provide operations for 293 * a scalar size then the fallback in the generic code will be 294 * used. 295 */ 296 297 #define _this_cpu_generic_read(pcp) \ 298 ({ typeof(pcp) ret__; \ 299 preempt_disable(); \ 300 ret__ = *this_cpu_ptr(&(pcp)); \ 301 preempt_enable(); \ 302 ret__; \ 303 }) 304 305 #ifndef this_cpu_read 306 # ifndef this_cpu_read_1 307 # define this_cpu_read_1(pcp) _this_cpu_generic_read(pcp) 308 # endif 309 # ifndef this_cpu_read_2 310 # define this_cpu_read_2(pcp) _this_cpu_generic_read(pcp) 311 # endif 312 # ifndef this_cpu_read_4 313 # define this_cpu_read_4(pcp) _this_cpu_generic_read(pcp) 314 # endif 315 # ifndef this_cpu_read_8 316 # define this_cpu_read_8(pcp) _this_cpu_generic_read(pcp) 317 # endif 318 # define this_cpu_read(pcp) __pcpu_size_call_return(this_cpu_read_, (pcp)) 319 #endif 320 321 #define _this_cpu_generic_to_op(pcp, val, op) \ 322 do { \ 323 preempt_disable(); \ 324 *__this_cpu_ptr(&(pcp)) op val; \ 325 preempt_enable(); \ 326 } while (0) 327 328 #ifndef this_cpu_write 329 # ifndef this_cpu_write_1 330 # define this_cpu_write_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 331 # endif 332 # ifndef this_cpu_write_2 333 # define this_cpu_write_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 334 # endif 335 # ifndef this_cpu_write_4 336 # define this_cpu_write_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 337 # endif 338 # ifndef this_cpu_write_8 339 # define this_cpu_write_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 340 # endif 341 # define this_cpu_write(pcp, val) __pcpu_size_call(this_cpu_write_, (pcp), (val)) 342 #endif 343 344 #ifndef this_cpu_add 345 # ifndef this_cpu_add_1 346 # define this_cpu_add_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 347 # endif 348 # ifndef this_cpu_add_2 349 # define this_cpu_add_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 350 # endif 351 # ifndef this_cpu_add_4 352 # define this_cpu_add_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 353 # endif 354 # ifndef this_cpu_add_8 355 # define this_cpu_add_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 356 # endif 357 # define this_cpu_add(pcp, val) __pcpu_size_call(this_cpu_add_, (pcp), (val)) 358 #endif 359 360 #ifndef this_cpu_sub 361 # define this_cpu_sub(pcp, val) this_cpu_add((pcp), -(val)) 362 #endif 363 364 #ifndef this_cpu_inc 365 # define this_cpu_inc(pcp) this_cpu_add((pcp), 1) 366 #endif 367 368 #ifndef this_cpu_dec 369 # define this_cpu_dec(pcp) this_cpu_sub((pcp), 1) 370 #endif 371 372 #ifndef this_cpu_and 373 # ifndef this_cpu_and_1 374 # define this_cpu_and_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 375 # endif 376 # ifndef this_cpu_and_2 377 # define this_cpu_and_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 378 # endif 379 # ifndef this_cpu_and_4 380 # define this_cpu_and_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 381 # endif 382 # ifndef this_cpu_and_8 383 # define this_cpu_and_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 384 # endif 385 # define this_cpu_and(pcp, val) __pcpu_size_call(this_cpu_and_, (pcp), (val)) 386 #endif 387 388 #ifndef this_cpu_or 389 # ifndef this_cpu_or_1 390 # define this_cpu_or_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 391 # endif 392 # ifndef this_cpu_or_2 393 # define this_cpu_or_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 394 # endif 395 # ifndef this_cpu_or_4 396 # define this_cpu_or_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 397 # endif 398 # ifndef this_cpu_or_8 399 # define this_cpu_or_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 400 # endif 401 # define this_cpu_or(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val)) 402 #endif 403 404 #ifndef this_cpu_xor 405 # ifndef this_cpu_xor_1 406 # define this_cpu_xor_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 407 # endif 408 # ifndef this_cpu_xor_2 409 # define this_cpu_xor_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 410 # endif 411 # ifndef this_cpu_xor_4 412 # define this_cpu_xor_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 413 # endif 414 # ifndef this_cpu_xor_8 415 # define this_cpu_xor_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 416 # endif 417 # define this_cpu_xor(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val)) 418 #endif 419 420 /* 421 * Generic percpu operations that do not require preemption handling. 422 * Either we do not care about races or the caller has the 423 * responsibility of handling preemptions issues. Arch code can still 424 * override these instructions since the arch per cpu code may be more 425 * efficient and may actually get race freeness for free (that is the 426 * case for x86 for example). 427 * 428 * If there is no other protection through preempt disable and/or 429 * disabling interupts then one of these RMW operations can show unexpected 430 * behavior because the execution thread was rescheduled on another processor 431 * or an interrupt occurred and the same percpu variable was modified from 432 * the interrupt context. 433 */ 434 #ifndef __this_cpu_read 435 # ifndef __this_cpu_read_1 436 # define __this_cpu_read_1(pcp) (*__this_cpu_ptr(&(pcp))) 437 # endif 438 # ifndef __this_cpu_read_2 439 # define __this_cpu_read_2(pcp) (*__this_cpu_ptr(&(pcp))) 440 # endif 441 # ifndef __this_cpu_read_4 442 # define __this_cpu_read_4(pcp) (*__this_cpu_ptr(&(pcp))) 443 # endif 444 # ifndef __this_cpu_read_8 445 # define __this_cpu_read_8(pcp) (*__this_cpu_ptr(&(pcp))) 446 # endif 447 # define __this_cpu_read(pcp) __pcpu_size_call_return(__this_cpu_read_, (pcp)) 448 #endif 449 450 #define __this_cpu_generic_to_op(pcp, val, op) \ 451 do { \ 452 *__this_cpu_ptr(&(pcp)) op val; \ 453 } while (0) 454 455 #ifndef __this_cpu_write 456 # ifndef __this_cpu_write_1 457 # define __this_cpu_write_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 458 # endif 459 # ifndef __this_cpu_write_2 460 # define __this_cpu_write_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 461 # endif 462 # ifndef __this_cpu_write_4 463 # define __this_cpu_write_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 464 # endif 465 # ifndef __this_cpu_write_8 466 # define __this_cpu_write_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 467 # endif 468 # define __this_cpu_write(pcp, val) __pcpu_size_call(__this_cpu_write_, (pcp), (val)) 469 #endif 470 471 #ifndef __this_cpu_add 472 # ifndef __this_cpu_add_1 473 # define __this_cpu_add_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 474 # endif 475 # ifndef __this_cpu_add_2 476 # define __this_cpu_add_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 477 # endif 478 # ifndef __this_cpu_add_4 479 # define __this_cpu_add_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 480 # endif 481 # ifndef __this_cpu_add_8 482 # define __this_cpu_add_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 483 # endif 484 # define __this_cpu_add(pcp, val) __pcpu_size_call(__this_cpu_add_, (pcp), (val)) 485 #endif 486 487 #ifndef __this_cpu_sub 488 # define __this_cpu_sub(pcp, val) __this_cpu_add((pcp), -(val)) 489 #endif 490 491 #ifndef __this_cpu_inc 492 # define __this_cpu_inc(pcp) __this_cpu_add((pcp), 1) 493 #endif 494 495 #ifndef __this_cpu_dec 496 # define __this_cpu_dec(pcp) __this_cpu_sub((pcp), 1) 497 #endif 498 499 #ifndef __this_cpu_and 500 # ifndef __this_cpu_and_1 501 # define __this_cpu_and_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 502 # endif 503 # ifndef __this_cpu_and_2 504 # define __this_cpu_and_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 505 # endif 506 # ifndef __this_cpu_and_4 507 # define __this_cpu_and_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 508 # endif 509 # ifndef __this_cpu_and_8 510 # define __this_cpu_and_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 511 # endif 512 # define __this_cpu_and(pcp, val) __pcpu_size_call(__this_cpu_and_, (pcp), (val)) 513 #endif 514 515 #ifndef __this_cpu_or 516 # ifndef __this_cpu_or_1 517 # define __this_cpu_or_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 518 # endif 519 # ifndef __this_cpu_or_2 520 # define __this_cpu_or_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 521 # endif 522 # ifndef __this_cpu_or_4 523 # define __this_cpu_or_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 524 # endif 525 # ifndef __this_cpu_or_8 526 # define __this_cpu_or_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 527 # endif 528 # define __this_cpu_or(pcp, val) __pcpu_size_call(__this_cpu_or_, (pcp), (val)) 529 #endif 530 531 #ifndef __this_cpu_xor 532 # ifndef __this_cpu_xor_1 533 # define __this_cpu_xor_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 534 # endif 535 # ifndef __this_cpu_xor_2 536 # define __this_cpu_xor_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 537 # endif 538 # ifndef __this_cpu_xor_4 539 # define __this_cpu_xor_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 540 # endif 541 # ifndef __this_cpu_xor_8 542 # define __this_cpu_xor_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 543 # endif 544 # define __this_cpu_xor(pcp, val) __pcpu_size_call(__this_cpu_xor_, (pcp), (val)) 545 #endif 546 547 /* 548 * IRQ safe versions of the per cpu RMW operations. Note that these operations 549 * are *not* safe against modification of the same variable from another 550 * processors (which one gets when using regular atomic operations) 551 . They are guaranteed to be atomic vs. local interrupts and 552 * preemption only. 553 */ 554 #define irqsafe_cpu_generic_to_op(pcp, val, op) \ 555 do { \ 556 unsigned long flags; \ 557 local_irq_save(flags); \ 558 *__this_cpu_ptr(&(pcp)) op val; \ 559 local_irq_restore(flags); \ 560 } while (0) 561 562 #ifndef irqsafe_cpu_add 563 # ifndef irqsafe_cpu_add_1 564 # define irqsafe_cpu_add_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) 565 # endif 566 # ifndef irqsafe_cpu_add_2 567 # define irqsafe_cpu_add_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) 568 # endif 569 # ifndef irqsafe_cpu_add_4 570 # define irqsafe_cpu_add_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) 571 # endif 572 # ifndef irqsafe_cpu_add_8 573 # define irqsafe_cpu_add_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) 574 # endif 575 # define irqsafe_cpu_add(pcp, val) __pcpu_size_call(irqsafe_cpu_add_, (pcp), (val)) 576 #endif 577 578 #ifndef irqsafe_cpu_sub 579 # define irqsafe_cpu_sub(pcp, val) irqsafe_cpu_add((pcp), -(val)) 580 #endif 581 582 #ifndef irqsafe_cpu_inc 583 # define irqsafe_cpu_inc(pcp) irqsafe_cpu_add((pcp), 1) 584 #endif 585 586 #ifndef irqsafe_cpu_dec 587 # define irqsafe_cpu_dec(pcp) irqsafe_cpu_sub((pcp), 1) 588 #endif 589 590 #ifndef irqsafe_cpu_and 591 # ifndef irqsafe_cpu_and_1 592 # define irqsafe_cpu_and_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) 593 # endif 594 # ifndef irqsafe_cpu_and_2 595 # define irqsafe_cpu_and_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) 596 # endif 597 # ifndef irqsafe_cpu_and_4 598 # define irqsafe_cpu_and_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) 599 # endif 600 # ifndef irqsafe_cpu_and_8 601 # define irqsafe_cpu_and_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) 602 # endif 603 # define irqsafe_cpu_and(pcp, val) __pcpu_size_call(irqsafe_cpu_and_, (val)) 604 #endif 605 606 #ifndef irqsafe_cpu_or 607 # ifndef irqsafe_cpu_or_1 608 # define irqsafe_cpu_or_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) 609 # endif 610 # ifndef irqsafe_cpu_or_2 611 # define irqsafe_cpu_or_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) 612 # endif 613 # ifndef irqsafe_cpu_or_4 614 # define irqsafe_cpu_or_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) 615 # endif 616 # ifndef irqsafe_cpu_or_8 617 # define irqsafe_cpu_or_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) 618 # endif 619 # define irqsafe_cpu_or(pcp, val) __pcpu_size_call(irqsafe_cpu_or_, (val)) 620 #endif 621 622 #ifndef irqsafe_cpu_xor 623 # ifndef irqsafe_cpu_xor_1 624 # define irqsafe_cpu_xor_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) 625 # endif 626 # ifndef irqsafe_cpu_xor_2 627 # define irqsafe_cpu_xor_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) 628 # endif 629 # ifndef irqsafe_cpu_xor_4 630 # define irqsafe_cpu_xor_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) 631 # endif 632 # ifndef irqsafe_cpu_xor_8 633 # define irqsafe_cpu_xor_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) 634 # endif 635 # define irqsafe_cpu_xor(pcp, val) __pcpu_size_call(irqsafe_cpu_xor_, (val)) 636 #endif 637 638 #endif /* __LINUX_PERCPU_H */ 639