1 #ifndef __LINUX_PERCPU_H 2 #define __LINUX_PERCPU_H 3 4 #include <linux/preempt.h> 5 #include <linux/smp.h> 6 #include <linux/cpumask.h> 7 #include <linux/pfn.h> 8 #include <linux/init.h> 9 10 #include <asm/percpu.h> 11 12 /* enough to cover all DEFINE_PER_CPUs in modules */ 13 #ifdef CONFIG_MODULES 14 #define PERCPU_MODULE_RESERVE (8 << 10) 15 #else 16 #define PERCPU_MODULE_RESERVE 0 17 #endif 18 19 #ifndef PERCPU_ENOUGH_ROOM 20 #define PERCPU_ENOUGH_ROOM \ 21 (ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) + \ 22 PERCPU_MODULE_RESERVE) 23 #endif 24 25 /* 26 * Must be an lvalue. Since @var must be a simple identifier, 27 * we force a syntax error here if it isn't. 28 */ 29 #define get_cpu_var(var) (*({ \ 30 preempt_disable(); \ 31 &__get_cpu_var(var); })) 32 33 /* 34 * The weird & is necessary because sparse considers (void)(var) to be 35 * a direct dereference of percpu variable (var). 36 */ 37 #define put_cpu_var(var) do { \ 38 (void)&(var); \ 39 preempt_enable(); \ 40 } while (0) 41 42 #ifdef CONFIG_SMP 43 44 /* minimum unit size, also is the maximum supported allocation size */ 45 #define PCPU_MIN_UNIT_SIZE PFN_ALIGN(64 << 10) 46 47 /* 48 * Percpu allocator can serve percpu allocations before slab is 49 * initialized which allows slab to depend on the percpu allocator. 50 * The following two parameters decide how much resource to 51 * preallocate for this. Keep PERCPU_DYNAMIC_RESERVE equal to or 52 * larger than PERCPU_DYNAMIC_EARLY_SIZE. 53 */ 54 #define PERCPU_DYNAMIC_EARLY_SLOTS 128 55 #define PERCPU_DYNAMIC_EARLY_SIZE (12 << 10) 56 57 /* 58 * PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy 59 * back on the first chunk for dynamic percpu allocation if arch is 60 * manually allocating and mapping it for faster access (as a part of 61 * large page mapping for example). 62 * 63 * The following values give between one and two pages of free space 64 * after typical minimal boot (2-way SMP, single disk and NIC) with 65 * both defconfig and a distro config on x86_64 and 32. More 66 * intelligent way to determine this would be nice. 67 */ 68 #if BITS_PER_LONG > 32 69 #define PERCPU_DYNAMIC_RESERVE (20 << 10) 70 #else 71 #define PERCPU_DYNAMIC_RESERVE (12 << 10) 72 #endif 73 74 extern void *pcpu_base_addr; 75 extern const unsigned long *pcpu_unit_offsets; 76 77 struct pcpu_group_info { 78 int nr_units; /* aligned # of units */ 79 unsigned long base_offset; /* base address offset */ 80 unsigned int *cpu_map; /* unit->cpu map, empty 81 * entries contain NR_CPUS */ 82 }; 83 84 struct pcpu_alloc_info { 85 size_t static_size; 86 size_t reserved_size; 87 size_t dyn_size; 88 size_t unit_size; 89 size_t atom_size; 90 size_t alloc_size; 91 size_t __ai_size; /* internal, don't use */ 92 int nr_groups; /* 0 if grouping unnecessary */ 93 struct pcpu_group_info groups[]; 94 }; 95 96 enum pcpu_fc { 97 PCPU_FC_AUTO, 98 PCPU_FC_EMBED, 99 PCPU_FC_PAGE, 100 101 PCPU_FC_NR, 102 }; 103 extern const char *pcpu_fc_names[PCPU_FC_NR]; 104 105 extern enum pcpu_fc pcpu_chosen_fc; 106 107 typedef void * (*pcpu_fc_alloc_fn_t)(unsigned int cpu, size_t size, 108 size_t align); 109 typedef void (*pcpu_fc_free_fn_t)(void *ptr, size_t size); 110 typedef void (*pcpu_fc_populate_pte_fn_t)(unsigned long addr); 111 typedef int (pcpu_fc_cpu_distance_fn_t)(unsigned int from, unsigned int to); 112 113 extern struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, 114 int nr_units); 115 extern void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai); 116 117 extern int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, 118 void *base_addr); 119 120 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK 121 extern int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, 122 size_t atom_size, 123 pcpu_fc_cpu_distance_fn_t cpu_distance_fn, 124 pcpu_fc_alloc_fn_t alloc_fn, 125 pcpu_fc_free_fn_t free_fn); 126 #endif 127 128 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 129 extern int __init pcpu_page_first_chunk(size_t reserved_size, 130 pcpu_fc_alloc_fn_t alloc_fn, 131 pcpu_fc_free_fn_t free_fn, 132 pcpu_fc_populate_pte_fn_t populate_pte_fn); 133 #endif 134 135 /* 136 * Use this to get to a cpu's version of the per-cpu object 137 * dynamically allocated. Non-atomic access to the current CPU's 138 * version should probably be combined with get_cpu()/put_cpu(). 139 */ 140 #define per_cpu_ptr(ptr, cpu) SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu))) 141 142 extern void __percpu *__alloc_reserved_percpu(size_t size, size_t align); 143 extern bool is_kernel_percpu_address(unsigned long addr); 144 145 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA 146 extern void __init setup_per_cpu_areas(void); 147 #endif 148 extern void __init percpu_init_late(void); 149 150 #else /* CONFIG_SMP */ 151 152 #define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); VERIFY_PERCPU_PTR((ptr)); }) 153 154 /* can't distinguish from other static vars, always false */ 155 static inline bool is_kernel_percpu_address(unsigned long addr) 156 { 157 return false; 158 } 159 160 static inline void __init setup_per_cpu_areas(void) { } 161 162 static inline void __init percpu_init_late(void) { } 163 164 static inline void *pcpu_lpage_remapped(void *kaddr) 165 { 166 return NULL; 167 } 168 169 #endif /* CONFIG_SMP */ 170 171 extern void __percpu *__alloc_percpu(size_t size, size_t align); 172 extern void free_percpu(void __percpu *__pdata); 173 extern phys_addr_t per_cpu_ptr_to_phys(void *addr); 174 175 #define alloc_percpu(type) \ 176 (typeof(type) __percpu *)__alloc_percpu(sizeof(type), __alignof__(type)) 177 178 /* 179 * Optional methods for optimized non-lvalue per-cpu variable access. 180 * 181 * @var can be a percpu variable or a field of it and its size should 182 * equal char, int or long. percpu_read() evaluates to a lvalue and 183 * all others to void. 184 * 185 * These operations are guaranteed to be atomic w.r.t. preemption. 186 * The generic versions use plain get/put_cpu_var(). Archs are 187 * encouraged to implement single-instruction alternatives which don't 188 * require preemption protection. 189 */ 190 #ifndef percpu_read 191 # define percpu_read(var) \ 192 ({ \ 193 typeof(var) *pr_ptr__ = &(var); \ 194 typeof(var) pr_ret__; \ 195 pr_ret__ = get_cpu_var(*pr_ptr__); \ 196 put_cpu_var(*pr_ptr__); \ 197 pr_ret__; \ 198 }) 199 #endif 200 201 #define __percpu_generic_to_op(var, val, op) \ 202 do { \ 203 typeof(var) *pgto_ptr__ = &(var); \ 204 get_cpu_var(*pgto_ptr__) op val; \ 205 put_cpu_var(*pgto_ptr__); \ 206 } while (0) 207 208 #ifndef percpu_write 209 # define percpu_write(var, val) __percpu_generic_to_op(var, (val), =) 210 #endif 211 212 #ifndef percpu_add 213 # define percpu_add(var, val) __percpu_generic_to_op(var, (val), +=) 214 #endif 215 216 #ifndef percpu_sub 217 # define percpu_sub(var, val) __percpu_generic_to_op(var, (val), -=) 218 #endif 219 220 #ifndef percpu_and 221 # define percpu_and(var, val) __percpu_generic_to_op(var, (val), &=) 222 #endif 223 224 #ifndef percpu_or 225 # define percpu_or(var, val) __percpu_generic_to_op(var, (val), |=) 226 #endif 227 228 #ifndef percpu_xor 229 # define percpu_xor(var, val) __percpu_generic_to_op(var, (val), ^=) 230 #endif 231 232 /* 233 * Branching function to split up a function into a set of functions that 234 * are called for different scalar sizes of the objects handled. 235 */ 236 237 extern void __bad_size_call_parameter(void); 238 239 #define __pcpu_size_call_return(stem, variable) \ 240 ({ typeof(variable) pscr_ret__; \ 241 __verify_pcpu_ptr(&(variable)); \ 242 switch(sizeof(variable)) { \ 243 case 1: pscr_ret__ = stem##1(variable);break; \ 244 case 2: pscr_ret__ = stem##2(variable);break; \ 245 case 4: pscr_ret__ = stem##4(variable);break; \ 246 case 8: pscr_ret__ = stem##8(variable);break; \ 247 default: \ 248 __bad_size_call_parameter();break; \ 249 } \ 250 pscr_ret__; \ 251 }) 252 253 #define __pcpu_size_call(stem, variable, ...) \ 254 do { \ 255 __verify_pcpu_ptr(&(variable)); \ 256 switch(sizeof(variable)) { \ 257 case 1: stem##1(variable, __VA_ARGS__);break; \ 258 case 2: stem##2(variable, __VA_ARGS__);break; \ 259 case 4: stem##4(variable, __VA_ARGS__);break; \ 260 case 8: stem##8(variable, __VA_ARGS__);break; \ 261 default: \ 262 __bad_size_call_parameter();break; \ 263 } \ 264 } while (0) 265 266 /* 267 * Optimized manipulation for memory allocated through the per cpu 268 * allocator or for addresses of per cpu variables. 269 * 270 * These operation guarantee exclusivity of access for other operations 271 * on the *same* processor. The assumption is that per cpu data is only 272 * accessed by a single processor instance (the current one). 273 * 274 * The first group is used for accesses that must be done in a 275 * preemption safe way since we know that the context is not preempt 276 * safe. Interrupts may occur. If the interrupt modifies the variable 277 * too then RMW actions will not be reliable. 278 * 279 * The arch code can provide optimized functions in two ways: 280 * 281 * 1. Override the function completely. F.e. define this_cpu_add(). 282 * The arch must then ensure that the various scalar format passed 283 * are handled correctly. 284 * 285 * 2. Provide functions for certain scalar sizes. F.e. provide 286 * this_cpu_add_2() to provide per cpu atomic operations for 2 byte 287 * sized RMW actions. If arch code does not provide operations for 288 * a scalar size then the fallback in the generic code will be 289 * used. 290 */ 291 292 #define _this_cpu_generic_read(pcp) \ 293 ({ typeof(pcp) ret__; \ 294 preempt_disable(); \ 295 ret__ = *this_cpu_ptr(&(pcp)); \ 296 preempt_enable(); \ 297 ret__; \ 298 }) 299 300 #ifndef this_cpu_read 301 # ifndef this_cpu_read_1 302 # define this_cpu_read_1(pcp) _this_cpu_generic_read(pcp) 303 # endif 304 # ifndef this_cpu_read_2 305 # define this_cpu_read_2(pcp) _this_cpu_generic_read(pcp) 306 # endif 307 # ifndef this_cpu_read_4 308 # define this_cpu_read_4(pcp) _this_cpu_generic_read(pcp) 309 # endif 310 # ifndef this_cpu_read_8 311 # define this_cpu_read_8(pcp) _this_cpu_generic_read(pcp) 312 # endif 313 # define this_cpu_read(pcp) __pcpu_size_call_return(this_cpu_read_, (pcp)) 314 #endif 315 316 #define _this_cpu_generic_to_op(pcp, val, op) \ 317 do { \ 318 preempt_disable(); \ 319 *__this_cpu_ptr(&(pcp)) op val; \ 320 preempt_enable(); \ 321 } while (0) 322 323 #ifndef this_cpu_write 324 # ifndef this_cpu_write_1 325 # define this_cpu_write_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 326 # endif 327 # ifndef this_cpu_write_2 328 # define this_cpu_write_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 329 # endif 330 # ifndef this_cpu_write_4 331 # define this_cpu_write_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 332 # endif 333 # ifndef this_cpu_write_8 334 # define this_cpu_write_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 335 # endif 336 # define this_cpu_write(pcp, val) __pcpu_size_call(this_cpu_write_, (pcp), (val)) 337 #endif 338 339 #ifndef this_cpu_add 340 # ifndef this_cpu_add_1 341 # define this_cpu_add_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 342 # endif 343 # ifndef this_cpu_add_2 344 # define this_cpu_add_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 345 # endif 346 # ifndef this_cpu_add_4 347 # define this_cpu_add_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 348 # endif 349 # ifndef this_cpu_add_8 350 # define this_cpu_add_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 351 # endif 352 # define this_cpu_add(pcp, val) __pcpu_size_call(this_cpu_add_, (pcp), (val)) 353 #endif 354 355 #ifndef this_cpu_sub 356 # define this_cpu_sub(pcp, val) this_cpu_add((pcp), -(val)) 357 #endif 358 359 #ifndef this_cpu_inc 360 # define this_cpu_inc(pcp) this_cpu_add((pcp), 1) 361 #endif 362 363 #ifndef this_cpu_dec 364 # define this_cpu_dec(pcp) this_cpu_sub((pcp), 1) 365 #endif 366 367 #ifndef this_cpu_and 368 # ifndef this_cpu_and_1 369 # define this_cpu_and_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 370 # endif 371 # ifndef this_cpu_and_2 372 # define this_cpu_and_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 373 # endif 374 # ifndef this_cpu_and_4 375 # define this_cpu_and_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 376 # endif 377 # ifndef this_cpu_and_8 378 # define this_cpu_and_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 379 # endif 380 # define this_cpu_and(pcp, val) __pcpu_size_call(this_cpu_and_, (pcp), (val)) 381 #endif 382 383 #ifndef this_cpu_or 384 # ifndef this_cpu_or_1 385 # define this_cpu_or_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 386 # endif 387 # ifndef this_cpu_or_2 388 # define this_cpu_or_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 389 # endif 390 # ifndef this_cpu_or_4 391 # define this_cpu_or_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 392 # endif 393 # ifndef this_cpu_or_8 394 # define this_cpu_or_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 395 # endif 396 # define this_cpu_or(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val)) 397 #endif 398 399 #ifndef this_cpu_xor 400 # ifndef this_cpu_xor_1 401 # define this_cpu_xor_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 402 # endif 403 # ifndef this_cpu_xor_2 404 # define this_cpu_xor_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 405 # endif 406 # ifndef this_cpu_xor_4 407 # define this_cpu_xor_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 408 # endif 409 # ifndef this_cpu_xor_8 410 # define this_cpu_xor_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 411 # endif 412 # define this_cpu_xor(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val)) 413 #endif 414 415 /* 416 * Generic percpu operations that do not require preemption handling. 417 * Either we do not care about races or the caller has the 418 * responsibility of handling preemptions issues. Arch code can still 419 * override these instructions since the arch per cpu code may be more 420 * efficient and may actually get race freeness for free (that is the 421 * case for x86 for example). 422 * 423 * If there is no other protection through preempt disable and/or 424 * disabling interupts then one of these RMW operations can show unexpected 425 * behavior because the execution thread was rescheduled on another processor 426 * or an interrupt occurred and the same percpu variable was modified from 427 * the interrupt context. 428 */ 429 #ifndef __this_cpu_read 430 # ifndef __this_cpu_read_1 431 # define __this_cpu_read_1(pcp) (*__this_cpu_ptr(&(pcp))) 432 # endif 433 # ifndef __this_cpu_read_2 434 # define __this_cpu_read_2(pcp) (*__this_cpu_ptr(&(pcp))) 435 # endif 436 # ifndef __this_cpu_read_4 437 # define __this_cpu_read_4(pcp) (*__this_cpu_ptr(&(pcp))) 438 # endif 439 # ifndef __this_cpu_read_8 440 # define __this_cpu_read_8(pcp) (*__this_cpu_ptr(&(pcp))) 441 # endif 442 # define __this_cpu_read(pcp) __pcpu_size_call_return(__this_cpu_read_, (pcp)) 443 #endif 444 445 #define __this_cpu_generic_to_op(pcp, val, op) \ 446 do { \ 447 *__this_cpu_ptr(&(pcp)) op val; \ 448 } while (0) 449 450 #ifndef __this_cpu_write 451 # ifndef __this_cpu_write_1 452 # define __this_cpu_write_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 453 # endif 454 # ifndef __this_cpu_write_2 455 # define __this_cpu_write_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 456 # endif 457 # ifndef __this_cpu_write_4 458 # define __this_cpu_write_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 459 # endif 460 # ifndef __this_cpu_write_8 461 # define __this_cpu_write_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 462 # endif 463 # define __this_cpu_write(pcp, val) __pcpu_size_call(__this_cpu_write_, (pcp), (val)) 464 #endif 465 466 #ifndef __this_cpu_add 467 # ifndef __this_cpu_add_1 468 # define __this_cpu_add_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 469 # endif 470 # ifndef __this_cpu_add_2 471 # define __this_cpu_add_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 472 # endif 473 # ifndef __this_cpu_add_4 474 # define __this_cpu_add_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 475 # endif 476 # ifndef __this_cpu_add_8 477 # define __this_cpu_add_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 478 # endif 479 # define __this_cpu_add(pcp, val) __pcpu_size_call(__this_cpu_add_, (pcp), (val)) 480 #endif 481 482 #ifndef __this_cpu_sub 483 # define __this_cpu_sub(pcp, val) __this_cpu_add((pcp), -(val)) 484 #endif 485 486 #ifndef __this_cpu_inc 487 # define __this_cpu_inc(pcp) __this_cpu_add((pcp), 1) 488 #endif 489 490 #ifndef __this_cpu_dec 491 # define __this_cpu_dec(pcp) __this_cpu_sub((pcp), 1) 492 #endif 493 494 #ifndef __this_cpu_and 495 # ifndef __this_cpu_and_1 496 # define __this_cpu_and_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 497 # endif 498 # ifndef __this_cpu_and_2 499 # define __this_cpu_and_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 500 # endif 501 # ifndef __this_cpu_and_4 502 # define __this_cpu_and_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 503 # endif 504 # ifndef __this_cpu_and_8 505 # define __this_cpu_and_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 506 # endif 507 # define __this_cpu_and(pcp, val) __pcpu_size_call(__this_cpu_and_, (pcp), (val)) 508 #endif 509 510 #ifndef __this_cpu_or 511 # ifndef __this_cpu_or_1 512 # define __this_cpu_or_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 513 # endif 514 # ifndef __this_cpu_or_2 515 # define __this_cpu_or_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 516 # endif 517 # ifndef __this_cpu_or_4 518 # define __this_cpu_or_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 519 # endif 520 # ifndef __this_cpu_or_8 521 # define __this_cpu_or_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 522 # endif 523 # define __this_cpu_or(pcp, val) __pcpu_size_call(__this_cpu_or_, (pcp), (val)) 524 #endif 525 526 #ifndef __this_cpu_xor 527 # ifndef __this_cpu_xor_1 528 # define __this_cpu_xor_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 529 # endif 530 # ifndef __this_cpu_xor_2 531 # define __this_cpu_xor_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 532 # endif 533 # ifndef __this_cpu_xor_4 534 # define __this_cpu_xor_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 535 # endif 536 # ifndef __this_cpu_xor_8 537 # define __this_cpu_xor_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 538 # endif 539 # define __this_cpu_xor(pcp, val) __pcpu_size_call(__this_cpu_xor_, (pcp), (val)) 540 #endif 541 542 /* 543 * IRQ safe versions of the per cpu RMW operations. Note that these operations 544 * are *not* safe against modification of the same variable from another 545 * processors (which one gets when using regular atomic operations) 546 . They are guaranteed to be atomic vs. local interrupts and 547 * preemption only. 548 */ 549 #define irqsafe_cpu_generic_to_op(pcp, val, op) \ 550 do { \ 551 unsigned long flags; \ 552 local_irq_save(flags); \ 553 *__this_cpu_ptr(&(pcp)) op val; \ 554 local_irq_restore(flags); \ 555 } while (0) 556 557 #ifndef irqsafe_cpu_add 558 # ifndef irqsafe_cpu_add_1 559 # define irqsafe_cpu_add_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) 560 # endif 561 # ifndef irqsafe_cpu_add_2 562 # define irqsafe_cpu_add_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) 563 # endif 564 # ifndef irqsafe_cpu_add_4 565 # define irqsafe_cpu_add_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) 566 # endif 567 # ifndef irqsafe_cpu_add_8 568 # define irqsafe_cpu_add_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) 569 # endif 570 # define irqsafe_cpu_add(pcp, val) __pcpu_size_call(irqsafe_cpu_add_, (pcp), (val)) 571 #endif 572 573 #ifndef irqsafe_cpu_sub 574 # define irqsafe_cpu_sub(pcp, val) irqsafe_cpu_add((pcp), -(val)) 575 #endif 576 577 #ifndef irqsafe_cpu_inc 578 # define irqsafe_cpu_inc(pcp) irqsafe_cpu_add((pcp), 1) 579 #endif 580 581 #ifndef irqsafe_cpu_dec 582 # define irqsafe_cpu_dec(pcp) irqsafe_cpu_sub((pcp), 1) 583 #endif 584 585 #ifndef irqsafe_cpu_and 586 # ifndef irqsafe_cpu_and_1 587 # define irqsafe_cpu_and_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) 588 # endif 589 # ifndef irqsafe_cpu_and_2 590 # define irqsafe_cpu_and_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) 591 # endif 592 # ifndef irqsafe_cpu_and_4 593 # define irqsafe_cpu_and_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) 594 # endif 595 # ifndef irqsafe_cpu_and_8 596 # define irqsafe_cpu_and_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) 597 # endif 598 # define irqsafe_cpu_and(pcp, val) __pcpu_size_call(irqsafe_cpu_and_, (val)) 599 #endif 600 601 #ifndef irqsafe_cpu_or 602 # ifndef irqsafe_cpu_or_1 603 # define irqsafe_cpu_or_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) 604 # endif 605 # ifndef irqsafe_cpu_or_2 606 # define irqsafe_cpu_or_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) 607 # endif 608 # ifndef irqsafe_cpu_or_4 609 # define irqsafe_cpu_or_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) 610 # endif 611 # ifndef irqsafe_cpu_or_8 612 # define irqsafe_cpu_or_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) 613 # endif 614 # define irqsafe_cpu_or(pcp, val) __pcpu_size_call(irqsafe_cpu_or_, (val)) 615 #endif 616 617 #ifndef irqsafe_cpu_xor 618 # ifndef irqsafe_cpu_xor_1 619 # define irqsafe_cpu_xor_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) 620 # endif 621 # ifndef irqsafe_cpu_xor_2 622 # define irqsafe_cpu_xor_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) 623 # endif 624 # ifndef irqsafe_cpu_xor_4 625 # define irqsafe_cpu_xor_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) 626 # endif 627 # ifndef irqsafe_cpu_xor_8 628 # define irqsafe_cpu_xor_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) 629 # endif 630 # define irqsafe_cpu_xor(pcp, val) __pcpu_size_call(irqsafe_cpu_xor_, (val)) 631 #endif 632 633 #endif /* __LINUX_PERCPU_H */ 634