1 #ifndef __LINUX_PERCPU_H 2 #define __LINUX_PERCPU_H 3 4 #include <linux/preempt.h> 5 #include <linux/smp.h> 6 #include <linux/cpumask.h> 7 #include <linux/pfn.h> 8 #include <linux/init.h> 9 10 #include <asm/percpu.h> 11 12 /* enough to cover all DEFINE_PER_CPUs in modules */ 13 #ifdef CONFIG_MODULES 14 #define PERCPU_MODULE_RESERVE (8 << 10) 15 #else 16 #define PERCPU_MODULE_RESERVE 0 17 #endif 18 19 #ifndef PERCPU_ENOUGH_ROOM 20 #define PERCPU_ENOUGH_ROOM \ 21 (ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) + \ 22 PERCPU_MODULE_RESERVE) 23 #endif 24 25 /* 26 * Must be an lvalue. Since @var must be a simple identifier, 27 * we force a syntax error here if it isn't. 28 */ 29 #define get_cpu_var(var) (*({ \ 30 preempt_disable(); \ 31 &__get_cpu_var(var); })) 32 33 /* 34 * The weird & is necessary because sparse considers (void)(var) to be 35 * a direct dereference of percpu variable (var). 36 */ 37 #define put_cpu_var(var) do { \ 38 (void)&(var); \ 39 preempt_enable(); \ 40 } while (0) 41 42 #ifdef CONFIG_SMP 43 44 /* minimum unit size, also is the maximum supported allocation size */ 45 #define PCPU_MIN_UNIT_SIZE PFN_ALIGN(64 << 10) 46 47 /* 48 * PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy 49 * back on the first chunk for dynamic percpu allocation if arch is 50 * manually allocating and mapping it for faster access (as a part of 51 * large page mapping for example). 52 * 53 * The following values give between one and two pages of free space 54 * after typical minimal boot (2-way SMP, single disk and NIC) with 55 * both defconfig and a distro config on x86_64 and 32. More 56 * intelligent way to determine this would be nice. 57 */ 58 #if BITS_PER_LONG > 32 59 #define PERCPU_DYNAMIC_RESERVE (20 << 10) 60 #else 61 #define PERCPU_DYNAMIC_RESERVE (12 << 10) 62 #endif 63 64 extern void *pcpu_base_addr; 65 extern const unsigned long *pcpu_unit_offsets; 66 67 struct pcpu_group_info { 68 int nr_units; /* aligned # of units */ 69 unsigned long base_offset; /* base address offset */ 70 unsigned int *cpu_map; /* unit->cpu map, empty 71 * entries contain NR_CPUS */ 72 }; 73 74 struct pcpu_alloc_info { 75 size_t static_size; 76 size_t reserved_size; 77 size_t dyn_size; 78 size_t unit_size; 79 size_t atom_size; 80 size_t alloc_size; 81 size_t __ai_size; /* internal, don't use */ 82 int nr_groups; /* 0 if grouping unnecessary */ 83 struct pcpu_group_info groups[]; 84 }; 85 86 enum pcpu_fc { 87 PCPU_FC_AUTO, 88 PCPU_FC_EMBED, 89 PCPU_FC_PAGE, 90 91 PCPU_FC_NR, 92 }; 93 extern const char *pcpu_fc_names[PCPU_FC_NR]; 94 95 extern enum pcpu_fc pcpu_chosen_fc; 96 97 typedef void * (*pcpu_fc_alloc_fn_t)(unsigned int cpu, size_t size, 98 size_t align); 99 typedef void (*pcpu_fc_free_fn_t)(void *ptr, size_t size); 100 typedef void (*pcpu_fc_populate_pte_fn_t)(unsigned long addr); 101 typedef int (pcpu_fc_cpu_distance_fn_t)(unsigned int from, unsigned int to); 102 103 extern struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, 104 int nr_units); 105 extern void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai); 106 107 extern struct pcpu_alloc_info * __init pcpu_build_alloc_info( 108 size_t reserved_size, ssize_t dyn_size, 109 size_t atom_size, 110 pcpu_fc_cpu_distance_fn_t cpu_distance_fn); 111 112 extern int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, 113 void *base_addr); 114 115 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK 116 extern int __init pcpu_embed_first_chunk(size_t reserved_size, ssize_t dyn_size, 117 size_t atom_size, 118 pcpu_fc_cpu_distance_fn_t cpu_distance_fn, 119 pcpu_fc_alloc_fn_t alloc_fn, 120 pcpu_fc_free_fn_t free_fn); 121 #endif 122 123 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 124 extern int __init pcpu_page_first_chunk(size_t reserved_size, 125 pcpu_fc_alloc_fn_t alloc_fn, 126 pcpu_fc_free_fn_t free_fn, 127 pcpu_fc_populate_pte_fn_t populate_pte_fn); 128 #endif 129 130 /* 131 * Use this to get to a cpu's version of the per-cpu object 132 * dynamically allocated. Non-atomic access to the current CPU's 133 * version should probably be combined with get_cpu()/put_cpu(). 134 */ 135 #define per_cpu_ptr(ptr, cpu) SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu))) 136 137 extern void __percpu *__alloc_reserved_percpu(size_t size, size_t align); 138 extern bool is_kernel_percpu_address(unsigned long addr); 139 140 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA 141 extern void __init setup_per_cpu_areas(void); 142 #endif 143 144 #else /* CONFIG_SMP */ 145 146 #define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); (ptr); }) 147 148 /* can't distinguish from other static vars, always false */ 149 static inline bool is_kernel_percpu_address(unsigned long addr) 150 { 151 return false; 152 } 153 154 static inline void __init setup_per_cpu_areas(void) { } 155 156 static inline void *pcpu_lpage_remapped(void *kaddr) 157 { 158 return NULL; 159 } 160 161 #endif /* CONFIG_SMP */ 162 163 extern void __percpu *__alloc_percpu(size_t size, size_t align); 164 extern void free_percpu(void __percpu *__pdata); 165 extern phys_addr_t per_cpu_ptr_to_phys(void *addr); 166 167 #define alloc_percpu(type) \ 168 (typeof(type) __percpu *)__alloc_percpu(sizeof(type), __alignof__(type)) 169 170 /* 171 * Optional methods for optimized non-lvalue per-cpu variable access. 172 * 173 * @var can be a percpu variable or a field of it and its size should 174 * equal char, int or long. percpu_read() evaluates to a lvalue and 175 * all others to void. 176 * 177 * These operations are guaranteed to be atomic w.r.t. preemption. 178 * The generic versions use plain get/put_cpu_var(). Archs are 179 * encouraged to implement single-instruction alternatives which don't 180 * require preemption protection. 181 */ 182 #ifndef percpu_read 183 # define percpu_read(var) \ 184 ({ \ 185 typeof(var) *pr_ptr__ = &(var); \ 186 typeof(var) pr_ret__; \ 187 pr_ret__ = get_cpu_var(*pr_ptr__); \ 188 put_cpu_var(*pr_ptr__); \ 189 pr_ret__; \ 190 }) 191 #endif 192 193 #define __percpu_generic_to_op(var, val, op) \ 194 do { \ 195 typeof(var) *pgto_ptr__ = &(var); \ 196 get_cpu_var(*pgto_ptr__) op val; \ 197 put_cpu_var(*pgto_ptr__); \ 198 } while (0) 199 200 #ifndef percpu_write 201 # define percpu_write(var, val) __percpu_generic_to_op(var, (val), =) 202 #endif 203 204 #ifndef percpu_add 205 # define percpu_add(var, val) __percpu_generic_to_op(var, (val), +=) 206 #endif 207 208 #ifndef percpu_sub 209 # define percpu_sub(var, val) __percpu_generic_to_op(var, (val), -=) 210 #endif 211 212 #ifndef percpu_and 213 # define percpu_and(var, val) __percpu_generic_to_op(var, (val), &=) 214 #endif 215 216 #ifndef percpu_or 217 # define percpu_or(var, val) __percpu_generic_to_op(var, (val), |=) 218 #endif 219 220 #ifndef percpu_xor 221 # define percpu_xor(var, val) __percpu_generic_to_op(var, (val), ^=) 222 #endif 223 224 /* 225 * Branching function to split up a function into a set of functions that 226 * are called for different scalar sizes of the objects handled. 227 */ 228 229 extern void __bad_size_call_parameter(void); 230 231 #define __pcpu_size_call_return(stem, variable) \ 232 ({ typeof(variable) pscr_ret__; \ 233 __verify_pcpu_ptr(&(variable)); \ 234 switch(sizeof(variable)) { \ 235 case 1: pscr_ret__ = stem##1(variable);break; \ 236 case 2: pscr_ret__ = stem##2(variable);break; \ 237 case 4: pscr_ret__ = stem##4(variable);break; \ 238 case 8: pscr_ret__ = stem##8(variable);break; \ 239 default: \ 240 __bad_size_call_parameter();break; \ 241 } \ 242 pscr_ret__; \ 243 }) 244 245 #define __pcpu_size_call(stem, variable, ...) \ 246 do { \ 247 __verify_pcpu_ptr(&(variable)); \ 248 switch(sizeof(variable)) { \ 249 case 1: stem##1(variable, __VA_ARGS__);break; \ 250 case 2: stem##2(variable, __VA_ARGS__);break; \ 251 case 4: stem##4(variable, __VA_ARGS__);break; \ 252 case 8: stem##8(variable, __VA_ARGS__);break; \ 253 default: \ 254 __bad_size_call_parameter();break; \ 255 } \ 256 } while (0) 257 258 /* 259 * Optimized manipulation for memory allocated through the per cpu 260 * allocator or for addresses of per cpu variables. 261 * 262 * These operation guarantee exclusivity of access for other operations 263 * on the *same* processor. The assumption is that per cpu data is only 264 * accessed by a single processor instance (the current one). 265 * 266 * The first group is used for accesses that must be done in a 267 * preemption safe way since we know that the context is not preempt 268 * safe. Interrupts may occur. If the interrupt modifies the variable 269 * too then RMW actions will not be reliable. 270 * 271 * The arch code can provide optimized functions in two ways: 272 * 273 * 1. Override the function completely. F.e. define this_cpu_add(). 274 * The arch must then ensure that the various scalar format passed 275 * are handled correctly. 276 * 277 * 2. Provide functions for certain scalar sizes. F.e. provide 278 * this_cpu_add_2() to provide per cpu atomic operations for 2 byte 279 * sized RMW actions. If arch code does not provide operations for 280 * a scalar size then the fallback in the generic code will be 281 * used. 282 */ 283 284 #define _this_cpu_generic_read(pcp) \ 285 ({ typeof(pcp) ret__; \ 286 preempt_disable(); \ 287 ret__ = *this_cpu_ptr(&(pcp)); \ 288 preempt_enable(); \ 289 ret__; \ 290 }) 291 292 #ifndef this_cpu_read 293 # ifndef this_cpu_read_1 294 # define this_cpu_read_1(pcp) _this_cpu_generic_read(pcp) 295 # endif 296 # ifndef this_cpu_read_2 297 # define this_cpu_read_2(pcp) _this_cpu_generic_read(pcp) 298 # endif 299 # ifndef this_cpu_read_4 300 # define this_cpu_read_4(pcp) _this_cpu_generic_read(pcp) 301 # endif 302 # ifndef this_cpu_read_8 303 # define this_cpu_read_8(pcp) _this_cpu_generic_read(pcp) 304 # endif 305 # define this_cpu_read(pcp) __pcpu_size_call_return(this_cpu_read_, (pcp)) 306 #endif 307 308 #define _this_cpu_generic_to_op(pcp, val, op) \ 309 do { \ 310 preempt_disable(); \ 311 *__this_cpu_ptr(&(pcp)) op val; \ 312 preempt_enable(); \ 313 } while (0) 314 315 #ifndef this_cpu_write 316 # ifndef this_cpu_write_1 317 # define this_cpu_write_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 318 # endif 319 # ifndef this_cpu_write_2 320 # define this_cpu_write_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 321 # endif 322 # ifndef this_cpu_write_4 323 # define this_cpu_write_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 324 # endif 325 # ifndef this_cpu_write_8 326 # define this_cpu_write_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 327 # endif 328 # define this_cpu_write(pcp, val) __pcpu_size_call(this_cpu_write_, (pcp), (val)) 329 #endif 330 331 #ifndef this_cpu_add 332 # ifndef this_cpu_add_1 333 # define this_cpu_add_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 334 # endif 335 # ifndef this_cpu_add_2 336 # define this_cpu_add_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 337 # endif 338 # ifndef this_cpu_add_4 339 # define this_cpu_add_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 340 # endif 341 # ifndef this_cpu_add_8 342 # define this_cpu_add_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 343 # endif 344 # define this_cpu_add(pcp, val) __pcpu_size_call(this_cpu_add_, (pcp), (val)) 345 #endif 346 347 #ifndef this_cpu_sub 348 # define this_cpu_sub(pcp, val) this_cpu_add((pcp), -(val)) 349 #endif 350 351 #ifndef this_cpu_inc 352 # define this_cpu_inc(pcp) this_cpu_add((pcp), 1) 353 #endif 354 355 #ifndef this_cpu_dec 356 # define this_cpu_dec(pcp) this_cpu_sub((pcp), 1) 357 #endif 358 359 #ifndef this_cpu_and 360 # ifndef this_cpu_and_1 361 # define this_cpu_and_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 362 # endif 363 # ifndef this_cpu_and_2 364 # define this_cpu_and_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 365 # endif 366 # ifndef this_cpu_and_4 367 # define this_cpu_and_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 368 # endif 369 # ifndef this_cpu_and_8 370 # define this_cpu_and_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 371 # endif 372 # define this_cpu_and(pcp, val) __pcpu_size_call(this_cpu_and_, (pcp), (val)) 373 #endif 374 375 #ifndef this_cpu_or 376 # ifndef this_cpu_or_1 377 # define this_cpu_or_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 378 # endif 379 # ifndef this_cpu_or_2 380 # define this_cpu_or_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 381 # endif 382 # ifndef this_cpu_or_4 383 # define this_cpu_or_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 384 # endif 385 # ifndef this_cpu_or_8 386 # define this_cpu_or_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 387 # endif 388 # define this_cpu_or(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val)) 389 #endif 390 391 #ifndef this_cpu_xor 392 # ifndef this_cpu_xor_1 393 # define this_cpu_xor_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 394 # endif 395 # ifndef this_cpu_xor_2 396 # define this_cpu_xor_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 397 # endif 398 # ifndef this_cpu_xor_4 399 # define this_cpu_xor_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 400 # endif 401 # ifndef this_cpu_xor_8 402 # define this_cpu_xor_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 403 # endif 404 # define this_cpu_xor(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val)) 405 #endif 406 407 /* 408 * Generic percpu operations that do not require preemption handling. 409 * Either we do not care about races or the caller has the 410 * responsibility of handling preemptions issues. Arch code can still 411 * override these instructions since the arch per cpu code may be more 412 * efficient and may actually get race freeness for free (that is the 413 * case for x86 for example). 414 * 415 * If there is no other protection through preempt disable and/or 416 * disabling interupts then one of these RMW operations can show unexpected 417 * behavior because the execution thread was rescheduled on another processor 418 * or an interrupt occurred and the same percpu variable was modified from 419 * the interrupt context. 420 */ 421 #ifndef __this_cpu_read 422 # ifndef __this_cpu_read_1 423 # define __this_cpu_read_1(pcp) (*__this_cpu_ptr(&(pcp))) 424 # endif 425 # ifndef __this_cpu_read_2 426 # define __this_cpu_read_2(pcp) (*__this_cpu_ptr(&(pcp))) 427 # endif 428 # ifndef __this_cpu_read_4 429 # define __this_cpu_read_4(pcp) (*__this_cpu_ptr(&(pcp))) 430 # endif 431 # ifndef __this_cpu_read_8 432 # define __this_cpu_read_8(pcp) (*__this_cpu_ptr(&(pcp))) 433 # endif 434 # define __this_cpu_read(pcp) __pcpu_size_call_return(__this_cpu_read_, (pcp)) 435 #endif 436 437 #define __this_cpu_generic_to_op(pcp, val, op) \ 438 do { \ 439 *__this_cpu_ptr(&(pcp)) op val; \ 440 } while (0) 441 442 #ifndef __this_cpu_write 443 # ifndef __this_cpu_write_1 444 # define __this_cpu_write_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 445 # endif 446 # ifndef __this_cpu_write_2 447 # define __this_cpu_write_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 448 # endif 449 # ifndef __this_cpu_write_4 450 # define __this_cpu_write_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 451 # endif 452 # ifndef __this_cpu_write_8 453 # define __this_cpu_write_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 454 # endif 455 # define __this_cpu_write(pcp, val) __pcpu_size_call(__this_cpu_write_, (pcp), (val)) 456 #endif 457 458 #ifndef __this_cpu_add 459 # ifndef __this_cpu_add_1 460 # define __this_cpu_add_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 461 # endif 462 # ifndef __this_cpu_add_2 463 # define __this_cpu_add_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 464 # endif 465 # ifndef __this_cpu_add_4 466 # define __this_cpu_add_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 467 # endif 468 # ifndef __this_cpu_add_8 469 # define __this_cpu_add_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 470 # endif 471 # define __this_cpu_add(pcp, val) __pcpu_size_call(__this_cpu_add_, (pcp), (val)) 472 #endif 473 474 #ifndef __this_cpu_sub 475 # define __this_cpu_sub(pcp, val) __this_cpu_add((pcp), -(val)) 476 #endif 477 478 #ifndef __this_cpu_inc 479 # define __this_cpu_inc(pcp) __this_cpu_add((pcp), 1) 480 #endif 481 482 #ifndef __this_cpu_dec 483 # define __this_cpu_dec(pcp) __this_cpu_sub((pcp), 1) 484 #endif 485 486 #ifndef __this_cpu_and 487 # ifndef __this_cpu_and_1 488 # define __this_cpu_and_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 489 # endif 490 # ifndef __this_cpu_and_2 491 # define __this_cpu_and_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 492 # endif 493 # ifndef __this_cpu_and_4 494 # define __this_cpu_and_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 495 # endif 496 # ifndef __this_cpu_and_8 497 # define __this_cpu_and_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 498 # endif 499 # define __this_cpu_and(pcp, val) __pcpu_size_call(__this_cpu_and_, (pcp), (val)) 500 #endif 501 502 #ifndef __this_cpu_or 503 # ifndef __this_cpu_or_1 504 # define __this_cpu_or_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 505 # endif 506 # ifndef __this_cpu_or_2 507 # define __this_cpu_or_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 508 # endif 509 # ifndef __this_cpu_or_4 510 # define __this_cpu_or_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 511 # endif 512 # ifndef __this_cpu_or_8 513 # define __this_cpu_or_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 514 # endif 515 # define __this_cpu_or(pcp, val) __pcpu_size_call(__this_cpu_or_, (pcp), (val)) 516 #endif 517 518 #ifndef __this_cpu_xor 519 # ifndef __this_cpu_xor_1 520 # define __this_cpu_xor_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 521 # endif 522 # ifndef __this_cpu_xor_2 523 # define __this_cpu_xor_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 524 # endif 525 # ifndef __this_cpu_xor_4 526 # define __this_cpu_xor_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 527 # endif 528 # ifndef __this_cpu_xor_8 529 # define __this_cpu_xor_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 530 # endif 531 # define __this_cpu_xor(pcp, val) __pcpu_size_call(__this_cpu_xor_, (pcp), (val)) 532 #endif 533 534 /* 535 * IRQ safe versions of the per cpu RMW operations. Note that these operations 536 * are *not* safe against modification of the same variable from another 537 * processors (which one gets when using regular atomic operations) 538 . They are guaranteed to be atomic vs. local interrupts and 539 * preemption only. 540 */ 541 #define irqsafe_cpu_generic_to_op(pcp, val, op) \ 542 do { \ 543 unsigned long flags; \ 544 local_irq_save(flags); \ 545 *__this_cpu_ptr(&(pcp)) op val; \ 546 local_irq_restore(flags); \ 547 } while (0) 548 549 #ifndef irqsafe_cpu_add 550 # ifndef irqsafe_cpu_add_1 551 # define irqsafe_cpu_add_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) 552 # endif 553 # ifndef irqsafe_cpu_add_2 554 # define irqsafe_cpu_add_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) 555 # endif 556 # ifndef irqsafe_cpu_add_4 557 # define irqsafe_cpu_add_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) 558 # endif 559 # ifndef irqsafe_cpu_add_8 560 # define irqsafe_cpu_add_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) 561 # endif 562 # define irqsafe_cpu_add(pcp, val) __pcpu_size_call(irqsafe_cpu_add_, (pcp), (val)) 563 #endif 564 565 #ifndef irqsafe_cpu_sub 566 # define irqsafe_cpu_sub(pcp, val) irqsafe_cpu_add((pcp), -(val)) 567 #endif 568 569 #ifndef irqsafe_cpu_inc 570 # define irqsafe_cpu_inc(pcp) irqsafe_cpu_add((pcp), 1) 571 #endif 572 573 #ifndef irqsafe_cpu_dec 574 # define irqsafe_cpu_dec(pcp) irqsafe_cpu_sub((pcp), 1) 575 #endif 576 577 #ifndef irqsafe_cpu_and 578 # ifndef irqsafe_cpu_and_1 579 # define irqsafe_cpu_and_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) 580 # endif 581 # ifndef irqsafe_cpu_and_2 582 # define irqsafe_cpu_and_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) 583 # endif 584 # ifndef irqsafe_cpu_and_4 585 # define irqsafe_cpu_and_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) 586 # endif 587 # ifndef irqsafe_cpu_and_8 588 # define irqsafe_cpu_and_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) 589 # endif 590 # define irqsafe_cpu_and(pcp, val) __pcpu_size_call(irqsafe_cpu_and_, (val)) 591 #endif 592 593 #ifndef irqsafe_cpu_or 594 # ifndef irqsafe_cpu_or_1 595 # define irqsafe_cpu_or_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) 596 # endif 597 # ifndef irqsafe_cpu_or_2 598 # define irqsafe_cpu_or_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) 599 # endif 600 # ifndef irqsafe_cpu_or_4 601 # define irqsafe_cpu_or_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) 602 # endif 603 # ifndef irqsafe_cpu_or_8 604 # define irqsafe_cpu_or_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) 605 # endif 606 # define irqsafe_cpu_or(pcp, val) __pcpu_size_call(irqsafe_cpu_or_, (val)) 607 #endif 608 609 #ifndef irqsafe_cpu_xor 610 # ifndef irqsafe_cpu_xor_1 611 # define irqsafe_cpu_xor_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) 612 # endif 613 # ifndef irqsafe_cpu_xor_2 614 # define irqsafe_cpu_xor_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) 615 # endif 616 # ifndef irqsafe_cpu_xor_4 617 # define irqsafe_cpu_xor_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) 618 # endif 619 # ifndef irqsafe_cpu_xor_8 620 # define irqsafe_cpu_xor_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) 621 # endif 622 # define irqsafe_cpu_xor(pcp, val) __pcpu_size_call(irqsafe_cpu_xor_, (val)) 623 #endif 624 625 #endif /* __LINUX_PERCPU_H */ 626