xref: /linux-6.15/include/linux/percpu.h (revision 4dc7ccf7)
1 #ifndef __LINUX_PERCPU_H
2 #define __LINUX_PERCPU_H
3 
4 #include <linux/preempt.h>
5 #include <linux/smp.h>
6 #include <linux/cpumask.h>
7 #include <linux/pfn.h>
8 #include <linux/init.h>
9 
10 #include <asm/percpu.h>
11 
12 /* enough to cover all DEFINE_PER_CPUs in modules */
13 #ifdef CONFIG_MODULES
14 #define PERCPU_MODULE_RESERVE		(8 << 10)
15 #else
16 #define PERCPU_MODULE_RESERVE		0
17 #endif
18 
19 #ifndef PERCPU_ENOUGH_ROOM
20 #define PERCPU_ENOUGH_ROOM						\
21 	(ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) +	\
22 	 PERCPU_MODULE_RESERVE)
23 #endif
24 
25 /*
26  * Must be an lvalue. Since @var must be a simple identifier,
27  * we force a syntax error here if it isn't.
28  */
29 #define get_cpu_var(var) (*({				\
30 	preempt_disable();				\
31 	&__get_cpu_var(var); }))
32 
33 /*
34  * The weird & is necessary because sparse considers (void)(var) to be
35  * a direct dereference of percpu variable (var).
36  */
37 #define put_cpu_var(var) do {				\
38 	(void)&(var);					\
39 	preempt_enable();				\
40 } while (0)
41 
42 #ifdef CONFIG_SMP
43 
44 /* minimum unit size, also is the maximum supported allocation size */
45 #define PCPU_MIN_UNIT_SIZE		PFN_ALIGN(64 << 10)
46 
47 /*
48  * PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy
49  * back on the first chunk for dynamic percpu allocation if arch is
50  * manually allocating and mapping it for faster access (as a part of
51  * large page mapping for example).
52  *
53  * The following values give between one and two pages of free space
54  * after typical minimal boot (2-way SMP, single disk and NIC) with
55  * both defconfig and a distro config on x86_64 and 32.  More
56  * intelligent way to determine this would be nice.
57  */
58 #if BITS_PER_LONG > 32
59 #define PERCPU_DYNAMIC_RESERVE		(20 << 10)
60 #else
61 #define PERCPU_DYNAMIC_RESERVE		(12 << 10)
62 #endif
63 
64 extern void *pcpu_base_addr;
65 extern const unsigned long *pcpu_unit_offsets;
66 
67 struct pcpu_group_info {
68 	int			nr_units;	/* aligned # of units */
69 	unsigned long		base_offset;	/* base address offset */
70 	unsigned int		*cpu_map;	/* unit->cpu map, empty
71 						 * entries contain NR_CPUS */
72 };
73 
74 struct pcpu_alloc_info {
75 	size_t			static_size;
76 	size_t			reserved_size;
77 	size_t			dyn_size;
78 	size_t			unit_size;
79 	size_t			atom_size;
80 	size_t			alloc_size;
81 	size_t			__ai_size;	/* internal, don't use */
82 	int			nr_groups;	/* 0 if grouping unnecessary */
83 	struct pcpu_group_info	groups[];
84 };
85 
86 enum pcpu_fc {
87 	PCPU_FC_AUTO,
88 	PCPU_FC_EMBED,
89 	PCPU_FC_PAGE,
90 
91 	PCPU_FC_NR,
92 };
93 extern const char *pcpu_fc_names[PCPU_FC_NR];
94 
95 extern enum pcpu_fc pcpu_chosen_fc;
96 
97 typedef void * (*pcpu_fc_alloc_fn_t)(unsigned int cpu, size_t size,
98 				     size_t align);
99 typedef void (*pcpu_fc_free_fn_t)(void *ptr, size_t size);
100 typedef void (*pcpu_fc_populate_pte_fn_t)(unsigned long addr);
101 typedef int (pcpu_fc_cpu_distance_fn_t)(unsigned int from, unsigned int to);
102 
103 extern struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
104 							     int nr_units);
105 extern void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai);
106 
107 extern struct pcpu_alloc_info * __init pcpu_build_alloc_info(
108 				size_t reserved_size, ssize_t dyn_size,
109 				size_t atom_size,
110 				pcpu_fc_cpu_distance_fn_t cpu_distance_fn);
111 
112 extern int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
113 					 void *base_addr);
114 
115 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
116 extern int __init pcpu_embed_first_chunk(size_t reserved_size, ssize_t dyn_size,
117 				size_t atom_size,
118 				pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
119 				pcpu_fc_alloc_fn_t alloc_fn,
120 				pcpu_fc_free_fn_t free_fn);
121 #endif
122 
123 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
124 extern int __init pcpu_page_first_chunk(size_t reserved_size,
125 				pcpu_fc_alloc_fn_t alloc_fn,
126 				pcpu_fc_free_fn_t free_fn,
127 				pcpu_fc_populate_pte_fn_t populate_pte_fn);
128 #endif
129 
130 /*
131  * Use this to get to a cpu's version of the per-cpu object
132  * dynamically allocated. Non-atomic access to the current CPU's
133  * version should probably be combined with get_cpu()/put_cpu().
134  */
135 #define per_cpu_ptr(ptr, cpu)	SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu)))
136 
137 extern void __percpu *__alloc_reserved_percpu(size_t size, size_t align);
138 extern bool is_kernel_percpu_address(unsigned long addr);
139 
140 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
141 extern void __init setup_per_cpu_areas(void);
142 #endif
143 
144 #else /* CONFIG_SMP */
145 
146 #define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); (ptr); })
147 
148 /* can't distinguish from other static vars, always false */
149 static inline bool is_kernel_percpu_address(unsigned long addr)
150 {
151 	return false;
152 }
153 
154 static inline void __init setup_per_cpu_areas(void) { }
155 
156 static inline void *pcpu_lpage_remapped(void *kaddr)
157 {
158 	return NULL;
159 }
160 
161 #endif /* CONFIG_SMP */
162 
163 extern void __percpu *__alloc_percpu(size_t size, size_t align);
164 extern void free_percpu(void __percpu *__pdata);
165 extern phys_addr_t per_cpu_ptr_to_phys(void *addr);
166 
167 #define alloc_percpu(type)	\
168 	(typeof(type) __percpu *)__alloc_percpu(sizeof(type), __alignof__(type))
169 
170 /*
171  * Optional methods for optimized non-lvalue per-cpu variable access.
172  *
173  * @var can be a percpu variable or a field of it and its size should
174  * equal char, int or long.  percpu_read() evaluates to a lvalue and
175  * all others to void.
176  *
177  * These operations are guaranteed to be atomic w.r.t. preemption.
178  * The generic versions use plain get/put_cpu_var().  Archs are
179  * encouraged to implement single-instruction alternatives which don't
180  * require preemption protection.
181  */
182 #ifndef percpu_read
183 # define percpu_read(var)						\
184   ({									\
185 	typeof(var) *pr_ptr__ = &(var);					\
186 	typeof(var) pr_ret__;						\
187 	pr_ret__ = get_cpu_var(*pr_ptr__);				\
188 	put_cpu_var(*pr_ptr__);						\
189 	pr_ret__;							\
190   })
191 #endif
192 
193 #define __percpu_generic_to_op(var, val, op)				\
194 do {									\
195 	typeof(var) *pgto_ptr__ = &(var);				\
196 	get_cpu_var(*pgto_ptr__) op val;				\
197 	put_cpu_var(*pgto_ptr__);					\
198 } while (0)
199 
200 #ifndef percpu_write
201 # define percpu_write(var, val)		__percpu_generic_to_op(var, (val), =)
202 #endif
203 
204 #ifndef percpu_add
205 # define percpu_add(var, val)		__percpu_generic_to_op(var, (val), +=)
206 #endif
207 
208 #ifndef percpu_sub
209 # define percpu_sub(var, val)		__percpu_generic_to_op(var, (val), -=)
210 #endif
211 
212 #ifndef percpu_and
213 # define percpu_and(var, val)		__percpu_generic_to_op(var, (val), &=)
214 #endif
215 
216 #ifndef percpu_or
217 # define percpu_or(var, val)		__percpu_generic_to_op(var, (val), |=)
218 #endif
219 
220 #ifndef percpu_xor
221 # define percpu_xor(var, val)		__percpu_generic_to_op(var, (val), ^=)
222 #endif
223 
224 /*
225  * Branching function to split up a function into a set of functions that
226  * are called for different scalar sizes of the objects handled.
227  */
228 
229 extern void __bad_size_call_parameter(void);
230 
231 #define __pcpu_size_call_return(stem, variable)				\
232 ({	typeof(variable) pscr_ret__;					\
233 	__verify_pcpu_ptr(&(variable));					\
234 	switch(sizeof(variable)) {					\
235 	case 1: pscr_ret__ = stem##1(variable);break;			\
236 	case 2: pscr_ret__ = stem##2(variable);break;			\
237 	case 4: pscr_ret__ = stem##4(variable);break;			\
238 	case 8: pscr_ret__ = stem##8(variable);break;			\
239 	default:							\
240 		__bad_size_call_parameter();break;			\
241 	}								\
242 	pscr_ret__;							\
243 })
244 
245 #define __pcpu_size_call(stem, variable, ...)				\
246 do {									\
247 	__verify_pcpu_ptr(&(variable));					\
248 	switch(sizeof(variable)) {					\
249 		case 1: stem##1(variable, __VA_ARGS__);break;		\
250 		case 2: stem##2(variable, __VA_ARGS__);break;		\
251 		case 4: stem##4(variable, __VA_ARGS__);break;		\
252 		case 8: stem##8(variable, __VA_ARGS__);break;		\
253 		default: 						\
254 			__bad_size_call_parameter();break;		\
255 	}								\
256 } while (0)
257 
258 /*
259  * Optimized manipulation for memory allocated through the per cpu
260  * allocator or for addresses of per cpu variables.
261  *
262  * These operation guarantee exclusivity of access for other operations
263  * on the *same* processor. The assumption is that per cpu data is only
264  * accessed by a single processor instance (the current one).
265  *
266  * The first group is used for accesses that must be done in a
267  * preemption safe way since we know that the context is not preempt
268  * safe. Interrupts may occur. If the interrupt modifies the variable
269  * too then RMW actions will not be reliable.
270  *
271  * The arch code can provide optimized functions in two ways:
272  *
273  * 1. Override the function completely. F.e. define this_cpu_add().
274  *    The arch must then ensure that the various scalar format passed
275  *    are handled correctly.
276  *
277  * 2. Provide functions for certain scalar sizes. F.e. provide
278  *    this_cpu_add_2() to provide per cpu atomic operations for 2 byte
279  *    sized RMW actions. If arch code does not provide operations for
280  *    a scalar size then the fallback in the generic code will be
281  *    used.
282  */
283 
284 #define _this_cpu_generic_read(pcp)					\
285 ({	typeof(pcp) ret__;						\
286 	preempt_disable();						\
287 	ret__ = *this_cpu_ptr(&(pcp));					\
288 	preempt_enable();						\
289 	ret__;								\
290 })
291 
292 #ifndef this_cpu_read
293 # ifndef this_cpu_read_1
294 #  define this_cpu_read_1(pcp)	_this_cpu_generic_read(pcp)
295 # endif
296 # ifndef this_cpu_read_2
297 #  define this_cpu_read_2(pcp)	_this_cpu_generic_read(pcp)
298 # endif
299 # ifndef this_cpu_read_4
300 #  define this_cpu_read_4(pcp)	_this_cpu_generic_read(pcp)
301 # endif
302 # ifndef this_cpu_read_8
303 #  define this_cpu_read_8(pcp)	_this_cpu_generic_read(pcp)
304 # endif
305 # define this_cpu_read(pcp)	__pcpu_size_call_return(this_cpu_read_, (pcp))
306 #endif
307 
308 #define _this_cpu_generic_to_op(pcp, val, op)				\
309 do {									\
310 	preempt_disable();						\
311 	*__this_cpu_ptr(&(pcp)) op val;					\
312 	preempt_enable();						\
313 } while (0)
314 
315 #ifndef this_cpu_write
316 # ifndef this_cpu_write_1
317 #  define this_cpu_write_1(pcp, val)	_this_cpu_generic_to_op((pcp), (val), =)
318 # endif
319 # ifndef this_cpu_write_2
320 #  define this_cpu_write_2(pcp, val)	_this_cpu_generic_to_op((pcp), (val), =)
321 # endif
322 # ifndef this_cpu_write_4
323 #  define this_cpu_write_4(pcp, val)	_this_cpu_generic_to_op((pcp), (val), =)
324 # endif
325 # ifndef this_cpu_write_8
326 #  define this_cpu_write_8(pcp, val)	_this_cpu_generic_to_op((pcp), (val), =)
327 # endif
328 # define this_cpu_write(pcp, val)	__pcpu_size_call(this_cpu_write_, (pcp), (val))
329 #endif
330 
331 #ifndef this_cpu_add
332 # ifndef this_cpu_add_1
333 #  define this_cpu_add_1(pcp, val)	_this_cpu_generic_to_op((pcp), (val), +=)
334 # endif
335 # ifndef this_cpu_add_2
336 #  define this_cpu_add_2(pcp, val)	_this_cpu_generic_to_op((pcp), (val), +=)
337 # endif
338 # ifndef this_cpu_add_4
339 #  define this_cpu_add_4(pcp, val)	_this_cpu_generic_to_op((pcp), (val), +=)
340 # endif
341 # ifndef this_cpu_add_8
342 #  define this_cpu_add_8(pcp, val)	_this_cpu_generic_to_op((pcp), (val), +=)
343 # endif
344 # define this_cpu_add(pcp, val)		__pcpu_size_call(this_cpu_add_, (pcp), (val))
345 #endif
346 
347 #ifndef this_cpu_sub
348 # define this_cpu_sub(pcp, val)		this_cpu_add((pcp), -(val))
349 #endif
350 
351 #ifndef this_cpu_inc
352 # define this_cpu_inc(pcp)		this_cpu_add((pcp), 1)
353 #endif
354 
355 #ifndef this_cpu_dec
356 # define this_cpu_dec(pcp)		this_cpu_sub((pcp), 1)
357 #endif
358 
359 #ifndef this_cpu_and
360 # ifndef this_cpu_and_1
361 #  define this_cpu_and_1(pcp, val)	_this_cpu_generic_to_op((pcp), (val), &=)
362 # endif
363 # ifndef this_cpu_and_2
364 #  define this_cpu_and_2(pcp, val)	_this_cpu_generic_to_op((pcp), (val), &=)
365 # endif
366 # ifndef this_cpu_and_4
367 #  define this_cpu_and_4(pcp, val)	_this_cpu_generic_to_op((pcp), (val), &=)
368 # endif
369 # ifndef this_cpu_and_8
370 #  define this_cpu_and_8(pcp, val)	_this_cpu_generic_to_op((pcp), (val), &=)
371 # endif
372 # define this_cpu_and(pcp, val)		__pcpu_size_call(this_cpu_and_, (pcp), (val))
373 #endif
374 
375 #ifndef this_cpu_or
376 # ifndef this_cpu_or_1
377 #  define this_cpu_or_1(pcp, val)	_this_cpu_generic_to_op((pcp), (val), |=)
378 # endif
379 # ifndef this_cpu_or_2
380 #  define this_cpu_or_2(pcp, val)	_this_cpu_generic_to_op((pcp), (val), |=)
381 # endif
382 # ifndef this_cpu_or_4
383 #  define this_cpu_or_4(pcp, val)	_this_cpu_generic_to_op((pcp), (val), |=)
384 # endif
385 # ifndef this_cpu_or_8
386 #  define this_cpu_or_8(pcp, val)	_this_cpu_generic_to_op((pcp), (val), |=)
387 # endif
388 # define this_cpu_or(pcp, val)		__pcpu_size_call(this_cpu_or_, (pcp), (val))
389 #endif
390 
391 #ifndef this_cpu_xor
392 # ifndef this_cpu_xor_1
393 #  define this_cpu_xor_1(pcp, val)	_this_cpu_generic_to_op((pcp), (val), ^=)
394 # endif
395 # ifndef this_cpu_xor_2
396 #  define this_cpu_xor_2(pcp, val)	_this_cpu_generic_to_op((pcp), (val), ^=)
397 # endif
398 # ifndef this_cpu_xor_4
399 #  define this_cpu_xor_4(pcp, val)	_this_cpu_generic_to_op((pcp), (val), ^=)
400 # endif
401 # ifndef this_cpu_xor_8
402 #  define this_cpu_xor_8(pcp, val)	_this_cpu_generic_to_op((pcp), (val), ^=)
403 # endif
404 # define this_cpu_xor(pcp, val)		__pcpu_size_call(this_cpu_or_, (pcp), (val))
405 #endif
406 
407 /*
408  * Generic percpu operations that do not require preemption handling.
409  * Either we do not care about races or the caller has the
410  * responsibility of handling preemptions issues. Arch code can still
411  * override these instructions since the arch per cpu code may be more
412  * efficient and may actually get race freeness for free (that is the
413  * case for x86 for example).
414  *
415  * If there is no other protection through preempt disable and/or
416  * disabling interupts then one of these RMW operations can show unexpected
417  * behavior because the execution thread was rescheduled on another processor
418  * or an interrupt occurred and the same percpu variable was modified from
419  * the interrupt context.
420  */
421 #ifndef __this_cpu_read
422 # ifndef __this_cpu_read_1
423 #  define __this_cpu_read_1(pcp)	(*__this_cpu_ptr(&(pcp)))
424 # endif
425 # ifndef __this_cpu_read_2
426 #  define __this_cpu_read_2(pcp)	(*__this_cpu_ptr(&(pcp)))
427 # endif
428 # ifndef __this_cpu_read_4
429 #  define __this_cpu_read_4(pcp)	(*__this_cpu_ptr(&(pcp)))
430 # endif
431 # ifndef __this_cpu_read_8
432 #  define __this_cpu_read_8(pcp)	(*__this_cpu_ptr(&(pcp)))
433 # endif
434 # define __this_cpu_read(pcp)	__pcpu_size_call_return(__this_cpu_read_, (pcp))
435 #endif
436 
437 #define __this_cpu_generic_to_op(pcp, val, op)				\
438 do {									\
439 	*__this_cpu_ptr(&(pcp)) op val;					\
440 } while (0)
441 
442 #ifndef __this_cpu_write
443 # ifndef __this_cpu_write_1
444 #  define __this_cpu_write_1(pcp, val)	__this_cpu_generic_to_op((pcp), (val), =)
445 # endif
446 # ifndef __this_cpu_write_2
447 #  define __this_cpu_write_2(pcp, val)	__this_cpu_generic_to_op((pcp), (val), =)
448 # endif
449 # ifndef __this_cpu_write_4
450 #  define __this_cpu_write_4(pcp, val)	__this_cpu_generic_to_op((pcp), (val), =)
451 # endif
452 # ifndef __this_cpu_write_8
453 #  define __this_cpu_write_8(pcp, val)	__this_cpu_generic_to_op((pcp), (val), =)
454 # endif
455 # define __this_cpu_write(pcp, val)	__pcpu_size_call(__this_cpu_write_, (pcp), (val))
456 #endif
457 
458 #ifndef __this_cpu_add
459 # ifndef __this_cpu_add_1
460 #  define __this_cpu_add_1(pcp, val)	__this_cpu_generic_to_op((pcp), (val), +=)
461 # endif
462 # ifndef __this_cpu_add_2
463 #  define __this_cpu_add_2(pcp, val)	__this_cpu_generic_to_op((pcp), (val), +=)
464 # endif
465 # ifndef __this_cpu_add_4
466 #  define __this_cpu_add_4(pcp, val)	__this_cpu_generic_to_op((pcp), (val), +=)
467 # endif
468 # ifndef __this_cpu_add_8
469 #  define __this_cpu_add_8(pcp, val)	__this_cpu_generic_to_op((pcp), (val), +=)
470 # endif
471 # define __this_cpu_add(pcp, val)	__pcpu_size_call(__this_cpu_add_, (pcp), (val))
472 #endif
473 
474 #ifndef __this_cpu_sub
475 # define __this_cpu_sub(pcp, val)	__this_cpu_add((pcp), -(val))
476 #endif
477 
478 #ifndef __this_cpu_inc
479 # define __this_cpu_inc(pcp)		__this_cpu_add((pcp), 1)
480 #endif
481 
482 #ifndef __this_cpu_dec
483 # define __this_cpu_dec(pcp)		__this_cpu_sub((pcp), 1)
484 #endif
485 
486 #ifndef __this_cpu_and
487 # ifndef __this_cpu_and_1
488 #  define __this_cpu_and_1(pcp, val)	__this_cpu_generic_to_op((pcp), (val), &=)
489 # endif
490 # ifndef __this_cpu_and_2
491 #  define __this_cpu_and_2(pcp, val)	__this_cpu_generic_to_op((pcp), (val), &=)
492 # endif
493 # ifndef __this_cpu_and_4
494 #  define __this_cpu_and_4(pcp, val)	__this_cpu_generic_to_op((pcp), (val), &=)
495 # endif
496 # ifndef __this_cpu_and_8
497 #  define __this_cpu_and_8(pcp, val)	__this_cpu_generic_to_op((pcp), (val), &=)
498 # endif
499 # define __this_cpu_and(pcp, val)	__pcpu_size_call(__this_cpu_and_, (pcp), (val))
500 #endif
501 
502 #ifndef __this_cpu_or
503 # ifndef __this_cpu_or_1
504 #  define __this_cpu_or_1(pcp, val)	__this_cpu_generic_to_op((pcp), (val), |=)
505 # endif
506 # ifndef __this_cpu_or_2
507 #  define __this_cpu_or_2(pcp, val)	__this_cpu_generic_to_op((pcp), (val), |=)
508 # endif
509 # ifndef __this_cpu_or_4
510 #  define __this_cpu_or_4(pcp, val)	__this_cpu_generic_to_op((pcp), (val), |=)
511 # endif
512 # ifndef __this_cpu_or_8
513 #  define __this_cpu_or_8(pcp, val)	__this_cpu_generic_to_op((pcp), (val), |=)
514 # endif
515 # define __this_cpu_or(pcp, val)	__pcpu_size_call(__this_cpu_or_, (pcp), (val))
516 #endif
517 
518 #ifndef __this_cpu_xor
519 # ifndef __this_cpu_xor_1
520 #  define __this_cpu_xor_1(pcp, val)	__this_cpu_generic_to_op((pcp), (val), ^=)
521 # endif
522 # ifndef __this_cpu_xor_2
523 #  define __this_cpu_xor_2(pcp, val)	__this_cpu_generic_to_op((pcp), (val), ^=)
524 # endif
525 # ifndef __this_cpu_xor_4
526 #  define __this_cpu_xor_4(pcp, val)	__this_cpu_generic_to_op((pcp), (val), ^=)
527 # endif
528 # ifndef __this_cpu_xor_8
529 #  define __this_cpu_xor_8(pcp, val)	__this_cpu_generic_to_op((pcp), (val), ^=)
530 # endif
531 # define __this_cpu_xor(pcp, val)	__pcpu_size_call(__this_cpu_xor_, (pcp), (val))
532 #endif
533 
534 /*
535  * IRQ safe versions of the per cpu RMW operations. Note that these operations
536  * are *not* safe against modification of the same variable from another
537  * processors (which one gets when using regular atomic operations)
538  . They are guaranteed to be atomic vs. local interrupts and
539  * preemption only.
540  */
541 #define irqsafe_cpu_generic_to_op(pcp, val, op)				\
542 do {									\
543 	unsigned long flags;						\
544 	local_irq_save(flags);						\
545 	*__this_cpu_ptr(&(pcp)) op val;					\
546 	local_irq_restore(flags);					\
547 } while (0)
548 
549 #ifndef irqsafe_cpu_add
550 # ifndef irqsafe_cpu_add_1
551 #  define irqsafe_cpu_add_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
552 # endif
553 # ifndef irqsafe_cpu_add_2
554 #  define irqsafe_cpu_add_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
555 # endif
556 # ifndef irqsafe_cpu_add_4
557 #  define irqsafe_cpu_add_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
558 # endif
559 # ifndef irqsafe_cpu_add_8
560 #  define irqsafe_cpu_add_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
561 # endif
562 # define irqsafe_cpu_add(pcp, val) __pcpu_size_call(irqsafe_cpu_add_, (pcp), (val))
563 #endif
564 
565 #ifndef irqsafe_cpu_sub
566 # define irqsafe_cpu_sub(pcp, val)	irqsafe_cpu_add((pcp), -(val))
567 #endif
568 
569 #ifndef irqsafe_cpu_inc
570 # define irqsafe_cpu_inc(pcp)	irqsafe_cpu_add((pcp), 1)
571 #endif
572 
573 #ifndef irqsafe_cpu_dec
574 # define irqsafe_cpu_dec(pcp)	irqsafe_cpu_sub((pcp), 1)
575 #endif
576 
577 #ifndef irqsafe_cpu_and
578 # ifndef irqsafe_cpu_and_1
579 #  define irqsafe_cpu_and_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
580 # endif
581 # ifndef irqsafe_cpu_and_2
582 #  define irqsafe_cpu_and_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
583 # endif
584 # ifndef irqsafe_cpu_and_4
585 #  define irqsafe_cpu_and_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
586 # endif
587 # ifndef irqsafe_cpu_and_8
588 #  define irqsafe_cpu_and_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
589 # endif
590 # define irqsafe_cpu_and(pcp, val) __pcpu_size_call(irqsafe_cpu_and_, (val))
591 #endif
592 
593 #ifndef irqsafe_cpu_or
594 # ifndef irqsafe_cpu_or_1
595 #  define irqsafe_cpu_or_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
596 # endif
597 # ifndef irqsafe_cpu_or_2
598 #  define irqsafe_cpu_or_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
599 # endif
600 # ifndef irqsafe_cpu_or_4
601 #  define irqsafe_cpu_or_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
602 # endif
603 # ifndef irqsafe_cpu_or_8
604 #  define irqsafe_cpu_or_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
605 # endif
606 # define irqsafe_cpu_or(pcp, val) __pcpu_size_call(irqsafe_cpu_or_, (val))
607 #endif
608 
609 #ifndef irqsafe_cpu_xor
610 # ifndef irqsafe_cpu_xor_1
611 #  define irqsafe_cpu_xor_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
612 # endif
613 # ifndef irqsafe_cpu_xor_2
614 #  define irqsafe_cpu_xor_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
615 # endif
616 # ifndef irqsafe_cpu_xor_4
617 #  define irqsafe_cpu_xor_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
618 # endif
619 # ifndef irqsafe_cpu_xor_8
620 #  define irqsafe_cpu_xor_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
621 # endif
622 # define irqsafe_cpu_xor(pcp, val) __pcpu_size_call(irqsafe_cpu_xor_, (val))
623 #endif
624 
625 #endif /* __LINUX_PERCPU_H */
626