xref: /linux-6.15/include/linux/pagemap.h (revision e71ec0bc)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PAGEMAP_H
3 #define _LINUX_PAGEMAP_H
4 
5 /*
6  * Copyright 1995 Linus Torvalds
7  */
8 #include <linux/mm.h>
9 #include <linux/fs.h>
10 #include <linux/list.h>
11 #include <linux/highmem.h>
12 #include <linux/compiler.h>
13 #include <linux/uaccess.h>
14 #include <linux/gfp.h>
15 #include <linux/bitops.h>
16 #include <linux/hardirq.h> /* for in_interrupt() */
17 #include <linux/hugetlb_inline.h>
18 
19 struct pagevec;
20 
21 static inline bool mapping_empty(struct address_space *mapping)
22 {
23 	return xa_empty(&mapping->i_pages);
24 }
25 
26 /*
27  * Bits in mapping->flags.
28  */
29 enum mapping_flags {
30 	AS_EIO		= 0,	/* IO error on async write */
31 	AS_ENOSPC	= 1,	/* ENOSPC on async write */
32 	AS_MM_ALL_LOCKS	= 2,	/* under mm_take_all_locks() */
33 	AS_UNEVICTABLE	= 3,	/* e.g., ramdisk, SHM_LOCK */
34 	AS_EXITING	= 4, 	/* final truncate in progress */
35 	/* writeback related tags are not used */
36 	AS_NO_WRITEBACK_TAGS = 5,
37 	AS_THP_SUPPORT = 6,	/* THPs supported */
38 };
39 
40 /**
41  * mapping_set_error - record a writeback error in the address_space
42  * @mapping: the mapping in which an error should be set
43  * @error: the error to set in the mapping
44  *
45  * When writeback fails in some way, we must record that error so that
46  * userspace can be informed when fsync and the like are called.  We endeavor
47  * to report errors on any file that was open at the time of the error.  Some
48  * internal callers also need to know when writeback errors have occurred.
49  *
50  * When a writeback error occurs, most filesystems will want to call
51  * mapping_set_error to record the error in the mapping so that it can be
52  * reported when the application calls fsync(2).
53  */
54 static inline void mapping_set_error(struct address_space *mapping, int error)
55 {
56 	if (likely(!error))
57 		return;
58 
59 	/* Record in wb_err for checkers using errseq_t based tracking */
60 	__filemap_set_wb_err(mapping, error);
61 
62 	/* Record it in superblock */
63 	if (mapping->host)
64 		errseq_set(&mapping->host->i_sb->s_wb_err, error);
65 
66 	/* Record it in flags for now, for legacy callers */
67 	if (error == -ENOSPC)
68 		set_bit(AS_ENOSPC, &mapping->flags);
69 	else
70 		set_bit(AS_EIO, &mapping->flags);
71 }
72 
73 static inline void mapping_set_unevictable(struct address_space *mapping)
74 {
75 	set_bit(AS_UNEVICTABLE, &mapping->flags);
76 }
77 
78 static inline void mapping_clear_unevictable(struct address_space *mapping)
79 {
80 	clear_bit(AS_UNEVICTABLE, &mapping->flags);
81 }
82 
83 static inline bool mapping_unevictable(struct address_space *mapping)
84 {
85 	return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags);
86 }
87 
88 static inline void mapping_set_exiting(struct address_space *mapping)
89 {
90 	set_bit(AS_EXITING, &mapping->flags);
91 }
92 
93 static inline int mapping_exiting(struct address_space *mapping)
94 {
95 	return test_bit(AS_EXITING, &mapping->flags);
96 }
97 
98 static inline void mapping_set_no_writeback_tags(struct address_space *mapping)
99 {
100 	set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
101 }
102 
103 static inline int mapping_use_writeback_tags(struct address_space *mapping)
104 {
105 	return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
106 }
107 
108 static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
109 {
110 	return mapping->gfp_mask;
111 }
112 
113 /* Restricts the given gfp_mask to what the mapping allows. */
114 static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
115 		gfp_t gfp_mask)
116 {
117 	return mapping_gfp_mask(mapping) & gfp_mask;
118 }
119 
120 /*
121  * This is non-atomic.  Only to be used before the mapping is activated.
122  * Probably needs a barrier...
123  */
124 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
125 {
126 	m->gfp_mask = mask;
127 }
128 
129 static inline bool mapping_thp_support(struct address_space *mapping)
130 {
131 	return test_bit(AS_THP_SUPPORT, &mapping->flags);
132 }
133 
134 static inline int filemap_nr_thps(struct address_space *mapping)
135 {
136 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
137 	return atomic_read(&mapping->nr_thps);
138 #else
139 	return 0;
140 #endif
141 }
142 
143 static inline void filemap_nr_thps_inc(struct address_space *mapping)
144 {
145 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
146 	if (!mapping_thp_support(mapping))
147 		atomic_inc(&mapping->nr_thps);
148 #else
149 	WARN_ON_ONCE(1);
150 #endif
151 }
152 
153 static inline void filemap_nr_thps_dec(struct address_space *mapping)
154 {
155 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
156 	if (!mapping_thp_support(mapping))
157 		atomic_dec(&mapping->nr_thps);
158 #else
159 	WARN_ON_ONCE(1);
160 #endif
161 }
162 
163 void release_pages(struct page **pages, int nr);
164 
165 /*
166  * For file cache pages, return the address_space, otherwise return NULL
167  */
168 static inline struct address_space *page_mapping_file(struct page *page)
169 {
170 	if (unlikely(PageSwapCache(page)))
171 		return NULL;
172 	return page_mapping(page);
173 }
174 
175 /*
176  * speculatively take a reference to a page.
177  * If the page is free (_refcount == 0), then _refcount is untouched, and 0
178  * is returned. Otherwise, _refcount is incremented by 1 and 1 is returned.
179  *
180  * This function must be called inside the same rcu_read_lock() section as has
181  * been used to lookup the page in the pagecache radix-tree (or page table):
182  * this allows allocators to use a synchronize_rcu() to stabilize _refcount.
183  *
184  * Unless an RCU grace period has passed, the count of all pages coming out
185  * of the allocator must be considered unstable. page_count may return higher
186  * than expected, and put_page must be able to do the right thing when the
187  * page has been finished with, no matter what it is subsequently allocated
188  * for (because put_page is what is used here to drop an invalid speculative
189  * reference).
190  *
191  * This is the interesting part of the lockless pagecache (and lockless
192  * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
193  * has the following pattern:
194  * 1. find page in radix tree
195  * 2. conditionally increment refcount
196  * 3. check the page is still in pagecache (if no, goto 1)
197  *
198  * Remove-side that cares about stability of _refcount (eg. reclaim) has the
199  * following (with the i_pages lock held):
200  * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
201  * B. remove page from pagecache
202  * C. free the page
203  *
204  * There are 2 critical interleavings that matter:
205  * - 2 runs before A: in this case, A sees elevated refcount and bails out
206  * - A runs before 2: in this case, 2 sees zero refcount and retries;
207  *   subsequently, B will complete and 1 will find no page, causing the
208  *   lookup to return NULL.
209  *
210  * It is possible that between 1 and 2, the page is removed then the exact same
211  * page is inserted into the same position in pagecache. That's OK: the
212  * old find_get_page using a lock could equally have run before or after
213  * such a re-insertion, depending on order that locks are granted.
214  *
215  * Lookups racing against pagecache insertion isn't a big problem: either 1
216  * will find the page or it will not. Likewise, the old find_get_page could run
217  * either before the insertion or afterwards, depending on timing.
218  */
219 static inline int __page_cache_add_speculative(struct page *page, int count)
220 {
221 #ifdef CONFIG_TINY_RCU
222 # ifdef CONFIG_PREEMPT_COUNT
223 	VM_BUG_ON(!in_atomic() && !irqs_disabled());
224 # endif
225 	/*
226 	 * Preempt must be disabled here - we rely on rcu_read_lock doing
227 	 * this for us.
228 	 *
229 	 * Pagecache won't be truncated from interrupt context, so if we have
230 	 * found a page in the radix tree here, we have pinned its refcount by
231 	 * disabling preempt, and hence no need for the "speculative get" that
232 	 * SMP requires.
233 	 */
234 	VM_BUG_ON_PAGE(page_count(page) == 0, page);
235 	page_ref_add(page, count);
236 
237 #else
238 	if (unlikely(!page_ref_add_unless(page, count, 0))) {
239 		/*
240 		 * Either the page has been freed, or will be freed.
241 		 * In either case, retry here and the caller should
242 		 * do the right thing (see comments above).
243 		 */
244 		return 0;
245 	}
246 #endif
247 	VM_BUG_ON_PAGE(PageTail(page), page);
248 
249 	return 1;
250 }
251 
252 static inline int page_cache_get_speculative(struct page *page)
253 {
254 	return __page_cache_add_speculative(page, 1);
255 }
256 
257 static inline int page_cache_add_speculative(struct page *page, int count)
258 {
259 	return __page_cache_add_speculative(page, count);
260 }
261 
262 /**
263  * attach_page_private - Attach private data to a page.
264  * @page: Page to attach data to.
265  * @data: Data to attach to page.
266  *
267  * Attaching private data to a page increments the page's reference count.
268  * The data must be detached before the page will be freed.
269  */
270 static inline void attach_page_private(struct page *page, void *data)
271 {
272 	get_page(page);
273 	set_page_private(page, (unsigned long)data);
274 	SetPagePrivate(page);
275 }
276 
277 /**
278  * detach_page_private - Detach private data from a page.
279  * @page: Page to detach data from.
280  *
281  * Removes the data that was previously attached to the page and decrements
282  * the refcount on the page.
283  *
284  * Return: Data that was attached to the page.
285  */
286 static inline void *detach_page_private(struct page *page)
287 {
288 	void *data = (void *)page_private(page);
289 
290 	if (!PagePrivate(page))
291 		return NULL;
292 	ClearPagePrivate(page);
293 	set_page_private(page, 0);
294 	put_page(page);
295 
296 	return data;
297 }
298 
299 #ifdef CONFIG_NUMA
300 extern struct page *__page_cache_alloc(gfp_t gfp);
301 #else
302 static inline struct page *__page_cache_alloc(gfp_t gfp)
303 {
304 	return alloc_pages(gfp, 0);
305 }
306 #endif
307 
308 static inline struct page *page_cache_alloc(struct address_space *x)
309 {
310 	return __page_cache_alloc(mapping_gfp_mask(x));
311 }
312 
313 static inline gfp_t readahead_gfp_mask(struct address_space *x)
314 {
315 	return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN;
316 }
317 
318 typedef int filler_t(void *, struct page *);
319 
320 pgoff_t page_cache_next_miss(struct address_space *mapping,
321 			     pgoff_t index, unsigned long max_scan);
322 pgoff_t page_cache_prev_miss(struct address_space *mapping,
323 			     pgoff_t index, unsigned long max_scan);
324 
325 #define FGP_ACCESSED		0x00000001
326 #define FGP_LOCK		0x00000002
327 #define FGP_CREAT		0x00000004
328 #define FGP_WRITE		0x00000008
329 #define FGP_NOFS		0x00000010
330 #define FGP_NOWAIT		0x00000020
331 #define FGP_FOR_MMAP		0x00000040
332 #define FGP_HEAD		0x00000080
333 #define FGP_ENTRY		0x00000100
334 
335 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
336 		int fgp_flags, gfp_t cache_gfp_mask);
337 
338 /**
339  * find_get_page - find and get a page reference
340  * @mapping: the address_space to search
341  * @offset: the page index
342  *
343  * Looks up the page cache slot at @mapping & @offset.  If there is a
344  * page cache page, it is returned with an increased refcount.
345  *
346  * Otherwise, %NULL is returned.
347  */
348 static inline struct page *find_get_page(struct address_space *mapping,
349 					pgoff_t offset)
350 {
351 	return pagecache_get_page(mapping, offset, 0, 0);
352 }
353 
354 static inline struct page *find_get_page_flags(struct address_space *mapping,
355 					pgoff_t offset, int fgp_flags)
356 {
357 	return pagecache_get_page(mapping, offset, fgp_flags, 0);
358 }
359 
360 /**
361  * find_lock_page - locate, pin and lock a pagecache page
362  * @mapping: the address_space to search
363  * @index: the page index
364  *
365  * Looks up the page cache entry at @mapping & @index.  If there is a
366  * page cache page, it is returned locked and with an increased
367  * refcount.
368  *
369  * Context: May sleep.
370  * Return: A struct page or %NULL if there is no page in the cache for this
371  * index.
372  */
373 static inline struct page *find_lock_page(struct address_space *mapping,
374 					pgoff_t index)
375 {
376 	return pagecache_get_page(mapping, index, FGP_LOCK, 0);
377 }
378 
379 /**
380  * find_lock_head - Locate, pin and lock a pagecache page.
381  * @mapping: The address_space to search.
382  * @index: The page index.
383  *
384  * Looks up the page cache entry at @mapping & @index.  If there is a
385  * page cache page, its head page is returned locked and with an increased
386  * refcount.
387  *
388  * Context: May sleep.
389  * Return: A struct page which is !PageTail, or %NULL if there is no page
390  * in the cache for this index.
391  */
392 static inline struct page *find_lock_head(struct address_space *mapping,
393 					pgoff_t index)
394 {
395 	return pagecache_get_page(mapping, index, FGP_LOCK | FGP_HEAD, 0);
396 }
397 
398 /**
399  * find_or_create_page - locate or add a pagecache page
400  * @mapping: the page's address_space
401  * @index: the page's index into the mapping
402  * @gfp_mask: page allocation mode
403  *
404  * Looks up the page cache slot at @mapping & @offset.  If there is a
405  * page cache page, it is returned locked and with an increased
406  * refcount.
407  *
408  * If the page is not present, a new page is allocated using @gfp_mask
409  * and added to the page cache and the VM's LRU list.  The page is
410  * returned locked and with an increased refcount.
411  *
412  * On memory exhaustion, %NULL is returned.
413  *
414  * find_or_create_page() may sleep, even if @gfp_flags specifies an
415  * atomic allocation!
416  */
417 static inline struct page *find_or_create_page(struct address_space *mapping,
418 					pgoff_t index, gfp_t gfp_mask)
419 {
420 	return pagecache_get_page(mapping, index,
421 					FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
422 					gfp_mask);
423 }
424 
425 /**
426  * grab_cache_page_nowait - returns locked page at given index in given cache
427  * @mapping: target address_space
428  * @index: the page index
429  *
430  * Same as grab_cache_page(), but do not wait if the page is unavailable.
431  * This is intended for speculative data generators, where the data can
432  * be regenerated if the page couldn't be grabbed.  This routine should
433  * be safe to call while holding the lock for another page.
434  *
435  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
436  * and deadlock against the caller's locked page.
437  */
438 static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
439 				pgoff_t index)
440 {
441 	return pagecache_get_page(mapping, index,
442 			FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
443 			mapping_gfp_mask(mapping));
444 }
445 
446 /* Does this page contain this index? */
447 static inline bool thp_contains(struct page *head, pgoff_t index)
448 {
449 	/* HugeTLBfs indexes the page cache in units of hpage_size */
450 	if (PageHuge(head))
451 		return head->index == index;
452 	return page_index(head) == (index & ~(thp_nr_pages(head) - 1UL));
453 }
454 
455 /*
456  * Given the page we found in the page cache, return the page corresponding
457  * to this index in the file
458  */
459 static inline struct page *find_subpage(struct page *head, pgoff_t index)
460 {
461 	/* HugeTLBfs wants the head page regardless */
462 	if (PageHuge(head))
463 		return head;
464 
465 	return head + (index & (thp_nr_pages(head) - 1));
466 }
467 
468 unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
469 		pgoff_t end, struct pagevec *pvec, pgoff_t *indices);
470 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
471 			pgoff_t end, unsigned int nr_pages,
472 			struct page **pages);
473 static inline unsigned find_get_pages(struct address_space *mapping,
474 			pgoff_t *start, unsigned int nr_pages,
475 			struct page **pages)
476 {
477 	return find_get_pages_range(mapping, start, (pgoff_t)-1, nr_pages,
478 				    pages);
479 }
480 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
481 			       unsigned int nr_pages, struct page **pages);
482 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
483 			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
484 			struct page **pages);
485 static inline unsigned find_get_pages_tag(struct address_space *mapping,
486 			pgoff_t *index, xa_mark_t tag, unsigned int nr_pages,
487 			struct page **pages)
488 {
489 	return find_get_pages_range_tag(mapping, index, (pgoff_t)-1, tag,
490 					nr_pages, pages);
491 }
492 
493 struct page *grab_cache_page_write_begin(struct address_space *mapping,
494 			pgoff_t index, unsigned flags);
495 
496 /*
497  * Returns locked page at given index in given cache, creating it if needed.
498  */
499 static inline struct page *grab_cache_page(struct address_space *mapping,
500 								pgoff_t index)
501 {
502 	return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
503 }
504 
505 extern struct page * read_cache_page(struct address_space *mapping,
506 				pgoff_t index, filler_t *filler, void *data);
507 extern struct page * read_cache_page_gfp(struct address_space *mapping,
508 				pgoff_t index, gfp_t gfp_mask);
509 extern int read_cache_pages(struct address_space *mapping,
510 		struct list_head *pages, filler_t *filler, void *data);
511 
512 static inline struct page *read_mapping_page(struct address_space *mapping,
513 				pgoff_t index, void *data)
514 {
515 	return read_cache_page(mapping, index, NULL, data);
516 }
517 
518 /*
519  * Get index of the page within radix-tree (but not for hugetlb pages).
520  * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE)
521  */
522 static inline pgoff_t page_to_index(struct page *page)
523 {
524 	pgoff_t pgoff;
525 
526 	if (likely(!PageTransTail(page)))
527 		return page->index;
528 
529 	/*
530 	 *  We don't initialize ->index for tail pages: calculate based on
531 	 *  head page
532 	 */
533 	pgoff = compound_head(page)->index;
534 	pgoff += page - compound_head(page);
535 	return pgoff;
536 }
537 
538 extern pgoff_t hugetlb_basepage_index(struct page *page);
539 
540 /*
541  * Get the offset in PAGE_SIZE (even for hugetlb pages).
542  * (TODO: hugetlb pages should have ->index in PAGE_SIZE)
543  */
544 static inline pgoff_t page_to_pgoff(struct page *page)
545 {
546 	if (unlikely(PageHuge(page)))
547 		return hugetlb_basepage_index(page);
548 	return page_to_index(page);
549 }
550 
551 /*
552  * Return byte-offset into filesystem object for page.
553  */
554 static inline loff_t page_offset(struct page *page)
555 {
556 	return ((loff_t)page->index) << PAGE_SHIFT;
557 }
558 
559 static inline loff_t page_file_offset(struct page *page)
560 {
561 	return ((loff_t)page_index(page)) << PAGE_SHIFT;
562 }
563 
564 extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
565 				     unsigned long address);
566 
567 static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
568 					unsigned long address)
569 {
570 	pgoff_t pgoff;
571 	if (unlikely(is_vm_hugetlb_page(vma)))
572 		return linear_hugepage_index(vma, address);
573 	pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
574 	pgoff += vma->vm_pgoff;
575 	return pgoff;
576 }
577 
578 struct wait_page_key {
579 	struct page *page;
580 	int bit_nr;
581 	int page_match;
582 };
583 
584 struct wait_page_queue {
585 	struct page *page;
586 	int bit_nr;
587 	wait_queue_entry_t wait;
588 };
589 
590 static inline bool wake_page_match(struct wait_page_queue *wait_page,
591 				  struct wait_page_key *key)
592 {
593 	if (wait_page->page != key->page)
594 	       return false;
595 	key->page_match = 1;
596 
597 	if (wait_page->bit_nr != key->bit_nr)
598 		return false;
599 
600 	return true;
601 }
602 
603 extern void __lock_page(struct page *page);
604 extern int __lock_page_killable(struct page *page);
605 extern int __lock_page_async(struct page *page, struct wait_page_queue *wait);
606 extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
607 				unsigned int flags);
608 extern void unlock_page(struct page *page);
609 
610 /*
611  * Return true if the page was successfully locked
612  */
613 static inline int trylock_page(struct page *page)
614 {
615 	page = compound_head(page);
616 	return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
617 }
618 
619 /*
620  * lock_page may only be called if we have the page's inode pinned.
621  */
622 static inline void lock_page(struct page *page)
623 {
624 	might_sleep();
625 	if (!trylock_page(page))
626 		__lock_page(page);
627 }
628 
629 /*
630  * lock_page_killable is like lock_page but can be interrupted by fatal
631  * signals.  It returns 0 if it locked the page and -EINTR if it was
632  * killed while waiting.
633  */
634 static inline int lock_page_killable(struct page *page)
635 {
636 	might_sleep();
637 	if (!trylock_page(page))
638 		return __lock_page_killable(page);
639 	return 0;
640 }
641 
642 /*
643  * lock_page_async - Lock the page, unless this would block. If the page
644  * is already locked, then queue a callback when the page becomes unlocked.
645  * This callback can then retry the operation.
646  *
647  * Returns 0 if the page is locked successfully, or -EIOCBQUEUED if the page
648  * was already locked and the callback defined in 'wait' was queued.
649  */
650 static inline int lock_page_async(struct page *page,
651 				  struct wait_page_queue *wait)
652 {
653 	if (!trylock_page(page))
654 		return __lock_page_async(page, wait);
655 	return 0;
656 }
657 
658 /*
659  * lock_page_or_retry - Lock the page, unless this would block and the
660  * caller indicated that it can handle a retry.
661  *
662  * Return value and mmap_lock implications depend on flags; see
663  * __lock_page_or_retry().
664  */
665 static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm,
666 				     unsigned int flags)
667 {
668 	might_sleep();
669 	return trylock_page(page) || __lock_page_or_retry(page, mm, flags);
670 }
671 
672 /*
673  * This is exported only for wait_on_page_locked/wait_on_page_writeback, etc.,
674  * and should not be used directly.
675  */
676 extern void wait_on_page_bit(struct page *page, int bit_nr);
677 extern int wait_on_page_bit_killable(struct page *page, int bit_nr);
678 
679 /*
680  * Wait for a page to be unlocked.
681  *
682  * This must be called with the caller "holding" the page,
683  * ie with increased "page->count" so that the page won't
684  * go away during the wait..
685  */
686 static inline void wait_on_page_locked(struct page *page)
687 {
688 	if (PageLocked(page))
689 		wait_on_page_bit(compound_head(page), PG_locked);
690 }
691 
692 static inline int wait_on_page_locked_killable(struct page *page)
693 {
694 	if (!PageLocked(page))
695 		return 0;
696 	return wait_on_page_bit_killable(compound_head(page), PG_locked);
697 }
698 
699 int put_and_wait_on_page_locked(struct page *page, int state);
700 void wait_on_page_writeback(struct page *page);
701 int wait_on_page_writeback_killable(struct page *page);
702 extern void end_page_writeback(struct page *page);
703 void wait_for_stable_page(struct page *page);
704 
705 void __set_page_dirty(struct page *, struct address_space *, int warn);
706 int __set_page_dirty_nobuffers(struct page *page);
707 int __set_page_dirty_no_writeback(struct page *page);
708 
709 void page_endio(struct page *page, bool is_write, int err);
710 
711 /**
712  * set_page_private_2 - Set PG_private_2 on a page and take a ref
713  * @page: The page.
714  *
715  * Set the PG_private_2 flag on a page and take the reference needed for the VM
716  * to handle its lifetime correctly.  This sets the flag and takes the
717  * reference unconditionally, so care must be taken not to set the flag again
718  * if it's already set.
719  */
720 static inline void set_page_private_2(struct page *page)
721 {
722 	page = compound_head(page);
723 	get_page(page);
724 	SetPagePrivate2(page);
725 }
726 
727 void end_page_private_2(struct page *page);
728 void wait_on_page_private_2(struct page *page);
729 int wait_on_page_private_2_killable(struct page *page);
730 
731 /*
732  * Add an arbitrary waiter to a page's wait queue
733  */
734 extern void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter);
735 
736 /*
737  * Fault everything in given userspace address range in.
738  */
739 static inline int fault_in_pages_writeable(char __user *uaddr, int size)
740 {
741 	char __user *end = uaddr + size - 1;
742 
743 	if (unlikely(size == 0))
744 		return 0;
745 
746 	if (unlikely(uaddr > end))
747 		return -EFAULT;
748 	/*
749 	 * Writing zeroes into userspace here is OK, because we know that if
750 	 * the zero gets there, we'll be overwriting it.
751 	 */
752 	do {
753 		if (unlikely(__put_user(0, uaddr) != 0))
754 			return -EFAULT;
755 		uaddr += PAGE_SIZE;
756 	} while (uaddr <= end);
757 
758 	/* Check whether the range spilled into the next page. */
759 	if (((unsigned long)uaddr & PAGE_MASK) ==
760 			((unsigned long)end & PAGE_MASK))
761 		return __put_user(0, end);
762 
763 	return 0;
764 }
765 
766 static inline int fault_in_pages_readable(const char __user *uaddr, int size)
767 {
768 	volatile char c;
769 	const char __user *end = uaddr + size - 1;
770 
771 	if (unlikely(size == 0))
772 		return 0;
773 
774 	if (unlikely(uaddr > end))
775 		return -EFAULT;
776 
777 	do {
778 		if (unlikely(__get_user(c, uaddr) != 0))
779 			return -EFAULT;
780 		uaddr += PAGE_SIZE;
781 	} while (uaddr <= end);
782 
783 	/* Check whether the range spilled into the next page. */
784 	if (((unsigned long)uaddr & PAGE_MASK) ==
785 			((unsigned long)end & PAGE_MASK)) {
786 		return __get_user(c, end);
787 	}
788 
789 	(void)c;
790 	return 0;
791 }
792 
793 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
794 				pgoff_t index, gfp_t gfp_mask);
795 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
796 				pgoff_t index, gfp_t gfp_mask);
797 extern void delete_from_page_cache(struct page *page);
798 extern void __delete_from_page_cache(struct page *page, void *shadow);
799 void replace_page_cache_page(struct page *old, struct page *new);
800 void delete_from_page_cache_batch(struct address_space *mapping,
801 				  struct pagevec *pvec);
802 loff_t mapping_seek_hole_data(struct address_space *, loff_t start, loff_t end,
803 		int whence);
804 
805 /*
806  * Like add_to_page_cache_locked, but used to add newly allocated pages:
807  * the page is new, so we can just run __SetPageLocked() against it.
808  */
809 static inline int add_to_page_cache(struct page *page,
810 		struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
811 {
812 	int error;
813 
814 	__SetPageLocked(page);
815 	error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
816 	if (unlikely(error))
817 		__ClearPageLocked(page);
818 	return error;
819 }
820 
821 /**
822  * struct readahead_control - Describes a readahead request.
823  *
824  * A readahead request is for consecutive pages.  Filesystems which
825  * implement the ->readahead method should call readahead_page() or
826  * readahead_page_batch() in a loop and attempt to start I/O against
827  * each page in the request.
828  *
829  * Most of the fields in this struct are private and should be accessed
830  * by the functions below.
831  *
832  * @file: The file, used primarily by network filesystems for authentication.
833  *	  May be NULL if invoked internally by the filesystem.
834  * @mapping: Readahead this filesystem object.
835  * @ra: File readahead state.  May be NULL.
836  */
837 struct readahead_control {
838 	struct file *file;
839 	struct address_space *mapping;
840 	struct file_ra_state *ra;
841 /* private: use the readahead_* accessors instead */
842 	pgoff_t _index;
843 	unsigned int _nr_pages;
844 	unsigned int _batch_count;
845 };
846 
847 #define DEFINE_READAHEAD(ractl, f, r, m, i)				\
848 	struct readahead_control ractl = {				\
849 		.file = f,						\
850 		.mapping = m,						\
851 		.ra = r,						\
852 		._index = i,						\
853 	}
854 
855 #define VM_READAHEAD_PAGES	(SZ_128K / PAGE_SIZE)
856 
857 void page_cache_ra_unbounded(struct readahead_control *,
858 		unsigned long nr_to_read, unsigned long lookahead_count);
859 void page_cache_sync_ra(struct readahead_control *, unsigned long req_count);
860 void page_cache_async_ra(struct readahead_control *, struct page *,
861 		unsigned long req_count);
862 void readahead_expand(struct readahead_control *ractl,
863 		      loff_t new_start, size_t new_len);
864 
865 /**
866  * page_cache_sync_readahead - generic file readahead
867  * @mapping: address_space which holds the pagecache and I/O vectors
868  * @ra: file_ra_state which holds the readahead state
869  * @file: Used by the filesystem for authentication.
870  * @index: Index of first page to be read.
871  * @req_count: Total number of pages being read by the caller.
872  *
873  * page_cache_sync_readahead() should be called when a cache miss happened:
874  * it will submit the read.  The readahead logic may decide to piggyback more
875  * pages onto the read request if access patterns suggest it will improve
876  * performance.
877  */
878 static inline
879 void page_cache_sync_readahead(struct address_space *mapping,
880 		struct file_ra_state *ra, struct file *file, pgoff_t index,
881 		unsigned long req_count)
882 {
883 	DEFINE_READAHEAD(ractl, file, ra, mapping, index);
884 	page_cache_sync_ra(&ractl, req_count);
885 }
886 
887 /**
888  * page_cache_async_readahead - file readahead for marked pages
889  * @mapping: address_space which holds the pagecache and I/O vectors
890  * @ra: file_ra_state which holds the readahead state
891  * @file: Used by the filesystem for authentication.
892  * @page: The page at @index which triggered the readahead call.
893  * @index: Index of first page to be read.
894  * @req_count: Total number of pages being read by the caller.
895  *
896  * page_cache_async_readahead() should be called when a page is used which
897  * is marked as PageReadahead; this is a marker to suggest that the application
898  * has used up enough of the readahead window that we should start pulling in
899  * more pages.
900  */
901 static inline
902 void page_cache_async_readahead(struct address_space *mapping,
903 		struct file_ra_state *ra, struct file *file,
904 		struct page *page, pgoff_t index, unsigned long req_count)
905 {
906 	DEFINE_READAHEAD(ractl, file, ra, mapping, index);
907 	page_cache_async_ra(&ractl, page, req_count);
908 }
909 
910 /**
911  * readahead_page - Get the next page to read.
912  * @rac: The current readahead request.
913  *
914  * Context: The page is locked and has an elevated refcount.  The caller
915  * should decreases the refcount once the page has been submitted for I/O
916  * and unlock the page once all I/O to that page has completed.
917  * Return: A pointer to the next page, or %NULL if we are done.
918  */
919 static inline struct page *readahead_page(struct readahead_control *rac)
920 {
921 	struct page *page;
922 
923 	BUG_ON(rac->_batch_count > rac->_nr_pages);
924 	rac->_nr_pages -= rac->_batch_count;
925 	rac->_index += rac->_batch_count;
926 
927 	if (!rac->_nr_pages) {
928 		rac->_batch_count = 0;
929 		return NULL;
930 	}
931 
932 	page = xa_load(&rac->mapping->i_pages, rac->_index);
933 	VM_BUG_ON_PAGE(!PageLocked(page), page);
934 	rac->_batch_count = thp_nr_pages(page);
935 
936 	return page;
937 }
938 
939 static inline unsigned int __readahead_batch(struct readahead_control *rac,
940 		struct page **array, unsigned int array_sz)
941 {
942 	unsigned int i = 0;
943 	XA_STATE(xas, &rac->mapping->i_pages, 0);
944 	struct page *page;
945 
946 	BUG_ON(rac->_batch_count > rac->_nr_pages);
947 	rac->_nr_pages -= rac->_batch_count;
948 	rac->_index += rac->_batch_count;
949 	rac->_batch_count = 0;
950 
951 	xas_set(&xas, rac->_index);
952 	rcu_read_lock();
953 	xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) {
954 		if (xas_retry(&xas, page))
955 			continue;
956 		VM_BUG_ON_PAGE(!PageLocked(page), page);
957 		VM_BUG_ON_PAGE(PageTail(page), page);
958 		array[i++] = page;
959 		rac->_batch_count += thp_nr_pages(page);
960 
961 		/*
962 		 * The page cache isn't using multi-index entries yet,
963 		 * so the xas cursor needs to be manually moved to the
964 		 * next index.  This can be removed once the page cache
965 		 * is converted.
966 		 */
967 		if (PageHead(page))
968 			xas_set(&xas, rac->_index + rac->_batch_count);
969 
970 		if (i == array_sz)
971 			break;
972 	}
973 	rcu_read_unlock();
974 
975 	return i;
976 }
977 
978 /**
979  * readahead_page_batch - Get a batch of pages to read.
980  * @rac: The current readahead request.
981  * @array: An array of pointers to struct page.
982  *
983  * Context: The pages are locked and have an elevated refcount.  The caller
984  * should decreases the refcount once the page has been submitted for I/O
985  * and unlock the page once all I/O to that page has completed.
986  * Return: The number of pages placed in the array.  0 indicates the request
987  * is complete.
988  */
989 #define readahead_page_batch(rac, array)				\
990 	__readahead_batch(rac, array, ARRAY_SIZE(array))
991 
992 /**
993  * readahead_pos - The byte offset into the file of this readahead request.
994  * @rac: The readahead request.
995  */
996 static inline loff_t readahead_pos(struct readahead_control *rac)
997 {
998 	return (loff_t)rac->_index * PAGE_SIZE;
999 }
1000 
1001 /**
1002  * readahead_length - The number of bytes in this readahead request.
1003  * @rac: The readahead request.
1004  */
1005 static inline size_t readahead_length(struct readahead_control *rac)
1006 {
1007 	return rac->_nr_pages * PAGE_SIZE;
1008 }
1009 
1010 /**
1011  * readahead_index - The index of the first page in this readahead request.
1012  * @rac: The readahead request.
1013  */
1014 static inline pgoff_t readahead_index(struct readahead_control *rac)
1015 {
1016 	return rac->_index;
1017 }
1018 
1019 /**
1020  * readahead_count - The number of pages in this readahead request.
1021  * @rac: The readahead request.
1022  */
1023 static inline unsigned int readahead_count(struct readahead_control *rac)
1024 {
1025 	return rac->_nr_pages;
1026 }
1027 
1028 /**
1029  * readahead_batch_length - The number of bytes in the current batch.
1030  * @rac: The readahead request.
1031  */
1032 static inline size_t readahead_batch_length(struct readahead_control *rac)
1033 {
1034 	return rac->_batch_count * PAGE_SIZE;
1035 }
1036 
1037 static inline unsigned long dir_pages(struct inode *inode)
1038 {
1039 	return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
1040 			       PAGE_SHIFT;
1041 }
1042 
1043 /**
1044  * page_mkwrite_check_truncate - check if page was truncated
1045  * @page: the page to check
1046  * @inode: the inode to check the page against
1047  *
1048  * Returns the number of bytes in the page up to EOF,
1049  * or -EFAULT if the page was truncated.
1050  */
1051 static inline int page_mkwrite_check_truncate(struct page *page,
1052 					      struct inode *inode)
1053 {
1054 	loff_t size = i_size_read(inode);
1055 	pgoff_t index = size >> PAGE_SHIFT;
1056 	int offset = offset_in_page(size);
1057 
1058 	if (page->mapping != inode->i_mapping)
1059 		return -EFAULT;
1060 
1061 	/* page is wholly inside EOF */
1062 	if (page->index < index)
1063 		return PAGE_SIZE;
1064 	/* page is wholly past EOF */
1065 	if (page->index > index || !offset)
1066 		return -EFAULT;
1067 	/* page is partially inside EOF */
1068 	return offset;
1069 }
1070 
1071 /**
1072  * i_blocks_per_page - How many blocks fit in this page.
1073  * @inode: The inode which contains the blocks.
1074  * @page: The page (head page if the page is a THP).
1075  *
1076  * If the block size is larger than the size of this page, return zero.
1077  *
1078  * Context: The caller should hold a refcount on the page to prevent it
1079  * from being split.
1080  * Return: The number of filesystem blocks covered by this page.
1081  */
1082 static inline
1083 unsigned int i_blocks_per_page(struct inode *inode, struct page *page)
1084 {
1085 	return thp_size(page) >> inode->i_blkbits;
1086 }
1087 #endif /* _LINUX_PAGEMAP_H */
1088