1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_PAGEMAP_H 3 #define _LINUX_PAGEMAP_H 4 5 /* 6 * Copyright 1995 Linus Torvalds 7 */ 8 #include <linux/mm.h> 9 #include <linux/fs.h> 10 #include <linux/list.h> 11 #include <linux/highmem.h> 12 #include <linux/compiler.h> 13 #include <linux/uaccess.h> 14 #include <linux/gfp.h> 15 #include <linux/bitops.h> 16 #include <linux/hardirq.h> /* for in_interrupt() */ 17 #include <linux/hugetlb_inline.h> 18 19 struct pagevec; 20 21 static inline bool mapping_empty(struct address_space *mapping) 22 { 23 return xa_empty(&mapping->i_pages); 24 } 25 26 /* 27 * Bits in mapping->flags. 28 */ 29 enum mapping_flags { 30 AS_EIO = 0, /* IO error on async write */ 31 AS_ENOSPC = 1, /* ENOSPC on async write */ 32 AS_MM_ALL_LOCKS = 2, /* under mm_take_all_locks() */ 33 AS_UNEVICTABLE = 3, /* e.g., ramdisk, SHM_LOCK */ 34 AS_EXITING = 4, /* final truncate in progress */ 35 /* writeback related tags are not used */ 36 AS_NO_WRITEBACK_TAGS = 5, 37 AS_THP_SUPPORT = 6, /* THPs supported */ 38 }; 39 40 /** 41 * mapping_set_error - record a writeback error in the address_space 42 * @mapping: the mapping in which an error should be set 43 * @error: the error to set in the mapping 44 * 45 * When writeback fails in some way, we must record that error so that 46 * userspace can be informed when fsync and the like are called. We endeavor 47 * to report errors on any file that was open at the time of the error. Some 48 * internal callers also need to know when writeback errors have occurred. 49 * 50 * When a writeback error occurs, most filesystems will want to call 51 * mapping_set_error to record the error in the mapping so that it can be 52 * reported when the application calls fsync(2). 53 */ 54 static inline void mapping_set_error(struct address_space *mapping, int error) 55 { 56 if (likely(!error)) 57 return; 58 59 /* Record in wb_err for checkers using errseq_t based tracking */ 60 __filemap_set_wb_err(mapping, error); 61 62 /* Record it in superblock */ 63 if (mapping->host) 64 errseq_set(&mapping->host->i_sb->s_wb_err, error); 65 66 /* Record it in flags for now, for legacy callers */ 67 if (error == -ENOSPC) 68 set_bit(AS_ENOSPC, &mapping->flags); 69 else 70 set_bit(AS_EIO, &mapping->flags); 71 } 72 73 static inline void mapping_set_unevictable(struct address_space *mapping) 74 { 75 set_bit(AS_UNEVICTABLE, &mapping->flags); 76 } 77 78 static inline void mapping_clear_unevictable(struct address_space *mapping) 79 { 80 clear_bit(AS_UNEVICTABLE, &mapping->flags); 81 } 82 83 static inline bool mapping_unevictable(struct address_space *mapping) 84 { 85 return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags); 86 } 87 88 static inline void mapping_set_exiting(struct address_space *mapping) 89 { 90 set_bit(AS_EXITING, &mapping->flags); 91 } 92 93 static inline int mapping_exiting(struct address_space *mapping) 94 { 95 return test_bit(AS_EXITING, &mapping->flags); 96 } 97 98 static inline void mapping_set_no_writeback_tags(struct address_space *mapping) 99 { 100 set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); 101 } 102 103 static inline int mapping_use_writeback_tags(struct address_space *mapping) 104 { 105 return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); 106 } 107 108 static inline gfp_t mapping_gfp_mask(struct address_space * mapping) 109 { 110 return mapping->gfp_mask; 111 } 112 113 /* Restricts the given gfp_mask to what the mapping allows. */ 114 static inline gfp_t mapping_gfp_constraint(struct address_space *mapping, 115 gfp_t gfp_mask) 116 { 117 return mapping_gfp_mask(mapping) & gfp_mask; 118 } 119 120 /* 121 * This is non-atomic. Only to be used before the mapping is activated. 122 * Probably needs a barrier... 123 */ 124 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask) 125 { 126 m->gfp_mask = mask; 127 } 128 129 static inline bool mapping_thp_support(struct address_space *mapping) 130 { 131 return test_bit(AS_THP_SUPPORT, &mapping->flags); 132 } 133 134 static inline int filemap_nr_thps(struct address_space *mapping) 135 { 136 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 137 return atomic_read(&mapping->nr_thps); 138 #else 139 return 0; 140 #endif 141 } 142 143 static inline void filemap_nr_thps_inc(struct address_space *mapping) 144 { 145 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 146 if (!mapping_thp_support(mapping)) 147 atomic_inc(&mapping->nr_thps); 148 #else 149 WARN_ON_ONCE(1); 150 #endif 151 } 152 153 static inline void filemap_nr_thps_dec(struct address_space *mapping) 154 { 155 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 156 if (!mapping_thp_support(mapping)) 157 atomic_dec(&mapping->nr_thps); 158 #else 159 WARN_ON_ONCE(1); 160 #endif 161 } 162 163 void release_pages(struct page **pages, int nr); 164 165 /* 166 * For file cache pages, return the address_space, otherwise return NULL 167 */ 168 static inline struct address_space *page_mapping_file(struct page *page) 169 { 170 if (unlikely(PageSwapCache(page))) 171 return NULL; 172 return page_mapping(page); 173 } 174 175 /* 176 * speculatively take a reference to a page. 177 * If the page is free (_refcount == 0), then _refcount is untouched, and 0 178 * is returned. Otherwise, _refcount is incremented by 1 and 1 is returned. 179 * 180 * This function must be called inside the same rcu_read_lock() section as has 181 * been used to lookup the page in the pagecache radix-tree (or page table): 182 * this allows allocators to use a synchronize_rcu() to stabilize _refcount. 183 * 184 * Unless an RCU grace period has passed, the count of all pages coming out 185 * of the allocator must be considered unstable. page_count may return higher 186 * than expected, and put_page must be able to do the right thing when the 187 * page has been finished with, no matter what it is subsequently allocated 188 * for (because put_page is what is used here to drop an invalid speculative 189 * reference). 190 * 191 * This is the interesting part of the lockless pagecache (and lockless 192 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page) 193 * has the following pattern: 194 * 1. find page in radix tree 195 * 2. conditionally increment refcount 196 * 3. check the page is still in pagecache (if no, goto 1) 197 * 198 * Remove-side that cares about stability of _refcount (eg. reclaim) has the 199 * following (with the i_pages lock held): 200 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg) 201 * B. remove page from pagecache 202 * C. free the page 203 * 204 * There are 2 critical interleavings that matter: 205 * - 2 runs before A: in this case, A sees elevated refcount and bails out 206 * - A runs before 2: in this case, 2 sees zero refcount and retries; 207 * subsequently, B will complete and 1 will find no page, causing the 208 * lookup to return NULL. 209 * 210 * It is possible that between 1 and 2, the page is removed then the exact same 211 * page is inserted into the same position in pagecache. That's OK: the 212 * old find_get_page using a lock could equally have run before or after 213 * such a re-insertion, depending on order that locks are granted. 214 * 215 * Lookups racing against pagecache insertion isn't a big problem: either 1 216 * will find the page or it will not. Likewise, the old find_get_page could run 217 * either before the insertion or afterwards, depending on timing. 218 */ 219 static inline int __page_cache_add_speculative(struct page *page, int count) 220 { 221 #ifdef CONFIG_TINY_RCU 222 # ifdef CONFIG_PREEMPT_COUNT 223 VM_BUG_ON(!in_atomic() && !irqs_disabled()); 224 # endif 225 /* 226 * Preempt must be disabled here - we rely on rcu_read_lock doing 227 * this for us. 228 * 229 * Pagecache won't be truncated from interrupt context, so if we have 230 * found a page in the radix tree here, we have pinned its refcount by 231 * disabling preempt, and hence no need for the "speculative get" that 232 * SMP requires. 233 */ 234 VM_BUG_ON_PAGE(page_count(page) == 0, page); 235 page_ref_add(page, count); 236 237 #else 238 if (unlikely(!page_ref_add_unless(page, count, 0))) { 239 /* 240 * Either the page has been freed, or will be freed. 241 * In either case, retry here and the caller should 242 * do the right thing (see comments above). 243 */ 244 return 0; 245 } 246 #endif 247 VM_BUG_ON_PAGE(PageTail(page), page); 248 249 return 1; 250 } 251 252 static inline int page_cache_get_speculative(struct page *page) 253 { 254 return __page_cache_add_speculative(page, 1); 255 } 256 257 static inline int page_cache_add_speculative(struct page *page, int count) 258 { 259 return __page_cache_add_speculative(page, count); 260 } 261 262 /** 263 * attach_page_private - Attach private data to a page. 264 * @page: Page to attach data to. 265 * @data: Data to attach to page. 266 * 267 * Attaching private data to a page increments the page's reference count. 268 * The data must be detached before the page will be freed. 269 */ 270 static inline void attach_page_private(struct page *page, void *data) 271 { 272 get_page(page); 273 set_page_private(page, (unsigned long)data); 274 SetPagePrivate(page); 275 } 276 277 /** 278 * detach_page_private - Detach private data from a page. 279 * @page: Page to detach data from. 280 * 281 * Removes the data that was previously attached to the page and decrements 282 * the refcount on the page. 283 * 284 * Return: Data that was attached to the page. 285 */ 286 static inline void *detach_page_private(struct page *page) 287 { 288 void *data = (void *)page_private(page); 289 290 if (!PagePrivate(page)) 291 return NULL; 292 ClearPagePrivate(page); 293 set_page_private(page, 0); 294 put_page(page); 295 296 return data; 297 } 298 299 #ifdef CONFIG_NUMA 300 extern struct page *__page_cache_alloc(gfp_t gfp); 301 #else 302 static inline struct page *__page_cache_alloc(gfp_t gfp) 303 { 304 return alloc_pages(gfp, 0); 305 } 306 #endif 307 308 static inline struct page *page_cache_alloc(struct address_space *x) 309 { 310 return __page_cache_alloc(mapping_gfp_mask(x)); 311 } 312 313 static inline gfp_t readahead_gfp_mask(struct address_space *x) 314 { 315 return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN; 316 } 317 318 typedef int filler_t(void *, struct page *); 319 320 pgoff_t page_cache_next_miss(struct address_space *mapping, 321 pgoff_t index, unsigned long max_scan); 322 pgoff_t page_cache_prev_miss(struct address_space *mapping, 323 pgoff_t index, unsigned long max_scan); 324 325 #define FGP_ACCESSED 0x00000001 326 #define FGP_LOCK 0x00000002 327 #define FGP_CREAT 0x00000004 328 #define FGP_WRITE 0x00000008 329 #define FGP_NOFS 0x00000010 330 #define FGP_NOWAIT 0x00000020 331 #define FGP_FOR_MMAP 0x00000040 332 #define FGP_HEAD 0x00000080 333 #define FGP_ENTRY 0x00000100 334 335 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, 336 int fgp_flags, gfp_t cache_gfp_mask); 337 338 /** 339 * find_get_page - find and get a page reference 340 * @mapping: the address_space to search 341 * @offset: the page index 342 * 343 * Looks up the page cache slot at @mapping & @offset. If there is a 344 * page cache page, it is returned with an increased refcount. 345 * 346 * Otherwise, %NULL is returned. 347 */ 348 static inline struct page *find_get_page(struct address_space *mapping, 349 pgoff_t offset) 350 { 351 return pagecache_get_page(mapping, offset, 0, 0); 352 } 353 354 static inline struct page *find_get_page_flags(struct address_space *mapping, 355 pgoff_t offset, int fgp_flags) 356 { 357 return pagecache_get_page(mapping, offset, fgp_flags, 0); 358 } 359 360 /** 361 * find_lock_page - locate, pin and lock a pagecache page 362 * @mapping: the address_space to search 363 * @index: the page index 364 * 365 * Looks up the page cache entry at @mapping & @index. If there is a 366 * page cache page, it is returned locked and with an increased 367 * refcount. 368 * 369 * Context: May sleep. 370 * Return: A struct page or %NULL if there is no page in the cache for this 371 * index. 372 */ 373 static inline struct page *find_lock_page(struct address_space *mapping, 374 pgoff_t index) 375 { 376 return pagecache_get_page(mapping, index, FGP_LOCK, 0); 377 } 378 379 /** 380 * find_lock_head - Locate, pin and lock a pagecache page. 381 * @mapping: The address_space to search. 382 * @index: The page index. 383 * 384 * Looks up the page cache entry at @mapping & @index. If there is a 385 * page cache page, its head page is returned locked and with an increased 386 * refcount. 387 * 388 * Context: May sleep. 389 * Return: A struct page which is !PageTail, or %NULL if there is no page 390 * in the cache for this index. 391 */ 392 static inline struct page *find_lock_head(struct address_space *mapping, 393 pgoff_t index) 394 { 395 return pagecache_get_page(mapping, index, FGP_LOCK | FGP_HEAD, 0); 396 } 397 398 /** 399 * find_or_create_page - locate or add a pagecache page 400 * @mapping: the page's address_space 401 * @index: the page's index into the mapping 402 * @gfp_mask: page allocation mode 403 * 404 * Looks up the page cache slot at @mapping & @offset. If there is a 405 * page cache page, it is returned locked and with an increased 406 * refcount. 407 * 408 * If the page is not present, a new page is allocated using @gfp_mask 409 * and added to the page cache and the VM's LRU list. The page is 410 * returned locked and with an increased refcount. 411 * 412 * On memory exhaustion, %NULL is returned. 413 * 414 * find_or_create_page() may sleep, even if @gfp_flags specifies an 415 * atomic allocation! 416 */ 417 static inline struct page *find_or_create_page(struct address_space *mapping, 418 pgoff_t index, gfp_t gfp_mask) 419 { 420 return pagecache_get_page(mapping, index, 421 FGP_LOCK|FGP_ACCESSED|FGP_CREAT, 422 gfp_mask); 423 } 424 425 /** 426 * grab_cache_page_nowait - returns locked page at given index in given cache 427 * @mapping: target address_space 428 * @index: the page index 429 * 430 * Same as grab_cache_page(), but do not wait if the page is unavailable. 431 * This is intended for speculative data generators, where the data can 432 * be regenerated if the page couldn't be grabbed. This routine should 433 * be safe to call while holding the lock for another page. 434 * 435 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 436 * and deadlock against the caller's locked page. 437 */ 438 static inline struct page *grab_cache_page_nowait(struct address_space *mapping, 439 pgoff_t index) 440 { 441 return pagecache_get_page(mapping, index, 442 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT, 443 mapping_gfp_mask(mapping)); 444 } 445 446 /* Does this page contain this index? */ 447 static inline bool thp_contains(struct page *head, pgoff_t index) 448 { 449 /* HugeTLBfs indexes the page cache in units of hpage_size */ 450 if (PageHuge(head)) 451 return head->index == index; 452 return page_index(head) == (index & ~(thp_nr_pages(head) - 1UL)); 453 } 454 455 /* 456 * Given the page we found in the page cache, return the page corresponding 457 * to this index in the file 458 */ 459 static inline struct page *find_subpage(struct page *head, pgoff_t index) 460 { 461 /* HugeTLBfs wants the head page regardless */ 462 if (PageHuge(head)) 463 return head; 464 465 return head + (index & (thp_nr_pages(head) - 1)); 466 } 467 468 unsigned find_get_entries(struct address_space *mapping, pgoff_t start, 469 pgoff_t end, struct pagevec *pvec, pgoff_t *indices); 470 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, 471 pgoff_t end, unsigned int nr_pages, 472 struct page **pages); 473 static inline unsigned find_get_pages(struct address_space *mapping, 474 pgoff_t *start, unsigned int nr_pages, 475 struct page **pages) 476 { 477 return find_get_pages_range(mapping, start, (pgoff_t)-1, nr_pages, 478 pages); 479 } 480 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start, 481 unsigned int nr_pages, struct page **pages); 482 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, 483 pgoff_t end, xa_mark_t tag, unsigned int nr_pages, 484 struct page **pages); 485 static inline unsigned find_get_pages_tag(struct address_space *mapping, 486 pgoff_t *index, xa_mark_t tag, unsigned int nr_pages, 487 struct page **pages) 488 { 489 return find_get_pages_range_tag(mapping, index, (pgoff_t)-1, tag, 490 nr_pages, pages); 491 } 492 493 struct page *grab_cache_page_write_begin(struct address_space *mapping, 494 pgoff_t index, unsigned flags); 495 496 /* 497 * Returns locked page at given index in given cache, creating it if needed. 498 */ 499 static inline struct page *grab_cache_page(struct address_space *mapping, 500 pgoff_t index) 501 { 502 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping)); 503 } 504 505 extern struct page * read_cache_page(struct address_space *mapping, 506 pgoff_t index, filler_t *filler, void *data); 507 extern struct page * read_cache_page_gfp(struct address_space *mapping, 508 pgoff_t index, gfp_t gfp_mask); 509 extern int read_cache_pages(struct address_space *mapping, 510 struct list_head *pages, filler_t *filler, void *data); 511 512 static inline struct page *read_mapping_page(struct address_space *mapping, 513 pgoff_t index, void *data) 514 { 515 return read_cache_page(mapping, index, NULL, data); 516 } 517 518 /* 519 * Get index of the page within radix-tree (but not for hugetlb pages). 520 * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE) 521 */ 522 static inline pgoff_t page_to_index(struct page *page) 523 { 524 pgoff_t pgoff; 525 526 if (likely(!PageTransTail(page))) 527 return page->index; 528 529 /* 530 * We don't initialize ->index for tail pages: calculate based on 531 * head page 532 */ 533 pgoff = compound_head(page)->index; 534 pgoff += page - compound_head(page); 535 return pgoff; 536 } 537 538 extern pgoff_t hugetlb_basepage_index(struct page *page); 539 540 /* 541 * Get the offset in PAGE_SIZE (even for hugetlb pages). 542 * (TODO: hugetlb pages should have ->index in PAGE_SIZE) 543 */ 544 static inline pgoff_t page_to_pgoff(struct page *page) 545 { 546 if (unlikely(PageHuge(page))) 547 return hugetlb_basepage_index(page); 548 return page_to_index(page); 549 } 550 551 /* 552 * Return byte-offset into filesystem object for page. 553 */ 554 static inline loff_t page_offset(struct page *page) 555 { 556 return ((loff_t)page->index) << PAGE_SHIFT; 557 } 558 559 static inline loff_t page_file_offset(struct page *page) 560 { 561 return ((loff_t)page_index(page)) << PAGE_SHIFT; 562 } 563 564 extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 565 unsigned long address); 566 567 static inline pgoff_t linear_page_index(struct vm_area_struct *vma, 568 unsigned long address) 569 { 570 pgoff_t pgoff; 571 if (unlikely(is_vm_hugetlb_page(vma))) 572 return linear_hugepage_index(vma, address); 573 pgoff = (address - vma->vm_start) >> PAGE_SHIFT; 574 pgoff += vma->vm_pgoff; 575 return pgoff; 576 } 577 578 struct wait_page_key { 579 struct page *page; 580 int bit_nr; 581 int page_match; 582 }; 583 584 struct wait_page_queue { 585 struct page *page; 586 int bit_nr; 587 wait_queue_entry_t wait; 588 }; 589 590 static inline bool wake_page_match(struct wait_page_queue *wait_page, 591 struct wait_page_key *key) 592 { 593 if (wait_page->page != key->page) 594 return false; 595 key->page_match = 1; 596 597 if (wait_page->bit_nr != key->bit_nr) 598 return false; 599 600 return true; 601 } 602 603 extern void __lock_page(struct page *page); 604 extern int __lock_page_killable(struct page *page); 605 extern int __lock_page_async(struct page *page, struct wait_page_queue *wait); 606 extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 607 unsigned int flags); 608 extern void unlock_page(struct page *page); 609 610 /* 611 * Return true if the page was successfully locked 612 */ 613 static inline int trylock_page(struct page *page) 614 { 615 page = compound_head(page); 616 return (likely(!test_and_set_bit_lock(PG_locked, &page->flags))); 617 } 618 619 /* 620 * lock_page may only be called if we have the page's inode pinned. 621 */ 622 static inline void lock_page(struct page *page) 623 { 624 might_sleep(); 625 if (!trylock_page(page)) 626 __lock_page(page); 627 } 628 629 /* 630 * lock_page_killable is like lock_page but can be interrupted by fatal 631 * signals. It returns 0 if it locked the page and -EINTR if it was 632 * killed while waiting. 633 */ 634 static inline int lock_page_killable(struct page *page) 635 { 636 might_sleep(); 637 if (!trylock_page(page)) 638 return __lock_page_killable(page); 639 return 0; 640 } 641 642 /* 643 * lock_page_async - Lock the page, unless this would block. If the page 644 * is already locked, then queue a callback when the page becomes unlocked. 645 * This callback can then retry the operation. 646 * 647 * Returns 0 if the page is locked successfully, or -EIOCBQUEUED if the page 648 * was already locked and the callback defined in 'wait' was queued. 649 */ 650 static inline int lock_page_async(struct page *page, 651 struct wait_page_queue *wait) 652 { 653 if (!trylock_page(page)) 654 return __lock_page_async(page, wait); 655 return 0; 656 } 657 658 /* 659 * lock_page_or_retry - Lock the page, unless this would block and the 660 * caller indicated that it can handle a retry. 661 * 662 * Return value and mmap_lock implications depend on flags; see 663 * __lock_page_or_retry(). 664 */ 665 static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm, 666 unsigned int flags) 667 { 668 might_sleep(); 669 return trylock_page(page) || __lock_page_or_retry(page, mm, flags); 670 } 671 672 /* 673 * This is exported only for wait_on_page_locked/wait_on_page_writeback, etc., 674 * and should not be used directly. 675 */ 676 extern void wait_on_page_bit(struct page *page, int bit_nr); 677 extern int wait_on_page_bit_killable(struct page *page, int bit_nr); 678 679 /* 680 * Wait for a page to be unlocked. 681 * 682 * This must be called with the caller "holding" the page, 683 * ie with increased "page->count" so that the page won't 684 * go away during the wait.. 685 */ 686 static inline void wait_on_page_locked(struct page *page) 687 { 688 if (PageLocked(page)) 689 wait_on_page_bit(compound_head(page), PG_locked); 690 } 691 692 static inline int wait_on_page_locked_killable(struct page *page) 693 { 694 if (!PageLocked(page)) 695 return 0; 696 return wait_on_page_bit_killable(compound_head(page), PG_locked); 697 } 698 699 int put_and_wait_on_page_locked(struct page *page, int state); 700 void wait_on_page_writeback(struct page *page); 701 int wait_on_page_writeback_killable(struct page *page); 702 extern void end_page_writeback(struct page *page); 703 void wait_for_stable_page(struct page *page); 704 705 void __set_page_dirty(struct page *, struct address_space *, int warn); 706 int __set_page_dirty_nobuffers(struct page *page); 707 int __set_page_dirty_no_writeback(struct page *page); 708 709 void page_endio(struct page *page, bool is_write, int err); 710 711 /** 712 * set_page_private_2 - Set PG_private_2 on a page and take a ref 713 * @page: The page. 714 * 715 * Set the PG_private_2 flag on a page and take the reference needed for the VM 716 * to handle its lifetime correctly. This sets the flag and takes the 717 * reference unconditionally, so care must be taken not to set the flag again 718 * if it's already set. 719 */ 720 static inline void set_page_private_2(struct page *page) 721 { 722 page = compound_head(page); 723 get_page(page); 724 SetPagePrivate2(page); 725 } 726 727 void end_page_private_2(struct page *page); 728 void wait_on_page_private_2(struct page *page); 729 int wait_on_page_private_2_killable(struct page *page); 730 731 /* 732 * Add an arbitrary waiter to a page's wait queue 733 */ 734 extern void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter); 735 736 /* 737 * Fault everything in given userspace address range in. 738 */ 739 static inline int fault_in_pages_writeable(char __user *uaddr, int size) 740 { 741 char __user *end = uaddr + size - 1; 742 743 if (unlikely(size == 0)) 744 return 0; 745 746 if (unlikely(uaddr > end)) 747 return -EFAULT; 748 /* 749 * Writing zeroes into userspace here is OK, because we know that if 750 * the zero gets there, we'll be overwriting it. 751 */ 752 do { 753 if (unlikely(__put_user(0, uaddr) != 0)) 754 return -EFAULT; 755 uaddr += PAGE_SIZE; 756 } while (uaddr <= end); 757 758 /* Check whether the range spilled into the next page. */ 759 if (((unsigned long)uaddr & PAGE_MASK) == 760 ((unsigned long)end & PAGE_MASK)) 761 return __put_user(0, end); 762 763 return 0; 764 } 765 766 static inline int fault_in_pages_readable(const char __user *uaddr, int size) 767 { 768 volatile char c; 769 const char __user *end = uaddr + size - 1; 770 771 if (unlikely(size == 0)) 772 return 0; 773 774 if (unlikely(uaddr > end)) 775 return -EFAULT; 776 777 do { 778 if (unlikely(__get_user(c, uaddr) != 0)) 779 return -EFAULT; 780 uaddr += PAGE_SIZE; 781 } while (uaddr <= end); 782 783 /* Check whether the range spilled into the next page. */ 784 if (((unsigned long)uaddr & PAGE_MASK) == 785 ((unsigned long)end & PAGE_MASK)) { 786 return __get_user(c, end); 787 } 788 789 (void)c; 790 return 0; 791 } 792 793 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 794 pgoff_t index, gfp_t gfp_mask); 795 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 796 pgoff_t index, gfp_t gfp_mask); 797 extern void delete_from_page_cache(struct page *page); 798 extern void __delete_from_page_cache(struct page *page, void *shadow); 799 void replace_page_cache_page(struct page *old, struct page *new); 800 void delete_from_page_cache_batch(struct address_space *mapping, 801 struct pagevec *pvec); 802 loff_t mapping_seek_hole_data(struct address_space *, loff_t start, loff_t end, 803 int whence); 804 805 /* 806 * Like add_to_page_cache_locked, but used to add newly allocated pages: 807 * the page is new, so we can just run __SetPageLocked() against it. 808 */ 809 static inline int add_to_page_cache(struct page *page, 810 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask) 811 { 812 int error; 813 814 __SetPageLocked(page); 815 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask); 816 if (unlikely(error)) 817 __ClearPageLocked(page); 818 return error; 819 } 820 821 /** 822 * struct readahead_control - Describes a readahead request. 823 * 824 * A readahead request is for consecutive pages. Filesystems which 825 * implement the ->readahead method should call readahead_page() or 826 * readahead_page_batch() in a loop and attempt to start I/O against 827 * each page in the request. 828 * 829 * Most of the fields in this struct are private and should be accessed 830 * by the functions below. 831 * 832 * @file: The file, used primarily by network filesystems for authentication. 833 * May be NULL if invoked internally by the filesystem. 834 * @mapping: Readahead this filesystem object. 835 * @ra: File readahead state. May be NULL. 836 */ 837 struct readahead_control { 838 struct file *file; 839 struct address_space *mapping; 840 struct file_ra_state *ra; 841 /* private: use the readahead_* accessors instead */ 842 pgoff_t _index; 843 unsigned int _nr_pages; 844 unsigned int _batch_count; 845 }; 846 847 #define DEFINE_READAHEAD(ractl, f, r, m, i) \ 848 struct readahead_control ractl = { \ 849 .file = f, \ 850 .mapping = m, \ 851 .ra = r, \ 852 ._index = i, \ 853 } 854 855 #define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE) 856 857 void page_cache_ra_unbounded(struct readahead_control *, 858 unsigned long nr_to_read, unsigned long lookahead_count); 859 void page_cache_sync_ra(struct readahead_control *, unsigned long req_count); 860 void page_cache_async_ra(struct readahead_control *, struct page *, 861 unsigned long req_count); 862 void readahead_expand(struct readahead_control *ractl, 863 loff_t new_start, size_t new_len); 864 865 /** 866 * page_cache_sync_readahead - generic file readahead 867 * @mapping: address_space which holds the pagecache and I/O vectors 868 * @ra: file_ra_state which holds the readahead state 869 * @file: Used by the filesystem for authentication. 870 * @index: Index of first page to be read. 871 * @req_count: Total number of pages being read by the caller. 872 * 873 * page_cache_sync_readahead() should be called when a cache miss happened: 874 * it will submit the read. The readahead logic may decide to piggyback more 875 * pages onto the read request if access patterns suggest it will improve 876 * performance. 877 */ 878 static inline 879 void page_cache_sync_readahead(struct address_space *mapping, 880 struct file_ra_state *ra, struct file *file, pgoff_t index, 881 unsigned long req_count) 882 { 883 DEFINE_READAHEAD(ractl, file, ra, mapping, index); 884 page_cache_sync_ra(&ractl, req_count); 885 } 886 887 /** 888 * page_cache_async_readahead - file readahead for marked pages 889 * @mapping: address_space which holds the pagecache and I/O vectors 890 * @ra: file_ra_state which holds the readahead state 891 * @file: Used by the filesystem for authentication. 892 * @page: The page at @index which triggered the readahead call. 893 * @index: Index of first page to be read. 894 * @req_count: Total number of pages being read by the caller. 895 * 896 * page_cache_async_readahead() should be called when a page is used which 897 * is marked as PageReadahead; this is a marker to suggest that the application 898 * has used up enough of the readahead window that we should start pulling in 899 * more pages. 900 */ 901 static inline 902 void page_cache_async_readahead(struct address_space *mapping, 903 struct file_ra_state *ra, struct file *file, 904 struct page *page, pgoff_t index, unsigned long req_count) 905 { 906 DEFINE_READAHEAD(ractl, file, ra, mapping, index); 907 page_cache_async_ra(&ractl, page, req_count); 908 } 909 910 /** 911 * readahead_page - Get the next page to read. 912 * @rac: The current readahead request. 913 * 914 * Context: The page is locked and has an elevated refcount. The caller 915 * should decreases the refcount once the page has been submitted for I/O 916 * and unlock the page once all I/O to that page has completed. 917 * Return: A pointer to the next page, or %NULL if we are done. 918 */ 919 static inline struct page *readahead_page(struct readahead_control *rac) 920 { 921 struct page *page; 922 923 BUG_ON(rac->_batch_count > rac->_nr_pages); 924 rac->_nr_pages -= rac->_batch_count; 925 rac->_index += rac->_batch_count; 926 927 if (!rac->_nr_pages) { 928 rac->_batch_count = 0; 929 return NULL; 930 } 931 932 page = xa_load(&rac->mapping->i_pages, rac->_index); 933 VM_BUG_ON_PAGE(!PageLocked(page), page); 934 rac->_batch_count = thp_nr_pages(page); 935 936 return page; 937 } 938 939 static inline unsigned int __readahead_batch(struct readahead_control *rac, 940 struct page **array, unsigned int array_sz) 941 { 942 unsigned int i = 0; 943 XA_STATE(xas, &rac->mapping->i_pages, 0); 944 struct page *page; 945 946 BUG_ON(rac->_batch_count > rac->_nr_pages); 947 rac->_nr_pages -= rac->_batch_count; 948 rac->_index += rac->_batch_count; 949 rac->_batch_count = 0; 950 951 xas_set(&xas, rac->_index); 952 rcu_read_lock(); 953 xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) { 954 if (xas_retry(&xas, page)) 955 continue; 956 VM_BUG_ON_PAGE(!PageLocked(page), page); 957 VM_BUG_ON_PAGE(PageTail(page), page); 958 array[i++] = page; 959 rac->_batch_count += thp_nr_pages(page); 960 961 /* 962 * The page cache isn't using multi-index entries yet, 963 * so the xas cursor needs to be manually moved to the 964 * next index. This can be removed once the page cache 965 * is converted. 966 */ 967 if (PageHead(page)) 968 xas_set(&xas, rac->_index + rac->_batch_count); 969 970 if (i == array_sz) 971 break; 972 } 973 rcu_read_unlock(); 974 975 return i; 976 } 977 978 /** 979 * readahead_page_batch - Get a batch of pages to read. 980 * @rac: The current readahead request. 981 * @array: An array of pointers to struct page. 982 * 983 * Context: The pages are locked and have an elevated refcount. The caller 984 * should decreases the refcount once the page has been submitted for I/O 985 * and unlock the page once all I/O to that page has completed. 986 * Return: The number of pages placed in the array. 0 indicates the request 987 * is complete. 988 */ 989 #define readahead_page_batch(rac, array) \ 990 __readahead_batch(rac, array, ARRAY_SIZE(array)) 991 992 /** 993 * readahead_pos - The byte offset into the file of this readahead request. 994 * @rac: The readahead request. 995 */ 996 static inline loff_t readahead_pos(struct readahead_control *rac) 997 { 998 return (loff_t)rac->_index * PAGE_SIZE; 999 } 1000 1001 /** 1002 * readahead_length - The number of bytes in this readahead request. 1003 * @rac: The readahead request. 1004 */ 1005 static inline size_t readahead_length(struct readahead_control *rac) 1006 { 1007 return rac->_nr_pages * PAGE_SIZE; 1008 } 1009 1010 /** 1011 * readahead_index - The index of the first page in this readahead request. 1012 * @rac: The readahead request. 1013 */ 1014 static inline pgoff_t readahead_index(struct readahead_control *rac) 1015 { 1016 return rac->_index; 1017 } 1018 1019 /** 1020 * readahead_count - The number of pages in this readahead request. 1021 * @rac: The readahead request. 1022 */ 1023 static inline unsigned int readahead_count(struct readahead_control *rac) 1024 { 1025 return rac->_nr_pages; 1026 } 1027 1028 /** 1029 * readahead_batch_length - The number of bytes in the current batch. 1030 * @rac: The readahead request. 1031 */ 1032 static inline size_t readahead_batch_length(struct readahead_control *rac) 1033 { 1034 return rac->_batch_count * PAGE_SIZE; 1035 } 1036 1037 static inline unsigned long dir_pages(struct inode *inode) 1038 { 1039 return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >> 1040 PAGE_SHIFT; 1041 } 1042 1043 /** 1044 * page_mkwrite_check_truncate - check if page was truncated 1045 * @page: the page to check 1046 * @inode: the inode to check the page against 1047 * 1048 * Returns the number of bytes in the page up to EOF, 1049 * or -EFAULT if the page was truncated. 1050 */ 1051 static inline int page_mkwrite_check_truncate(struct page *page, 1052 struct inode *inode) 1053 { 1054 loff_t size = i_size_read(inode); 1055 pgoff_t index = size >> PAGE_SHIFT; 1056 int offset = offset_in_page(size); 1057 1058 if (page->mapping != inode->i_mapping) 1059 return -EFAULT; 1060 1061 /* page is wholly inside EOF */ 1062 if (page->index < index) 1063 return PAGE_SIZE; 1064 /* page is wholly past EOF */ 1065 if (page->index > index || !offset) 1066 return -EFAULT; 1067 /* page is partially inside EOF */ 1068 return offset; 1069 } 1070 1071 /** 1072 * i_blocks_per_page - How many blocks fit in this page. 1073 * @inode: The inode which contains the blocks. 1074 * @page: The page (head page if the page is a THP). 1075 * 1076 * If the block size is larger than the size of this page, return zero. 1077 * 1078 * Context: The caller should hold a refcount on the page to prevent it 1079 * from being split. 1080 * Return: The number of filesystem blocks covered by this page. 1081 */ 1082 static inline 1083 unsigned int i_blocks_per_page(struct inode *inode, struct page *page) 1084 { 1085 return thp_size(page) >> inode->i_blkbits; 1086 } 1087 #endif /* _LINUX_PAGEMAP_H */ 1088