1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_PAGEMAP_H 3 #define _LINUX_PAGEMAP_H 4 5 /* 6 * Copyright 1995 Linus Torvalds 7 */ 8 #include <linux/mm.h> 9 #include <linux/fs.h> 10 #include <linux/list.h> 11 #include <linux/highmem.h> 12 #include <linux/compiler.h> 13 #include <linux/uaccess.h> 14 #include <linux/gfp.h> 15 #include <linux/bitops.h> 16 #include <linux/hardirq.h> /* for in_interrupt() */ 17 #include <linux/hugetlb_inline.h> 18 19 struct folio_batch; 20 21 unsigned long invalidate_mapping_pages(struct address_space *mapping, 22 pgoff_t start, pgoff_t end); 23 24 static inline void invalidate_remote_inode(struct inode *inode) 25 { 26 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 27 S_ISLNK(inode->i_mode)) 28 invalidate_mapping_pages(inode->i_mapping, 0, -1); 29 } 30 int invalidate_inode_pages2(struct address_space *mapping); 31 int invalidate_inode_pages2_range(struct address_space *mapping, 32 pgoff_t start, pgoff_t end); 33 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count); 34 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count); 35 int filemap_invalidate_pages(struct address_space *mapping, 36 loff_t pos, loff_t end, bool nowait); 37 38 int write_inode_now(struct inode *, int sync); 39 int filemap_fdatawrite(struct address_space *); 40 int filemap_flush(struct address_space *); 41 int filemap_fdatawait_keep_errors(struct address_space *mapping); 42 int filemap_fdatawait_range(struct address_space *, loff_t lstart, loff_t lend); 43 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 44 loff_t start_byte, loff_t end_byte); 45 int filemap_invalidate_inode(struct inode *inode, bool flush, 46 loff_t start, loff_t end); 47 48 static inline int filemap_fdatawait(struct address_space *mapping) 49 { 50 return filemap_fdatawait_range(mapping, 0, LLONG_MAX); 51 } 52 53 bool filemap_range_has_page(struct address_space *, loff_t lstart, loff_t lend); 54 int filemap_write_and_wait_range(struct address_space *mapping, 55 loff_t lstart, loff_t lend); 56 int __filemap_fdatawrite_range(struct address_space *mapping, 57 loff_t start, loff_t end, int sync_mode); 58 int filemap_fdatawrite_range(struct address_space *mapping, 59 loff_t start, loff_t end); 60 int filemap_check_errors(struct address_space *mapping); 61 void __filemap_set_wb_err(struct address_space *mapping, int err); 62 int filemap_fdatawrite_wbc(struct address_space *mapping, 63 struct writeback_control *wbc); 64 int kiocb_write_and_wait(struct kiocb *iocb, size_t count); 65 66 static inline int filemap_write_and_wait(struct address_space *mapping) 67 { 68 return filemap_write_and_wait_range(mapping, 0, LLONG_MAX); 69 } 70 71 /** 72 * filemap_set_wb_err - set a writeback error on an address_space 73 * @mapping: mapping in which to set writeback error 74 * @err: error to be set in mapping 75 * 76 * When writeback fails in some way, we must record that error so that 77 * userspace can be informed when fsync and the like are called. We endeavor 78 * to report errors on any file that was open at the time of the error. Some 79 * internal callers also need to know when writeback errors have occurred. 80 * 81 * When a writeback error occurs, most filesystems will want to call 82 * filemap_set_wb_err to record the error in the mapping so that it will be 83 * automatically reported whenever fsync is called on the file. 84 */ 85 static inline void filemap_set_wb_err(struct address_space *mapping, int err) 86 { 87 /* Fastpath for common case of no error */ 88 if (unlikely(err)) 89 __filemap_set_wb_err(mapping, err); 90 } 91 92 /** 93 * filemap_check_wb_err - has an error occurred since the mark was sampled? 94 * @mapping: mapping to check for writeback errors 95 * @since: previously-sampled errseq_t 96 * 97 * Grab the errseq_t value from the mapping, and see if it has changed "since" 98 * the given value was sampled. 99 * 100 * If it has then report the latest error set, otherwise return 0. 101 */ 102 static inline int filemap_check_wb_err(struct address_space *mapping, 103 errseq_t since) 104 { 105 return errseq_check(&mapping->wb_err, since); 106 } 107 108 /** 109 * filemap_sample_wb_err - sample the current errseq_t to test for later errors 110 * @mapping: mapping to be sampled 111 * 112 * Writeback errors are always reported relative to a particular sample point 113 * in the past. This function provides those sample points. 114 */ 115 static inline errseq_t filemap_sample_wb_err(struct address_space *mapping) 116 { 117 return errseq_sample(&mapping->wb_err); 118 } 119 120 /** 121 * file_sample_sb_err - sample the current errseq_t to test for later errors 122 * @file: file pointer to be sampled 123 * 124 * Grab the most current superblock-level errseq_t value for the given 125 * struct file. 126 */ 127 static inline errseq_t file_sample_sb_err(struct file *file) 128 { 129 return errseq_sample(&file->f_path.dentry->d_sb->s_wb_err); 130 } 131 132 /* 133 * Flush file data before changing attributes. Caller must hold any locks 134 * required to prevent further writes to this file until we're done setting 135 * flags. 136 */ 137 static inline int inode_drain_writes(struct inode *inode) 138 { 139 inode_dio_wait(inode); 140 return filemap_write_and_wait(inode->i_mapping); 141 } 142 143 static inline bool mapping_empty(struct address_space *mapping) 144 { 145 return xa_empty(&mapping->i_pages); 146 } 147 148 /* 149 * mapping_shrinkable - test if page cache state allows inode reclaim 150 * @mapping: the page cache mapping 151 * 152 * This checks the mapping's cache state for the pupose of inode 153 * reclaim and LRU management. 154 * 155 * The caller is expected to hold the i_lock, but is not required to 156 * hold the i_pages lock, which usually protects cache state. That's 157 * because the i_lock and the list_lru lock that protect the inode and 158 * its LRU state don't nest inside the irq-safe i_pages lock. 159 * 160 * Cache deletions are performed under the i_lock, which ensures that 161 * when an inode goes empty, it will reliably get queued on the LRU. 162 * 163 * Cache additions do not acquire the i_lock and may race with this 164 * check, in which case we'll report the inode as shrinkable when it 165 * has cache pages. This is okay: the shrinker also checks the 166 * refcount and the referenced bit, which will be elevated or set in 167 * the process of adding new cache pages to an inode. 168 */ 169 static inline bool mapping_shrinkable(struct address_space *mapping) 170 { 171 void *head; 172 173 /* 174 * On highmem systems, there could be lowmem pressure from the 175 * inodes before there is highmem pressure from the page 176 * cache. Make inodes shrinkable regardless of cache state. 177 */ 178 if (IS_ENABLED(CONFIG_HIGHMEM)) 179 return true; 180 181 /* Cache completely empty? Shrink away. */ 182 head = rcu_access_pointer(mapping->i_pages.xa_head); 183 if (!head) 184 return true; 185 186 /* 187 * The xarray stores single offset-0 entries directly in the 188 * head pointer, which allows non-resident page cache entries 189 * to escape the shadow shrinker's list of xarray nodes. The 190 * inode shrinker needs to pick them up under memory pressure. 191 */ 192 if (!xa_is_node(head) && xa_is_value(head)) 193 return true; 194 195 return false; 196 } 197 198 /* 199 * Bits in mapping->flags. 200 */ 201 enum mapping_flags { 202 AS_EIO = 0, /* IO error on async write */ 203 AS_ENOSPC = 1, /* ENOSPC on async write */ 204 AS_MM_ALL_LOCKS = 2, /* under mm_take_all_locks() */ 205 AS_UNEVICTABLE = 3, /* e.g., ramdisk, SHM_LOCK */ 206 AS_EXITING = 4, /* final truncate in progress */ 207 /* writeback related tags are not used */ 208 AS_NO_WRITEBACK_TAGS = 5, 209 AS_RELEASE_ALWAYS = 6, /* Call ->release_folio(), even if no private data */ 210 AS_STABLE_WRITES = 7, /* must wait for writeback before modifying 211 folio contents */ 212 AS_INACCESSIBLE = 8, /* Do not attempt direct R/W access to the mapping */ 213 /* Bits 16-25 are used for FOLIO_ORDER */ 214 AS_FOLIO_ORDER_BITS = 5, 215 AS_FOLIO_ORDER_MIN = 16, 216 AS_FOLIO_ORDER_MAX = AS_FOLIO_ORDER_MIN + AS_FOLIO_ORDER_BITS, 217 }; 218 219 #define AS_FOLIO_ORDER_BITS_MASK ((1u << AS_FOLIO_ORDER_BITS) - 1) 220 #define AS_FOLIO_ORDER_MIN_MASK (AS_FOLIO_ORDER_BITS_MASK << AS_FOLIO_ORDER_MIN) 221 #define AS_FOLIO_ORDER_MAX_MASK (AS_FOLIO_ORDER_BITS_MASK << AS_FOLIO_ORDER_MAX) 222 #define AS_FOLIO_ORDER_MASK (AS_FOLIO_ORDER_MIN_MASK | AS_FOLIO_ORDER_MAX_MASK) 223 224 /** 225 * mapping_set_error - record a writeback error in the address_space 226 * @mapping: the mapping in which an error should be set 227 * @error: the error to set in the mapping 228 * 229 * When writeback fails in some way, we must record that error so that 230 * userspace can be informed when fsync and the like are called. We endeavor 231 * to report errors on any file that was open at the time of the error. Some 232 * internal callers also need to know when writeback errors have occurred. 233 * 234 * When a writeback error occurs, most filesystems will want to call 235 * mapping_set_error to record the error in the mapping so that it can be 236 * reported when the application calls fsync(2). 237 */ 238 static inline void mapping_set_error(struct address_space *mapping, int error) 239 { 240 if (likely(!error)) 241 return; 242 243 /* Record in wb_err for checkers using errseq_t based tracking */ 244 __filemap_set_wb_err(mapping, error); 245 246 /* Record it in superblock */ 247 if (mapping->host) 248 errseq_set(&mapping->host->i_sb->s_wb_err, error); 249 250 /* Record it in flags for now, for legacy callers */ 251 if (error == -ENOSPC) 252 set_bit(AS_ENOSPC, &mapping->flags); 253 else 254 set_bit(AS_EIO, &mapping->flags); 255 } 256 257 static inline void mapping_set_unevictable(struct address_space *mapping) 258 { 259 set_bit(AS_UNEVICTABLE, &mapping->flags); 260 } 261 262 static inline void mapping_clear_unevictable(struct address_space *mapping) 263 { 264 clear_bit(AS_UNEVICTABLE, &mapping->flags); 265 } 266 267 static inline bool mapping_unevictable(struct address_space *mapping) 268 { 269 return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags); 270 } 271 272 static inline void mapping_set_exiting(struct address_space *mapping) 273 { 274 set_bit(AS_EXITING, &mapping->flags); 275 } 276 277 static inline int mapping_exiting(struct address_space *mapping) 278 { 279 return test_bit(AS_EXITING, &mapping->flags); 280 } 281 282 static inline void mapping_set_no_writeback_tags(struct address_space *mapping) 283 { 284 set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); 285 } 286 287 static inline int mapping_use_writeback_tags(struct address_space *mapping) 288 { 289 return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); 290 } 291 292 static inline bool mapping_release_always(const struct address_space *mapping) 293 { 294 return test_bit(AS_RELEASE_ALWAYS, &mapping->flags); 295 } 296 297 static inline void mapping_set_release_always(struct address_space *mapping) 298 { 299 set_bit(AS_RELEASE_ALWAYS, &mapping->flags); 300 } 301 302 static inline void mapping_clear_release_always(struct address_space *mapping) 303 { 304 clear_bit(AS_RELEASE_ALWAYS, &mapping->flags); 305 } 306 307 static inline bool mapping_stable_writes(const struct address_space *mapping) 308 { 309 return test_bit(AS_STABLE_WRITES, &mapping->flags); 310 } 311 312 static inline void mapping_set_stable_writes(struct address_space *mapping) 313 { 314 set_bit(AS_STABLE_WRITES, &mapping->flags); 315 } 316 317 static inline void mapping_clear_stable_writes(struct address_space *mapping) 318 { 319 clear_bit(AS_STABLE_WRITES, &mapping->flags); 320 } 321 322 static inline void mapping_set_inaccessible(struct address_space *mapping) 323 { 324 /* 325 * It's expected inaccessible mappings are also unevictable. Compaction 326 * migrate scanner (isolate_migratepages_block()) relies on this to 327 * reduce page locking. 328 */ 329 set_bit(AS_UNEVICTABLE, &mapping->flags); 330 set_bit(AS_INACCESSIBLE, &mapping->flags); 331 } 332 333 static inline bool mapping_inaccessible(struct address_space *mapping) 334 { 335 return test_bit(AS_INACCESSIBLE, &mapping->flags); 336 } 337 338 static inline gfp_t mapping_gfp_mask(struct address_space * mapping) 339 { 340 return mapping->gfp_mask; 341 } 342 343 /* Restricts the given gfp_mask to what the mapping allows. */ 344 static inline gfp_t mapping_gfp_constraint(struct address_space *mapping, 345 gfp_t gfp_mask) 346 { 347 return mapping_gfp_mask(mapping) & gfp_mask; 348 } 349 350 /* 351 * This is non-atomic. Only to be used before the mapping is activated. 352 * Probably needs a barrier... 353 */ 354 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask) 355 { 356 m->gfp_mask = mask; 357 } 358 359 /* 360 * There are some parts of the kernel which assume that PMD entries 361 * are exactly HPAGE_PMD_ORDER. Those should be fixed, but until then, 362 * limit the maximum allocation order to PMD size. I'm not aware of any 363 * assumptions about maximum order if THP are disabled, but 8 seems like 364 * a good order (that's 1MB if you're using 4kB pages) 365 */ 366 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 367 #define PREFERRED_MAX_PAGECACHE_ORDER HPAGE_PMD_ORDER 368 #else 369 #define PREFERRED_MAX_PAGECACHE_ORDER 8 370 #endif 371 372 /* 373 * xas_split_alloc() does not support arbitrary orders. This implies no 374 * 512MB THP on ARM64 with 64KB base page size. 375 */ 376 #define MAX_XAS_ORDER (XA_CHUNK_SHIFT * 2 - 1) 377 #define MAX_PAGECACHE_ORDER min(MAX_XAS_ORDER, PREFERRED_MAX_PAGECACHE_ORDER) 378 379 /* 380 * mapping_max_folio_size_supported() - Check the max folio size supported 381 * 382 * The filesystem should call this function at mount time if there is a 383 * requirement on the folio mapping size in the page cache. 384 */ 385 static inline size_t mapping_max_folio_size_supported(void) 386 { 387 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 388 return 1U << (PAGE_SHIFT + MAX_PAGECACHE_ORDER); 389 return PAGE_SIZE; 390 } 391 392 /* 393 * mapping_set_folio_order_range() - Set the orders supported by a file. 394 * @mapping: The address space of the file. 395 * @min: Minimum folio order (between 0-MAX_PAGECACHE_ORDER inclusive). 396 * @max: Maximum folio order (between @min-MAX_PAGECACHE_ORDER inclusive). 397 * 398 * The filesystem should call this function in its inode constructor to 399 * indicate which base size (min) and maximum size (max) of folio the VFS 400 * can use to cache the contents of the file. This should only be used 401 * if the filesystem needs special handling of folio sizes (ie there is 402 * something the core cannot know). 403 * Do not tune it based on, eg, i_size. 404 * 405 * Context: This should not be called while the inode is active as it 406 * is non-atomic. 407 */ 408 static inline void mapping_set_folio_order_range(struct address_space *mapping, 409 unsigned int min, 410 unsigned int max) 411 { 412 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 413 return; 414 415 if (min > MAX_PAGECACHE_ORDER) 416 min = MAX_PAGECACHE_ORDER; 417 418 if (max > MAX_PAGECACHE_ORDER) 419 max = MAX_PAGECACHE_ORDER; 420 421 if (max < min) 422 max = min; 423 424 mapping->flags = (mapping->flags & ~AS_FOLIO_ORDER_MASK) | 425 (min << AS_FOLIO_ORDER_MIN) | (max << AS_FOLIO_ORDER_MAX); 426 } 427 428 static inline void mapping_set_folio_min_order(struct address_space *mapping, 429 unsigned int min) 430 { 431 mapping_set_folio_order_range(mapping, min, MAX_PAGECACHE_ORDER); 432 } 433 434 /** 435 * mapping_set_large_folios() - Indicate the file supports large folios. 436 * @mapping: The address space of the file. 437 * 438 * The filesystem should call this function in its inode constructor to 439 * indicate that the VFS can use large folios to cache the contents of 440 * the file. 441 * 442 * Context: This should not be called while the inode is active as it 443 * is non-atomic. 444 */ 445 static inline void mapping_set_large_folios(struct address_space *mapping) 446 { 447 mapping_set_folio_order_range(mapping, 0, MAX_PAGECACHE_ORDER); 448 } 449 450 static inline unsigned int 451 mapping_max_folio_order(const struct address_space *mapping) 452 { 453 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 454 return 0; 455 return (mapping->flags & AS_FOLIO_ORDER_MAX_MASK) >> AS_FOLIO_ORDER_MAX; 456 } 457 458 static inline unsigned int 459 mapping_min_folio_order(const struct address_space *mapping) 460 { 461 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 462 return 0; 463 return (mapping->flags & AS_FOLIO_ORDER_MIN_MASK) >> AS_FOLIO_ORDER_MIN; 464 } 465 466 static inline unsigned long 467 mapping_min_folio_nrpages(struct address_space *mapping) 468 { 469 return 1UL << mapping_min_folio_order(mapping); 470 } 471 472 /** 473 * mapping_align_index() - Align index for this mapping. 474 * @mapping: The address_space. 475 * @index: The page index. 476 * 477 * The index of a folio must be naturally aligned. If you are adding a 478 * new folio to the page cache and need to know what index to give it, 479 * call this function. 480 */ 481 static inline pgoff_t mapping_align_index(struct address_space *mapping, 482 pgoff_t index) 483 { 484 return round_down(index, mapping_min_folio_nrpages(mapping)); 485 } 486 487 /* 488 * Large folio support currently depends on THP. These dependencies are 489 * being worked on but are not yet fixed. 490 */ 491 static inline bool mapping_large_folio_support(struct address_space *mapping) 492 { 493 /* AS_FOLIO_ORDER is only reasonable for pagecache folios */ 494 VM_WARN_ONCE((unsigned long)mapping & PAGE_MAPPING_ANON, 495 "Anonymous mapping always supports large folio"); 496 497 return mapping_max_folio_order(mapping) > 0; 498 } 499 500 /* Return the maximum folio size for this pagecache mapping, in bytes. */ 501 static inline size_t mapping_max_folio_size(const struct address_space *mapping) 502 { 503 return PAGE_SIZE << mapping_max_folio_order(mapping); 504 } 505 506 static inline int filemap_nr_thps(struct address_space *mapping) 507 { 508 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 509 return atomic_read(&mapping->nr_thps); 510 #else 511 return 0; 512 #endif 513 } 514 515 static inline void filemap_nr_thps_inc(struct address_space *mapping) 516 { 517 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 518 if (!mapping_large_folio_support(mapping)) 519 atomic_inc(&mapping->nr_thps); 520 #else 521 WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0); 522 #endif 523 } 524 525 static inline void filemap_nr_thps_dec(struct address_space *mapping) 526 { 527 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 528 if (!mapping_large_folio_support(mapping)) 529 atomic_dec(&mapping->nr_thps); 530 #else 531 WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0); 532 #endif 533 } 534 535 struct address_space *folio_mapping(struct folio *); 536 struct address_space *swapcache_mapping(struct folio *); 537 538 /** 539 * folio_file_mapping - Find the mapping this folio belongs to. 540 * @folio: The folio. 541 * 542 * For folios which are in the page cache, return the mapping that this 543 * page belongs to. Folios in the swap cache return the mapping of the 544 * swap file or swap device where the data is stored. This is different 545 * from the mapping returned by folio_mapping(). The only reason to 546 * use it is if, like NFS, you return 0 from ->activate_swapfile. 547 * 548 * Do not call this for folios which aren't in the page cache or swap cache. 549 */ 550 static inline struct address_space *folio_file_mapping(struct folio *folio) 551 { 552 if (unlikely(folio_test_swapcache(folio))) 553 return swapcache_mapping(folio); 554 555 return folio->mapping; 556 } 557 558 /** 559 * folio_flush_mapping - Find the file mapping this folio belongs to. 560 * @folio: The folio. 561 * 562 * For folios which are in the page cache, return the mapping that this 563 * page belongs to. Anonymous folios return NULL, even if they're in 564 * the swap cache. Other kinds of folio also return NULL. 565 * 566 * This is ONLY used by architecture cache flushing code. If you aren't 567 * writing cache flushing code, you want either folio_mapping() or 568 * folio_file_mapping(). 569 */ 570 static inline struct address_space *folio_flush_mapping(struct folio *folio) 571 { 572 if (unlikely(folio_test_swapcache(folio))) 573 return NULL; 574 575 return folio_mapping(folio); 576 } 577 578 static inline struct address_space *page_file_mapping(struct page *page) 579 { 580 return folio_file_mapping(page_folio(page)); 581 } 582 583 /** 584 * folio_inode - Get the host inode for this folio. 585 * @folio: The folio. 586 * 587 * For folios which are in the page cache, return the inode that this folio 588 * belongs to. 589 * 590 * Do not call this for folios which aren't in the page cache. 591 */ 592 static inline struct inode *folio_inode(struct folio *folio) 593 { 594 return folio->mapping->host; 595 } 596 597 /** 598 * folio_attach_private - Attach private data to a folio. 599 * @folio: Folio to attach data to. 600 * @data: Data to attach to folio. 601 * 602 * Attaching private data to a folio increments the page's reference count. 603 * The data must be detached before the folio will be freed. 604 */ 605 static inline void folio_attach_private(struct folio *folio, void *data) 606 { 607 folio_get(folio); 608 folio->private = data; 609 folio_set_private(folio); 610 } 611 612 /** 613 * folio_change_private - Change private data on a folio. 614 * @folio: Folio to change the data on. 615 * @data: Data to set on the folio. 616 * 617 * Change the private data attached to a folio and return the old 618 * data. The page must previously have had data attached and the data 619 * must be detached before the folio will be freed. 620 * 621 * Return: Data that was previously attached to the folio. 622 */ 623 static inline void *folio_change_private(struct folio *folio, void *data) 624 { 625 void *old = folio_get_private(folio); 626 627 folio->private = data; 628 return old; 629 } 630 631 /** 632 * folio_detach_private - Detach private data from a folio. 633 * @folio: Folio to detach data from. 634 * 635 * Removes the data that was previously attached to the folio and decrements 636 * the refcount on the page. 637 * 638 * Return: Data that was attached to the folio. 639 */ 640 static inline void *folio_detach_private(struct folio *folio) 641 { 642 void *data = folio_get_private(folio); 643 644 if (!folio_test_private(folio)) 645 return NULL; 646 folio_clear_private(folio); 647 folio->private = NULL; 648 folio_put(folio); 649 650 return data; 651 } 652 653 static inline void attach_page_private(struct page *page, void *data) 654 { 655 folio_attach_private(page_folio(page), data); 656 } 657 658 static inline void *detach_page_private(struct page *page) 659 { 660 return folio_detach_private(page_folio(page)); 661 } 662 663 #ifdef CONFIG_NUMA 664 struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order); 665 #else 666 static inline struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order) 667 { 668 return folio_alloc_noprof(gfp, order); 669 } 670 #endif 671 672 #define filemap_alloc_folio(...) \ 673 alloc_hooks(filemap_alloc_folio_noprof(__VA_ARGS__)) 674 675 static inline struct page *__page_cache_alloc(gfp_t gfp) 676 { 677 return &filemap_alloc_folio(gfp, 0)->page; 678 } 679 680 static inline gfp_t readahead_gfp_mask(struct address_space *x) 681 { 682 return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN; 683 } 684 685 typedef int filler_t(struct file *, struct folio *); 686 687 pgoff_t page_cache_next_miss(struct address_space *mapping, 688 pgoff_t index, unsigned long max_scan); 689 pgoff_t page_cache_prev_miss(struct address_space *mapping, 690 pgoff_t index, unsigned long max_scan); 691 692 /** 693 * typedef fgf_t - Flags for getting folios from the page cache. 694 * 695 * Most users of the page cache will not need to use these flags; 696 * there are convenience functions such as filemap_get_folio() and 697 * filemap_lock_folio(). For users which need more control over exactly 698 * what is done with the folios, these flags to __filemap_get_folio() 699 * are available. 700 * 701 * * %FGP_ACCESSED - The folio will be marked accessed. 702 * * %FGP_LOCK - The folio is returned locked. 703 * * %FGP_CREAT - If no folio is present then a new folio is allocated, 704 * added to the page cache and the VM's LRU list. The folio is 705 * returned locked. 706 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the 707 * folio is already in cache. If the folio was allocated, unlock it 708 * before returning so the caller can do the same dance. 709 * * %FGP_WRITE - The folio will be written to by the caller. 710 * * %FGP_NOFS - __GFP_FS will get cleared in gfp. 711 * * %FGP_NOWAIT - Don't block on the folio lock. 712 * * %FGP_STABLE - Wait for the folio to be stable (finished writeback) 713 * * %FGP_DONTCACHE - Uncached buffered IO 714 * * %FGP_WRITEBEGIN - The flags to use in a filesystem write_begin() 715 * implementation. 716 */ 717 typedef unsigned int __bitwise fgf_t; 718 719 #define FGP_ACCESSED ((__force fgf_t)0x00000001) 720 #define FGP_LOCK ((__force fgf_t)0x00000002) 721 #define FGP_CREAT ((__force fgf_t)0x00000004) 722 #define FGP_WRITE ((__force fgf_t)0x00000008) 723 #define FGP_NOFS ((__force fgf_t)0x00000010) 724 #define FGP_NOWAIT ((__force fgf_t)0x00000020) 725 #define FGP_FOR_MMAP ((__force fgf_t)0x00000040) 726 #define FGP_STABLE ((__force fgf_t)0x00000080) 727 #define FGP_DONTCACHE ((__force fgf_t)0x00000100) 728 #define FGF_GET_ORDER(fgf) (((__force unsigned)fgf) >> 26) /* top 6 bits */ 729 730 #define FGP_WRITEBEGIN (FGP_LOCK | FGP_WRITE | FGP_CREAT | FGP_STABLE) 731 732 static inline unsigned int filemap_get_order(size_t size) 733 { 734 unsigned int shift = ilog2(size); 735 736 if (shift <= PAGE_SHIFT) 737 return 0; 738 739 return shift - PAGE_SHIFT; 740 } 741 742 /** 743 * fgf_set_order - Encode a length in the fgf_t flags. 744 * @size: The suggested size of the folio to create. 745 * 746 * The caller of __filemap_get_folio() can use this to suggest a preferred 747 * size for the folio that is created. If there is already a folio at 748 * the index, it will be returned, no matter what its size. If a folio 749 * is freshly created, it may be of a different size than requested 750 * due to alignment constraints, memory pressure, or the presence of 751 * other folios at nearby indices. 752 */ 753 static inline fgf_t fgf_set_order(size_t size) 754 { 755 unsigned int order = filemap_get_order(size); 756 757 if (!order) 758 return 0; 759 return (__force fgf_t)(order << 26); 760 } 761 762 void *filemap_get_entry(struct address_space *mapping, pgoff_t index); 763 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index, 764 fgf_t fgp_flags, gfp_t gfp); 765 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index, 766 fgf_t fgp_flags, gfp_t gfp); 767 768 /** 769 * filemap_get_folio - Find and get a folio. 770 * @mapping: The address_space to search. 771 * @index: The page index. 772 * 773 * Looks up the page cache entry at @mapping & @index. If a folio is 774 * present, it is returned with an increased refcount. 775 * 776 * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for 777 * this index. Will not return a shadow, swap or DAX entry. 778 */ 779 static inline struct folio *filemap_get_folio(struct address_space *mapping, 780 pgoff_t index) 781 { 782 return __filemap_get_folio(mapping, index, 0, 0); 783 } 784 785 /** 786 * filemap_lock_folio - Find and lock a folio. 787 * @mapping: The address_space to search. 788 * @index: The page index. 789 * 790 * Looks up the page cache entry at @mapping & @index. If a folio is 791 * present, it is returned locked with an increased refcount. 792 * 793 * Context: May sleep. 794 * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for 795 * this index. Will not return a shadow, swap or DAX entry. 796 */ 797 static inline struct folio *filemap_lock_folio(struct address_space *mapping, 798 pgoff_t index) 799 { 800 return __filemap_get_folio(mapping, index, FGP_LOCK, 0); 801 } 802 803 /** 804 * filemap_grab_folio - grab a folio from the page cache 805 * @mapping: The address space to search 806 * @index: The page index 807 * 808 * Looks up the page cache entry at @mapping & @index. If no folio is found, 809 * a new folio is created. The folio is locked, marked as accessed, and 810 * returned. 811 * 812 * Return: A found or created folio. ERR_PTR(-ENOMEM) if no folio is found 813 * and failed to create a folio. 814 */ 815 static inline struct folio *filemap_grab_folio(struct address_space *mapping, 816 pgoff_t index) 817 { 818 return __filemap_get_folio(mapping, index, 819 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, 820 mapping_gfp_mask(mapping)); 821 } 822 823 /** 824 * find_get_page - find and get a page reference 825 * @mapping: the address_space to search 826 * @offset: the page index 827 * 828 * Looks up the page cache slot at @mapping & @offset. If there is a 829 * page cache page, it is returned with an increased refcount. 830 * 831 * Otherwise, %NULL is returned. 832 */ 833 static inline struct page *find_get_page(struct address_space *mapping, 834 pgoff_t offset) 835 { 836 return pagecache_get_page(mapping, offset, 0, 0); 837 } 838 839 static inline struct page *find_get_page_flags(struct address_space *mapping, 840 pgoff_t offset, fgf_t fgp_flags) 841 { 842 return pagecache_get_page(mapping, offset, fgp_flags, 0); 843 } 844 845 /** 846 * find_lock_page - locate, pin and lock a pagecache page 847 * @mapping: the address_space to search 848 * @index: the page index 849 * 850 * Looks up the page cache entry at @mapping & @index. If there is a 851 * page cache page, it is returned locked and with an increased 852 * refcount. 853 * 854 * Context: May sleep. 855 * Return: A struct page or %NULL if there is no page in the cache for this 856 * index. 857 */ 858 static inline struct page *find_lock_page(struct address_space *mapping, 859 pgoff_t index) 860 { 861 return pagecache_get_page(mapping, index, FGP_LOCK, 0); 862 } 863 864 /** 865 * find_or_create_page - locate or add a pagecache page 866 * @mapping: the page's address_space 867 * @index: the page's index into the mapping 868 * @gfp_mask: page allocation mode 869 * 870 * Looks up the page cache slot at @mapping & @offset. If there is a 871 * page cache page, it is returned locked and with an increased 872 * refcount. 873 * 874 * If the page is not present, a new page is allocated using @gfp_mask 875 * and added to the page cache and the VM's LRU list. The page is 876 * returned locked and with an increased refcount. 877 * 878 * On memory exhaustion, %NULL is returned. 879 * 880 * find_or_create_page() may sleep, even if @gfp_flags specifies an 881 * atomic allocation! 882 */ 883 static inline struct page *find_or_create_page(struct address_space *mapping, 884 pgoff_t index, gfp_t gfp_mask) 885 { 886 return pagecache_get_page(mapping, index, 887 FGP_LOCK|FGP_ACCESSED|FGP_CREAT, 888 gfp_mask); 889 } 890 891 /** 892 * grab_cache_page_nowait - returns locked page at given index in given cache 893 * @mapping: target address_space 894 * @index: the page index 895 * 896 * Same as grab_cache_page(), but do not wait if the page is unavailable. 897 * This is intended for speculative data generators, where the data can 898 * be regenerated if the page couldn't be grabbed. This routine should 899 * be safe to call while holding the lock for another page. 900 * 901 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 902 * and deadlock against the caller's locked page. 903 */ 904 static inline struct page *grab_cache_page_nowait(struct address_space *mapping, 905 pgoff_t index) 906 { 907 return pagecache_get_page(mapping, index, 908 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT, 909 mapping_gfp_mask(mapping)); 910 } 911 912 extern pgoff_t __folio_swap_cache_index(struct folio *folio); 913 914 /** 915 * folio_index - File index of a folio. 916 * @folio: The folio. 917 * 918 * For a folio which is either in the page cache or the swap cache, 919 * return its index within the address_space it belongs to. If you know 920 * the page is definitely in the page cache, you can look at the folio's 921 * index directly. 922 * 923 * Return: The index (offset in units of pages) of a folio in its file. 924 */ 925 static inline pgoff_t folio_index(struct folio *folio) 926 { 927 if (unlikely(folio_test_swapcache(folio))) 928 return __folio_swap_cache_index(folio); 929 return folio->index; 930 } 931 932 /** 933 * folio_next_index - Get the index of the next folio. 934 * @folio: The current folio. 935 * 936 * Return: The index of the folio which follows this folio in the file. 937 */ 938 static inline pgoff_t folio_next_index(struct folio *folio) 939 { 940 return folio->index + folio_nr_pages(folio); 941 } 942 943 /** 944 * folio_file_page - The page for a particular index. 945 * @folio: The folio which contains this index. 946 * @index: The index we want to look up. 947 * 948 * Sometimes after looking up a folio in the page cache, we need to 949 * obtain the specific page for an index (eg a page fault). 950 * 951 * Return: The page containing the file data for this index. 952 */ 953 static inline struct page *folio_file_page(struct folio *folio, pgoff_t index) 954 { 955 return folio_page(folio, index & (folio_nr_pages(folio) - 1)); 956 } 957 958 /** 959 * folio_contains - Does this folio contain this index? 960 * @folio: The folio. 961 * @index: The page index within the file. 962 * 963 * Context: The caller should have the page locked in order to prevent 964 * (eg) shmem from moving the page between the page cache and swap cache 965 * and changing its index in the middle of the operation. 966 * Return: true or false. 967 */ 968 static inline bool folio_contains(struct folio *folio, pgoff_t index) 969 { 970 return index - folio_index(folio) < folio_nr_pages(folio); 971 } 972 973 /* 974 * Given the page we found in the page cache, return the page corresponding 975 * to this index in the file 976 */ 977 static inline struct page *find_subpage(struct page *head, pgoff_t index) 978 { 979 /* HugeTLBfs wants the head page regardless */ 980 if (PageHuge(head)) 981 return head; 982 983 return head + (index & (thp_nr_pages(head) - 1)); 984 } 985 986 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start, 987 pgoff_t end, struct folio_batch *fbatch); 988 unsigned filemap_get_folios_contig(struct address_space *mapping, 989 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch); 990 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start, 991 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch); 992 993 struct page *grab_cache_page_write_begin(struct address_space *mapping, 994 pgoff_t index); 995 996 /* 997 * Returns locked page at given index in given cache, creating it if needed. 998 */ 999 static inline struct page *grab_cache_page(struct address_space *mapping, 1000 pgoff_t index) 1001 { 1002 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping)); 1003 } 1004 1005 struct folio *read_cache_folio(struct address_space *, pgoff_t index, 1006 filler_t *filler, struct file *file); 1007 struct folio *mapping_read_folio_gfp(struct address_space *, pgoff_t index, 1008 gfp_t flags); 1009 struct page *read_cache_page(struct address_space *, pgoff_t index, 1010 filler_t *filler, struct file *file); 1011 extern struct page * read_cache_page_gfp(struct address_space *mapping, 1012 pgoff_t index, gfp_t gfp_mask); 1013 1014 static inline struct page *read_mapping_page(struct address_space *mapping, 1015 pgoff_t index, struct file *file) 1016 { 1017 return read_cache_page(mapping, index, NULL, file); 1018 } 1019 1020 static inline struct folio *read_mapping_folio(struct address_space *mapping, 1021 pgoff_t index, struct file *file) 1022 { 1023 return read_cache_folio(mapping, index, NULL, file); 1024 } 1025 1026 /** 1027 * page_pgoff - Calculate the logical page offset of this page. 1028 * @folio: The folio containing this page. 1029 * @page: The page which we need the offset of. 1030 * 1031 * For file pages, this is the offset from the beginning of the file 1032 * in units of PAGE_SIZE. For anonymous pages, this is the offset from 1033 * the beginning of the anon_vma in units of PAGE_SIZE. This will 1034 * return nonsense for KSM pages. 1035 * 1036 * Context: Caller must have a reference on the folio or otherwise 1037 * prevent it from being split or freed. 1038 * 1039 * Return: The offset in units of PAGE_SIZE. 1040 */ 1041 static inline pgoff_t page_pgoff(const struct folio *folio, 1042 const struct page *page) 1043 { 1044 return folio->index + folio_page_idx(folio, page); 1045 } 1046 1047 /** 1048 * folio_pos - Returns the byte position of this folio in its file. 1049 * @folio: The folio. 1050 */ 1051 static inline loff_t folio_pos(const struct folio *folio) 1052 { 1053 return ((loff_t)folio->index) * PAGE_SIZE; 1054 } 1055 1056 /* 1057 * Return byte-offset into filesystem object for page. 1058 */ 1059 static inline loff_t page_offset(struct page *page) 1060 { 1061 struct folio *folio = page_folio(page); 1062 1063 return folio_pos(folio) + folio_page_idx(folio, page) * PAGE_SIZE; 1064 } 1065 1066 /* 1067 * Get the offset in PAGE_SIZE (even for hugetlb folios). 1068 */ 1069 static inline pgoff_t folio_pgoff(struct folio *folio) 1070 { 1071 return folio->index; 1072 } 1073 1074 static inline pgoff_t linear_page_index(struct vm_area_struct *vma, 1075 unsigned long address) 1076 { 1077 pgoff_t pgoff; 1078 pgoff = (address - vma->vm_start) >> PAGE_SHIFT; 1079 pgoff += vma->vm_pgoff; 1080 return pgoff; 1081 } 1082 1083 struct wait_page_key { 1084 struct folio *folio; 1085 int bit_nr; 1086 int page_match; 1087 }; 1088 1089 struct wait_page_queue { 1090 struct folio *folio; 1091 int bit_nr; 1092 wait_queue_entry_t wait; 1093 }; 1094 1095 static inline bool wake_page_match(struct wait_page_queue *wait_page, 1096 struct wait_page_key *key) 1097 { 1098 if (wait_page->folio != key->folio) 1099 return false; 1100 key->page_match = 1; 1101 1102 if (wait_page->bit_nr != key->bit_nr) 1103 return false; 1104 1105 return true; 1106 } 1107 1108 void __folio_lock(struct folio *folio); 1109 int __folio_lock_killable(struct folio *folio); 1110 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf); 1111 void unlock_page(struct page *page); 1112 void folio_unlock(struct folio *folio); 1113 1114 /** 1115 * folio_trylock() - Attempt to lock a folio. 1116 * @folio: The folio to attempt to lock. 1117 * 1118 * Sometimes it is undesirable to wait for a folio to be unlocked (eg 1119 * when the locks are being taken in the wrong order, or if making 1120 * progress through a batch of folios is more important than processing 1121 * them in order). Usually folio_lock() is the correct function to call. 1122 * 1123 * Context: Any context. 1124 * Return: Whether the lock was successfully acquired. 1125 */ 1126 static inline bool folio_trylock(struct folio *folio) 1127 { 1128 return likely(!test_and_set_bit_lock(PG_locked, folio_flags(folio, 0))); 1129 } 1130 1131 /* 1132 * Return true if the page was successfully locked 1133 */ 1134 static inline bool trylock_page(struct page *page) 1135 { 1136 return folio_trylock(page_folio(page)); 1137 } 1138 1139 /** 1140 * folio_lock() - Lock this folio. 1141 * @folio: The folio to lock. 1142 * 1143 * The folio lock protects against many things, probably more than it 1144 * should. It is primarily held while a folio is being brought uptodate, 1145 * either from its backing file or from swap. It is also held while a 1146 * folio is being truncated from its address_space, so holding the lock 1147 * is sufficient to keep folio->mapping stable. 1148 * 1149 * The folio lock is also held while write() is modifying the page to 1150 * provide POSIX atomicity guarantees (as long as the write does not 1151 * cross a page boundary). Other modifications to the data in the folio 1152 * do not hold the folio lock and can race with writes, eg DMA and stores 1153 * to mapped pages. 1154 * 1155 * Context: May sleep. If you need to acquire the locks of two or 1156 * more folios, they must be in order of ascending index, if they are 1157 * in the same address_space. If they are in different address_spaces, 1158 * acquire the lock of the folio which belongs to the address_space which 1159 * has the lowest address in memory first. 1160 */ 1161 static inline void folio_lock(struct folio *folio) 1162 { 1163 might_sleep(); 1164 if (!folio_trylock(folio)) 1165 __folio_lock(folio); 1166 } 1167 1168 /** 1169 * lock_page() - Lock the folio containing this page. 1170 * @page: The page to lock. 1171 * 1172 * See folio_lock() for a description of what the lock protects. 1173 * This is a legacy function and new code should probably use folio_lock() 1174 * instead. 1175 * 1176 * Context: May sleep. Pages in the same folio share a lock, so do not 1177 * attempt to lock two pages which share a folio. 1178 */ 1179 static inline void lock_page(struct page *page) 1180 { 1181 struct folio *folio; 1182 might_sleep(); 1183 1184 folio = page_folio(page); 1185 if (!folio_trylock(folio)) 1186 __folio_lock(folio); 1187 } 1188 1189 /** 1190 * folio_lock_killable() - Lock this folio, interruptible by a fatal signal. 1191 * @folio: The folio to lock. 1192 * 1193 * Attempts to lock the folio, like folio_lock(), except that the sleep 1194 * to acquire the lock is interruptible by a fatal signal. 1195 * 1196 * Context: May sleep; see folio_lock(). 1197 * Return: 0 if the lock was acquired; -EINTR if a fatal signal was received. 1198 */ 1199 static inline int folio_lock_killable(struct folio *folio) 1200 { 1201 might_sleep(); 1202 if (!folio_trylock(folio)) 1203 return __folio_lock_killable(folio); 1204 return 0; 1205 } 1206 1207 /* 1208 * folio_lock_or_retry - Lock the folio, unless this would block and the 1209 * caller indicated that it can handle a retry. 1210 * 1211 * Return value and mmap_lock implications depend on flags; see 1212 * __folio_lock_or_retry(). 1213 */ 1214 static inline vm_fault_t folio_lock_or_retry(struct folio *folio, 1215 struct vm_fault *vmf) 1216 { 1217 might_sleep(); 1218 if (!folio_trylock(folio)) 1219 return __folio_lock_or_retry(folio, vmf); 1220 return 0; 1221 } 1222 1223 /* 1224 * This is exported only for folio_wait_locked/folio_wait_writeback, etc., 1225 * and should not be used directly. 1226 */ 1227 void folio_wait_bit(struct folio *folio, int bit_nr); 1228 int folio_wait_bit_killable(struct folio *folio, int bit_nr); 1229 1230 /* 1231 * Wait for a folio to be unlocked. 1232 * 1233 * This must be called with the caller "holding" the folio, 1234 * ie with increased folio reference count so that the folio won't 1235 * go away during the wait. 1236 */ 1237 static inline void folio_wait_locked(struct folio *folio) 1238 { 1239 if (folio_test_locked(folio)) 1240 folio_wait_bit(folio, PG_locked); 1241 } 1242 1243 static inline int folio_wait_locked_killable(struct folio *folio) 1244 { 1245 if (!folio_test_locked(folio)) 1246 return 0; 1247 return folio_wait_bit_killable(folio, PG_locked); 1248 } 1249 1250 static inline void wait_on_page_locked(struct page *page) 1251 { 1252 folio_wait_locked(page_folio(page)); 1253 } 1254 1255 void folio_end_read(struct folio *folio, bool success); 1256 void wait_on_page_writeback(struct page *page); 1257 void folio_wait_writeback(struct folio *folio); 1258 int folio_wait_writeback_killable(struct folio *folio); 1259 void end_page_writeback(struct page *page); 1260 void folio_end_writeback(struct folio *folio); 1261 void wait_for_stable_page(struct page *page); 1262 void folio_wait_stable(struct folio *folio); 1263 void __folio_mark_dirty(struct folio *folio, struct address_space *, int warn); 1264 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb); 1265 void __folio_cancel_dirty(struct folio *folio); 1266 static inline void folio_cancel_dirty(struct folio *folio) 1267 { 1268 /* Avoid atomic ops, locking, etc. when not actually needed. */ 1269 if (folio_test_dirty(folio)) 1270 __folio_cancel_dirty(folio); 1271 } 1272 bool folio_clear_dirty_for_io(struct folio *folio); 1273 bool clear_page_dirty_for_io(struct page *page); 1274 void folio_invalidate(struct folio *folio, size_t offset, size_t length); 1275 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio); 1276 1277 #ifdef CONFIG_MIGRATION 1278 int filemap_migrate_folio(struct address_space *mapping, struct folio *dst, 1279 struct folio *src, enum migrate_mode mode); 1280 #else 1281 #define filemap_migrate_folio NULL 1282 #endif 1283 void folio_end_private_2(struct folio *folio); 1284 void folio_wait_private_2(struct folio *folio); 1285 int folio_wait_private_2_killable(struct folio *folio); 1286 1287 /* 1288 * Fault in userspace address range. 1289 */ 1290 size_t fault_in_writeable(char __user *uaddr, size_t size); 1291 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size); 1292 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size); 1293 size_t fault_in_readable(const char __user *uaddr, size_t size); 1294 1295 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 1296 pgoff_t index, gfp_t gfp); 1297 int filemap_add_folio(struct address_space *mapping, struct folio *folio, 1298 pgoff_t index, gfp_t gfp); 1299 void filemap_remove_folio(struct folio *folio); 1300 void __filemap_remove_folio(struct folio *folio, void *shadow); 1301 void replace_page_cache_folio(struct folio *old, struct folio *new); 1302 void delete_from_page_cache_batch(struct address_space *mapping, 1303 struct folio_batch *fbatch); 1304 bool filemap_release_folio(struct folio *folio, gfp_t gfp); 1305 loff_t mapping_seek_hole_data(struct address_space *, loff_t start, loff_t end, 1306 int whence); 1307 1308 /* Must be non-static for BPF error injection */ 1309 int __filemap_add_folio(struct address_space *mapping, struct folio *folio, 1310 pgoff_t index, gfp_t gfp, void **shadowp); 1311 1312 bool filemap_range_has_writeback(struct address_space *mapping, 1313 loff_t start_byte, loff_t end_byte); 1314 1315 /** 1316 * filemap_range_needs_writeback - check if range potentially needs writeback 1317 * @mapping: address space within which to check 1318 * @start_byte: offset in bytes where the range starts 1319 * @end_byte: offset in bytes where the range ends (inclusive) 1320 * 1321 * Find at least one page in the range supplied, usually used to check if 1322 * direct writing in this range will trigger a writeback. Used by O_DIRECT 1323 * read/write with IOCB_NOWAIT, to see if the caller needs to do 1324 * filemap_write_and_wait_range() before proceeding. 1325 * 1326 * Return: %true if the caller should do filemap_write_and_wait_range() before 1327 * doing O_DIRECT to a page in this range, %false otherwise. 1328 */ 1329 static inline bool filemap_range_needs_writeback(struct address_space *mapping, 1330 loff_t start_byte, 1331 loff_t end_byte) 1332 { 1333 if (!mapping->nrpages) 1334 return false; 1335 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 1336 !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) 1337 return false; 1338 return filemap_range_has_writeback(mapping, start_byte, end_byte); 1339 } 1340 1341 /** 1342 * struct readahead_control - Describes a readahead request. 1343 * 1344 * A readahead request is for consecutive pages. Filesystems which 1345 * implement the ->readahead method should call readahead_page() or 1346 * readahead_page_batch() in a loop and attempt to start I/O against 1347 * each page in the request. 1348 * 1349 * Most of the fields in this struct are private and should be accessed 1350 * by the functions below. 1351 * 1352 * @file: The file, used primarily by network filesystems for authentication. 1353 * May be NULL if invoked internally by the filesystem. 1354 * @mapping: Readahead this filesystem object. 1355 * @ra: File readahead state. May be NULL. 1356 */ 1357 struct readahead_control { 1358 struct file *file; 1359 struct address_space *mapping; 1360 struct file_ra_state *ra; 1361 /* private: use the readahead_* accessors instead */ 1362 pgoff_t _index; 1363 unsigned int _nr_pages; 1364 unsigned int _batch_count; 1365 bool dropbehind; 1366 bool _workingset; 1367 unsigned long _pflags; 1368 }; 1369 1370 #define DEFINE_READAHEAD(ractl, f, r, m, i) \ 1371 struct readahead_control ractl = { \ 1372 .file = f, \ 1373 .mapping = m, \ 1374 .ra = r, \ 1375 ._index = i, \ 1376 } 1377 1378 #define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE) 1379 1380 void page_cache_ra_unbounded(struct readahead_control *, 1381 unsigned long nr_to_read, unsigned long lookahead_count); 1382 void page_cache_sync_ra(struct readahead_control *, unsigned long req_count); 1383 void page_cache_async_ra(struct readahead_control *, struct folio *, 1384 unsigned long req_count); 1385 void readahead_expand(struct readahead_control *ractl, 1386 loff_t new_start, size_t new_len); 1387 1388 /** 1389 * page_cache_sync_readahead - generic file readahead 1390 * @mapping: address_space which holds the pagecache and I/O vectors 1391 * @ra: file_ra_state which holds the readahead state 1392 * @file: Used by the filesystem for authentication. 1393 * @index: Index of first page to be read. 1394 * @req_count: Total number of pages being read by the caller. 1395 * 1396 * page_cache_sync_readahead() should be called when a cache miss happened: 1397 * it will submit the read. The readahead logic may decide to piggyback more 1398 * pages onto the read request if access patterns suggest it will improve 1399 * performance. 1400 */ 1401 static inline 1402 void page_cache_sync_readahead(struct address_space *mapping, 1403 struct file_ra_state *ra, struct file *file, pgoff_t index, 1404 unsigned long req_count) 1405 { 1406 DEFINE_READAHEAD(ractl, file, ra, mapping, index); 1407 page_cache_sync_ra(&ractl, req_count); 1408 } 1409 1410 /** 1411 * page_cache_async_readahead - file readahead for marked pages 1412 * @mapping: address_space which holds the pagecache and I/O vectors 1413 * @ra: file_ra_state which holds the readahead state 1414 * @file: Used by the filesystem for authentication. 1415 * @folio: The folio which triggered the readahead call. 1416 * @req_count: Total number of pages being read by the caller. 1417 * 1418 * page_cache_async_readahead() should be called when a page is used which 1419 * is marked as PageReadahead; this is a marker to suggest that the application 1420 * has used up enough of the readahead window that we should start pulling in 1421 * more pages. 1422 */ 1423 static inline 1424 void page_cache_async_readahead(struct address_space *mapping, 1425 struct file_ra_state *ra, struct file *file, 1426 struct folio *folio, unsigned long req_count) 1427 { 1428 DEFINE_READAHEAD(ractl, file, ra, mapping, folio->index); 1429 page_cache_async_ra(&ractl, folio, req_count); 1430 } 1431 1432 static inline struct folio *__readahead_folio(struct readahead_control *ractl) 1433 { 1434 struct folio *folio; 1435 1436 BUG_ON(ractl->_batch_count > ractl->_nr_pages); 1437 ractl->_nr_pages -= ractl->_batch_count; 1438 ractl->_index += ractl->_batch_count; 1439 1440 if (!ractl->_nr_pages) { 1441 ractl->_batch_count = 0; 1442 return NULL; 1443 } 1444 1445 folio = xa_load(&ractl->mapping->i_pages, ractl->_index); 1446 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1447 ractl->_batch_count = folio_nr_pages(folio); 1448 1449 return folio; 1450 } 1451 1452 /** 1453 * readahead_page - Get the next page to read. 1454 * @ractl: The current readahead request. 1455 * 1456 * Context: The page is locked and has an elevated refcount. The caller 1457 * should decreases the refcount once the page has been submitted for I/O 1458 * and unlock the page once all I/O to that page has completed. 1459 * Return: A pointer to the next page, or %NULL if we are done. 1460 */ 1461 static inline struct page *readahead_page(struct readahead_control *ractl) 1462 { 1463 struct folio *folio = __readahead_folio(ractl); 1464 1465 return &folio->page; 1466 } 1467 1468 /** 1469 * readahead_folio - Get the next folio to read. 1470 * @ractl: The current readahead request. 1471 * 1472 * Context: The folio is locked. The caller should unlock the folio once 1473 * all I/O to that folio has completed. 1474 * Return: A pointer to the next folio, or %NULL if we are done. 1475 */ 1476 static inline struct folio *readahead_folio(struct readahead_control *ractl) 1477 { 1478 struct folio *folio = __readahead_folio(ractl); 1479 1480 if (folio) 1481 folio_put(folio); 1482 return folio; 1483 } 1484 1485 static inline unsigned int __readahead_batch(struct readahead_control *rac, 1486 struct page **array, unsigned int array_sz) 1487 { 1488 unsigned int i = 0; 1489 XA_STATE(xas, &rac->mapping->i_pages, 0); 1490 struct page *page; 1491 1492 BUG_ON(rac->_batch_count > rac->_nr_pages); 1493 rac->_nr_pages -= rac->_batch_count; 1494 rac->_index += rac->_batch_count; 1495 rac->_batch_count = 0; 1496 1497 xas_set(&xas, rac->_index); 1498 rcu_read_lock(); 1499 xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) { 1500 if (xas_retry(&xas, page)) 1501 continue; 1502 VM_BUG_ON_PAGE(!PageLocked(page), page); 1503 VM_BUG_ON_PAGE(PageTail(page), page); 1504 array[i++] = page; 1505 rac->_batch_count += thp_nr_pages(page); 1506 if (i == array_sz) 1507 break; 1508 } 1509 rcu_read_unlock(); 1510 1511 return i; 1512 } 1513 1514 /** 1515 * readahead_page_batch - Get a batch of pages to read. 1516 * @rac: The current readahead request. 1517 * @array: An array of pointers to struct page. 1518 * 1519 * Context: The pages are locked and have an elevated refcount. The caller 1520 * should decreases the refcount once the page has been submitted for I/O 1521 * and unlock the page once all I/O to that page has completed. 1522 * Return: The number of pages placed in the array. 0 indicates the request 1523 * is complete. 1524 */ 1525 #define readahead_page_batch(rac, array) \ 1526 __readahead_batch(rac, array, ARRAY_SIZE(array)) 1527 1528 /** 1529 * readahead_pos - The byte offset into the file of this readahead request. 1530 * @rac: The readahead request. 1531 */ 1532 static inline loff_t readahead_pos(struct readahead_control *rac) 1533 { 1534 return (loff_t)rac->_index * PAGE_SIZE; 1535 } 1536 1537 /** 1538 * readahead_length - The number of bytes in this readahead request. 1539 * @rac: The readahead request. 1540 */ 1541 static inline size_t readahead_length(struct readahead_control *rac) 1542 { 1543 return rac->_nr_pages * PAGE_SIZE; 1544 } 1545 1546 /** 1547 * readahead_index - The index of the first page in this readahead request. 1548 * @rac: The readahead request. 1549 */ 1550 static inline pgoff_t readahead_index(struct readahead_control *rac) 1551 { 1552 return rac->_index; 1553 } 1554 1555 /** 1556 * readahead_count - The number of pages in this readahead request. 1557 * @rac: The readahead request. 1558 */ 1559 static inline unsigned int readahead_count(struct readahead_control *rac) 1560 { 1561 return rac->_nr_pages; 1562 } 1563 1564 /** 1565 * readahead_batch_length - The number of bytes in the current batch. 1566 * @rac: The readahead request. 1567 */ 1568 static inline size_t readahead_batch_length(struct readahead_control *rac) 1569 { 1570 return rac->_batch_count * PAGE_SIZE; 1571 } 1572 1573 static inline unsigned long dir_pages(struct inode *inode) 1574 { 1575 return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >> 1576 PAGE_SHIFT; 1577 } 1578 1579 /** 1580 * folio_mkwrite_check_truncate - check if folio was truncated 1581 * @folio: the folio to check 1582 * @inode: the inode to check the folio against 1583 * 1584 * Return: the number of bytes in the folio up to EOF, 1585 * or -EFAULT if the folio was truncated. 1586 */ 1587 static inline ssize_t folio_mkwrite_check_truncate(struct folio *folio, 1588 struct inode *inode) 1589 { 1590 loff_t size = i_size_read(inode); 1591 pgoff_t index = size >> PAGE_SHIFT; 1592 size_t offset = offset_in_folio(folio, size); 1593 1594 if (!folio->mapping) 1595 return -EFAULT; 1596 1597 /* folio is wholly inside EOF */ 1598 if (folio_next_index(folio) - 1 < index) 1599 return folio_size(folio); 1600 /* folio is wholly past EOF */ 1601 if (folio->index > index || !offset) 1602 return -EFAULT; 1603 /* folio is partially inside EOF */ 1604 return offset; 1605 } 1606 1607 /** 1608 * i_blocks_per_folio - How many blocks fit in this folio. 1609 * @inode: The inode which contains the blocks. 1610 * @folio: The folio. 1611 * 1612 * If the block size is larger than the size of this folio, return zero. 1613 * 1614 * Context: The caller should hold a refcount on the folio to prevent it 1615 * from being split. 1616 * Return: The number of filesystem blocks covered by this folio. 1617 */ 1618 static inline 1619 unsigned int i_blocks_per_folio(struct inode *inode, struct folio *folio) 1620 { 1621 return folio_size(folio) >> inode->i_blkbits; 1622 } 1623 #endif /* _LINUX_PAGEMAP_H */ 1624