xref: /linux-6.15/include/linux/pagemap.h (revision cd3bc044)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PAGEMAP_H
3 #define _LINUX_PAGEMAP_H
4 
5 /*
6  * Copyright 1995 Linus Torvalds
7  */
8 #include <linux/mm.h>
9 #include <linux/fs.h>
10 #include <linux/list.h>
11 #include <linux/highmem.h>
12 #include <linux/compiler.h>
13 #include <linux/uaccess.h>
14 #include <linux/gfp.h>
15 #include <linux/bitops.h>
16 #include <linux/hardirq.h> /* for in_interrupt() */
17 #include <linux/hugetlb_inline.h>
18 
19 struct folio_batch;
20 
21 static inline bool mapping_empty(struct address_space *mapping)
22 {
23 	return xa_empty(&mapping->i_pages);
24 }
25 
26 /*
27  * mapping_shrinkable - test if page cache state allows inode reclaim
28  * @mapping: the page cache mapping
29  *
30  * This checks the mapping's cache state for the pupose of inode
31  * reclaim and LRU management.
32  *
33  * The caller is expected to hold the i_lock, but is not required to
34  * hold the i_pages lock, which usually protects cache state. That's
35  * because the i_lock and the list_lru lock that protect the inode and
36  * its LRU state don't nest inside the irq-safe i_pages lock.
37  *
38  * Cache deletions are performed under the i_lock, which ensures that
39  * when an inode goes empty, it will reliably get queued on the LRU.
40  *
41  * Cache additions do not acquire the i_lock and may race with this
42  * check, in which case we'll report the inode as shrinkable when it
43  * has cache pages. This is okay: the shrinker also checks the
44  * refcount and the referenced bit, which will be elevated or set in
45  * the process of adding new cache pages to an inode.
46  */
47 static inline bool mapping_shrinkable(struct address_space *mapping)
48 {
49 	void *head;
50 
51 	/*
52 	 * On highmem systems, there could be lowmem pressure from the
53 	 * inodes before there is highmem pressure from the page
54 	 * cache. Make inodes shrinkable regardless of cache state.
55 	 */
56 	if (IS_ENABLED(CONFIG_HIGHMEM))
57 		return true;
58 
59 	/* Cache completely empty? Shrink away. */
60 	head = rcu_access_pointer(mapping->i_pages.xa_head);
61 	if (!head)
62 		return true;
63 
64 	/*
65 	 * The xarray stores single offset-0 entries directly in the
66 	 * head pointer, which allows non-resident page cache entries
67 	 * to escape the shadow shrinker's list of xarray nodes. The
68 	 * inode shrinker needs to pick them up under memory pressure.
69 	 */
70 	if (!xa_is_node(head) && xa_is_value(head))
71 		return true;
72 
73 	return false;
74 }
75 
76 /*
77  * Bits in mapping->flags.
78  */
79 enum mapping_flags {
80 	AS_EIO		= 0,	/* IO error on async write */
81 	AS_ENOSPC	= 1,	/* ENOSPC on async write */
82 	AS_MM_ALL_LOCKS	= 2,	/* under mm_take_all_locks() */
83 	AS_UNEVICTABLE	= 3,	/* e.g., ramdisk, SHM_LOCK */
84 	AS_EXITING	= 4, 	/* final truncate in progress */
85 	/* writeback related tags are not used */
86 	AS_NO_WRITEBACK_TAGS = 5,
87 	AS_LARGE_FOLIO_SUPPORT = 6,
88 };
89 
90 /**
91  * mapping_set_error - record a writeback error in the address_space
92  * @mapping: the mapping in which an error should be set
93  * @error: the error to set in the mapping
94  *
95  * When writeback fails in some way, we must record that error so that
96  * userspace can be informed when fsync and the like are called.  We endeavor
97  * to report errors on any file that was open at the time of the error.  Some
98  * internal callers also need to know when writeback errors have occurred.
99  *
100  * When a writeback error occurs, most filesystems will want to call
101  * mapping_set_error to record the error in the mapping so that it can be
102  * reported when the application calls fsync(2).
103  */
104 static inline void mapping_set_error(struct address_space *mapping, int error)
105 {
106 	if (likely(!error))
107 		return;
108 
109 	/* Record in wb_err for checkers using errseq_t based tracking */
110 	__filemap_set_wb_err(mapping, error);
111 
112 	/* Record it in superblock */
113 	if (mapping->host)
114 		errseq_set(&mapping->host->i_sb->s_wb_err, error);
115 
116 	/* Record it in flags for now, for legacy callers */
117 	if (error == -ENOSPC)
118 		set_bit(AS_ENOSPC, &mapping->flags);
119 	else
120 		set_bit(AS_EIO, &mapping->flags);
121 }
122 
123 static inline void mapping_set_unevictable(struct address_space *mapping)
124 {
125 	set_bit(AS_UNEVICTABLE, &mapping->flags);
126 }
127 
128 static inline void mapping_clear_unevictable(struct address_space *mapping)
129 {
130 	clear_bit(AS_UNEVICTABLE, &mapping->flags);
131 }
132 
133 static inline bool mapping_unevictable(struct address_space *mapping)
134 {
135 	return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags);
136 }
137 
138 static inline void mapping_set_exiting(struct address_space *mapping)
139 {
140 	set_bit(AS_EXITING, &mapping->flags);
141 }
142 
143 static inline int mapping_exiting(struct address_space *mapping)
144 {
145 	return test_bit(AS_EXITING, &mapping->flags);
146 }
147 
148 static inline void mapping_set_no_writeback_tags(struct address_space *mapping)
149 {
150 	set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
151 }
152 
153 static inline int mapping_use_writeback_tags(struct address_space *mapping)
154 {
155 	return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
156 }
157 
158 static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
159 {
160 	return mapping->gfp_mask;
161 }
162 
163 /* Restricts the given gfp_mask to what the mapping allows. */
164 static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
165 		gfp_t gfp_mask)
166 {
167 	return mapping_gfp_mask(mapping) & gfp_mask;
168 }
169 
170 /*
171  * This is non-atomic.  Only to be used before the mapping is activated.
172  * Probably needs a barrier...
173  */
174 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
175 {
176 	m->gfp_mask = mask;
177 }
178 
179 /**
180  * mapping_set_large_folios() - Indicate the file supports large folios.
181  * @mapping: The file.
182  *
183  * The filesystem should call this function in its inode constructor to
184  * indicate that the VFS can use large folios to cache the contents of
185  * the file.
186  *
187  * Context: This should not be called while the inode is active as it
188  * is non-atomic.
189  */
190 static inline void mapping_set_large_folios(struct address_space *mapping)
191 {
192 	__set_bit(AS_LARGE_FOLIO_SUPPORT, &mapping->flags);
193 }
194 
195 static inline bool mapping_large_folio_support(struct address_space *mapping)
196 {
197 	return test_bit(AS_LARGE_FOLIO_SUPPORT, &mapping->flags);
198 }
199 
200 static inline int filemap_nr_thps(struct address_space *mapping)
201 {
202 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
203 	return atomic_read(&mapping->nr_thps);
204 #else
205 	return 0;
206 #endif
207 }
208 
209 static inline void filemap_nr_thps_inc(struct address_space *mapping)
210 {
211 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
212 	if (!mapping_large_folio_support(mapping))
213 		atomic_inc(&mapping->nr_thps);
214 #else
215 	WARN_ON_ONCE(1);
216 #endif
217 }
218 
219 static inline void filemap_nr_thps_dec(struct address_space *mapping)
220 {
221 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
222 	if (!mapping_large_folio_support(mapping))
223 		atomic_dec(&mapping->nr_thps);
224 #else
225 	WARN_ON_ONCE(1);
226 #endif
227 }
228 
229 void release_pages(struct page **pages, int nr);
230 
231 struct address_space *page_mapping(struct page *);
232 struct address_space *folio_mapping(struct folio *);
233 struct address_space *swapcache_mapping(struct folio *);
234 
235 /**
236  * folio_file_mapping - Find the mapping this folio belongs to.
237  * @folio: The folio.
238  *
239  * For folios which are in the page cache, return the mapping that this
240  * page belongs to.  Folios in the swap cache return the mapping of the
241  * swap file or swap device where the data is stored.  This is different
242  * from the mapping returned by folio_mapping().  The only reason to
243  * use it is if, like NFS, you return 0 from ->activate_swapfile.
244  *
245  * Do not call this for folios which aren't in the page cache or swap cache.
246  */
247 static inline struct address_space *folio_file_mapping(struct folio *folio)
248 {
249 	if (unlikely(folio_test_swapcache(folio)))
250 		return swapcache_mapping(folio);
251 
252 	return folio->mapping;
253 }
254 
255 static inline struct address_space *page_file_mapping(struct page *page)
256 {
257 	return folio_file_mapping(page_folio(page));
258 }
259 
260 /*
261  * For file cache pages, return the address_space, otherwise return NULL
262  */
263 static inline struct address_space *page_mapping_file(struct page *page)
264 {
265 	struct folio *folio = page_folio(page);
266 
267 	if (unlikely(folio_test_swapcache(folio)))
268 		return NULL;
269 	return folio_mapping(folio);
270 }
271 
272 /**
273  * folio_inode - Get the host inode for this folio.
274  * @folio: The folio.
275  *
276  * For folios which are in the page cache, return the inode that this folio
277  * belongs to.
278  *
279  * Do not call this for folios which aren't in the page cache.
280  */
281 static inline struct inode *folio_inode(struct folio *folio)
282 {
283 	return folio->mapping->host;
284 }
285 
286 static inline bool page_cache_add_speculative(struct page *page, int count)
287 {
288 	return folio_ref_try_add_rcu((struct folio *)page, count);
289 }
290 
291 static inline bool page_cache_get_speculative(struct page *page)
292 {
293 	return page_cache_add_speculative(page, 1);
294 }
295 
296 /**
297  * folio_attach_private - Attach private data to a folio.
298  * @folio: Folio to attach data to.
299  * @data: Data to attach to folio.
300  *
301  * Attaching private data to a folio increments the page's reference count.
302  * The data must be detached before the folio will be freed.
303  */
304 static inline void folio_attach_private(struct folio *folio, void *data)
305 {
306 	folio_get(folio);
307 	folio->private = data;
308 	folio_set_private(folio);
309 }
310 
311 /**
312  * folio_change_private - Change private data on a folio.
313  * @folio: Folio to change the data on.
314  * @data: Data to set on the folio.
315  *
316  * Change the private data attached to a folio and return the old
317  * data.  The page must previously have had data attached and the data
318  * must be detached before the folio will be freed.
319  *
320  * Return: Data that was previously attached to the folio.
321  */
322 static inline void *folio_change_private(struct folio *folio, void *data)
323 {
324 	void *old = folio_get_private(folio);
325 
326 	folio->private = data;
327 	return old;
328 }
329 
330 /**
331  * folio_detach_private - Detach private data from a folio.
332  * @folio: Folio to detach data from.
333  *
334  * Removes the data that was previously attached to the folio and decrements
335  * the refcount on the page.
336  *
337  * Return: Data that was attached to the folio.
338  */
339 static inline void *folio_detach_private(struct folio *folio)
340 {
341 	void *data = folio_get_private(folio);
342 
343 	if (!folio_test_private(folio))
344 		return NULL;
345 	folio_clear_private(folio);
346 	folio->private = NULL;
347 	folio_put(folio);
348 
349 	return data;
350 }
351 
352 static inline void attach_page_private(struct page *page, void *data)
353 {
354 	folio_attach_private(page_folio(page), data);
355 }
356 
357 static inline void *detach_page_private(struct page *page)
358 {
359 	return folio_detach_private(page_folio(page));
360 }
361 
362 #ifdef CONFIG_NUMA
363 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order);
364 #else
365 static inline struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
366 {
367 	return folio_alloc(gfp, order);
368 }
369 #endif
370 
371 static inline struct page *__page_cache_alloc(gfp_t gfp)
372 {
373 	return &filemap_alloc_folio(gfp, 0)->page;
374 }
375 
376 static inline struct page *page_cache_alloc(struct address_space *x)
377 {
378 	return __page_cache_alloc(mapping_gfp_mask(x));
379 }
380 
381 static inline gfp_t readahead_gfp_mask(struct address_space *x)
382 {
383 	return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN;
384 }
385 
386 typedef int filler_t(void *, struct page *);
387 
388 pgoff_t page_cache_next_miss(struct address_space *mapping,
389 			     pgoff_t index, unsigned long max_scan);
390 pgoff_t page_cache_prev_miss(struct address_space *mapping,
391 			     pgoff_t index, unsigned long max_scan);
392 
393 #define FGP_ACCESSED		0x00000001
394 #define FGP_LOCK		0x00000002
395 #define FGP_CREAT		0x00000004
396 #define FGP_WRITE		0x00000008
397 #define FGP_NOFS		0x00000010
398 #define FGP_NOWAIT		0x00000020
399 #define FGP_FOR_MMAP		0x00000040
400 #define FGP_HEAD		0x00000080
401 #define FGP_ENTRY		0x00000100
402 #define FGP_STABLE		0x00000200
403 
404 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
405 		int fgp_flags, gfp_t gfp);
406 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
407 		int fgp_flags, gfp_t gfp);
408 
409 /**
410  * filemap_get_folio - Find and get a folio.
411  * @mapping: The address_space to search.
412  * @index: The page index.
413  *
414  * Looks up the page cache entry at @mapping & @index.  If a folio is
415  * present, it is returned with an increased refcount.
416  *
417  * Otherwise, %NULL is returned.
418  */
419 static inline struct folio *filemap_get_folio(struct address_space *mapping,
420 					pgoff_t index)
421 {
422 	return __filemap_get_folio(mapping, index, 0, 0);
423 }
424 
425 /**
426  * find_get_page - find and get a page reference
427  * @mapping: the address_space to search
428  * @offset: the page index
429  *
430  * Looks up the page cache slot at @mapping & @offset.  If there is a
431  * page cache page, it is returned with an increased refcount.
432  *
433  * Otherwise, %NULL is returned.
434  */
435 static inline struct page *find_get_page(struct address_space *mapping,
436 					pgoff_t offset)
437 {
438 	return pagecache_get_page(mapping, offset, 0, 0);
439 }
440 
441 static inline struct page *find_get_page_flags(struct address_space *mapping,
442 					pgoff_t offset, int fgp_flags)
443 {
444 	return pagecache_get_page(mapping, offset, fgp_flags, 0);
445 }
446 
447 /**
448  * find_lock_page - locate, pin and lock a pagecache page
449  * @mapping: the address_space to search
450  * @index: the page index
451  *
452  * Looks up the page cache entry at @mapping & @index.  If there is a
453  * page cache page, it is returned locked and with an increased
454  * refcount.
455  *
456  * Context: May sleep.
457  * Return: A struct page or %NULL if there is no page in the cache for this
458  * index.
459  */
460 static inline struct page *find_lock_page(struct address_space *mapping,
461 					pgoff_t index)
462 {
463 	return pagecache_get_page(mapping, index, FGP_LOCK, 0);
464 }
465 
466 /**
467  * find_or_create_page - locate or add a pagecache page
468  * @mapping: the page's address_space
469  * @index: the page's index into the mapping
470  * @gfp_mask: page allocation mode
471  *
472  * Looks up the page cache slot at @mapping & @offset.  If there is a
473  * page cache page, it is returned locked and with an increased
474  * refcount.
475  *
476  * If the page is not present, a new page is allocated using @gfp_mask
477  * and added to the page cache and the VM's LRU list.  The page is
478  * returned locked and with an increased refcount.
479  *
480  * On memory exhaustion, %NULL is returned.
481  *
482  * find_or_create_page() may sleep, even if @gfp_flags specifies an
483  * atomic allocation!
484  */
485 static inline struct page *find_or_create_page(struct address_space *mapping,
486 					pgoff_t index, gfp_t gfp_mask)
487 {
488 	return pagecache_get_page(mapping, index,
489 					FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
490 					gfp_mask);
491 }
492 
493 /**
494  * grab_cache_page_nowait - returns locked page at given index in given cache
495  * @mapping: target address_space
496  * @index: the page index
497  *
498  * Same as grab_cache_page(), but do not wait if the page is unavailable.
499  * This is intended for speculative data generators, where the data can
500  * be regenerated if the page couldn't be grabbed.  This routine should
501  * be safe to call while holding the lock for another page.
502  *
503  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
504  * and deadlock against the caller's locked page.
505  */
506 static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
507 				pgoff_t index)
508 {
509 	return pagecache_get_page(mapping, index,
510 			FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
511 			mapping_gfp_mask(mapping));
512 }
513 
514 #define swapcache_index(folio)	__page_file_index(&(folio)->page)
515 
516 /**
517  * folio_index - File index of a folio.
518  * @folio: The folio.
519  *
520  * For a folio which is either in the page cache or the swap cache,
521  * return its index within the address_space it belongs to.  If you know
522  * the page is definitely in the page cache, you can look at the folio's
523  * index directly.
524  *
525  * Return: The index (offset in units of pages) of a folio in its file.
526  */
527 static inline pgoff_t folio_index(struct folio *folio)
528 {
529         if (unlikely(folio_test_swapcache(folio)))
530                 return swapcache_index(folio);
531         return folio->index;
532 }
533 
534 /**
535  * folio_next_index - Get the index of the next folio.
536  * @folio: The current folio.
537  *
538  * Return: The index of the folio which follows this folio in the file.
539  */
540 static inline pgoff_t folio_next_index(struct folio *folio)
541 {
542 	return folio->index + folio_nr_pages(folio);
543 }
544 
545 /**
546  * folio_file_page - The page for a particular index.
547  * @folio: The folio which contains this index.
548  * @index: The index we want to look up.
549  *
550  * Sometimes after looking up a folio in the page cache, we need to
551  * obtain the specific page for an index (eg a page fault).
552  *
553  * Return: The page containing the file data for this index.
554  */
555 static inline struct page *folio_file_page(struct folio *folio, pgoff_t index)
556 {
557 	/* HugeTLBfs indexes the page cache in units of hpage_size */
558 	if (folio_test_hugetlb(folio))
559 		return &folio->page;
560 	return folio_page(folio, index & (folio_nr_pages(folio) - 1));
561 }
562 
563 /**
564  * folio_contains - Does this folio contain this index?
565  * @folio: The folio.
566  * @index: The page index within the file.
567  *
568  * Context: The caller should have the page locked in order to prevent
569  * (eg) shmem from moving the page between the page cache and swap cache
570  * and changing its index in the middle of the operation.
571  * Return: true or false.
572  */
573 static inline bool folio_contains(struct folio *folio, pgoff_t index)
574 {
575 	/* HugeTLBfs indexes the page cache in units of hpage_size */
576 	if (folio_test_hugetlb(folio))
577 		return folio->index == index;
578 	return index - folio_index(folio) < folio_nr_pages(folio);
579 }
580 
581 /*
582  * Given the page we found in the page cache, return the page corresponding
583  * to this index in the file
584  */
585 static inline struct page *find_subpage(struct page *head, pgoff_t index)
586 {
587 	/* HugeTLBfs wants the head page regardless */
588 	if (PageHuge(head))
589 		return head;
590 
591 	return head + (index & (thp_nr_pages(head) - 1));
592 }
593 
594 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
595 			pgoff_t end, unsigned int nr_pages,
596 			struct page **pages);
597 static inline unsigned find_get_pages(struct address_space *mapping,
598 			pgoff_t *start, unsigned int nr_pages,
599 			struct page **pages)
600 {
601 	return find_get_pages_range(mapping, start, (pgoff_t)-1, nr_pages,
602 				    pages);
603 }
604 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
605 			       unsigned int nr_pages, struct page **pages);
606 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
607 			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
608 			struct page **pages);
609 static inline unsigned find_get_pages_tag(struct address_space *mapping,
610 			pgoff_t *index, xa_mark_t tag, unsigned int nr_pages,
611 			struct page **pages)
612 {
613 	return find_get_pages_range_tag(mapping, index, (pgoff_t)-1, tag,
614 					nr_pages, pages);
615 }
616 
617 struct page *grab_cache_page_write_begin(struct address_space *mapping,
618 			pgoff_t index, unsigned flags);
619 
620 /*
621  * Returns locked page at given index in given cache, creating it if needed.
622  */
623 static inline struct page *grab_cache_page(struct address_space *mapping,
624 								pgoff_t index)
625 {
626 	return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
627 }
628 
629 struct folio *read_cache_folio(struct address_space *, pgoff_t index,
630 		filler_t *filler, void *data);
631 struct page *read_cache_page(struct address_space *, pgoff_t index,
632 		filler_t *filler, void *data);
633 extern struct page * read_cache_page_gfp(struct address_space *mapping,
634 				pgoff_t index, gfp_t gfp_mask);
635 extern int read_cache_pages(struct address_space *mapping,
636 		struct list_head *pages, filler_t *filler, void *data);
637 
638 static inline struct page *read_mapping_page(struct address_space *mapping,
639 				pgoff_t index, void *data)
640 {
641 	return read_cache_page(mapping, index, NULL, data);
642 }
643 
644 static inline struct folio *read_mapping_folio(struct address_space *mapping,
645 				pgoff_t index, void *data)
646 {
647 	return read_cache_folio(mapping, index, NULL, data);
648 }
649 
650 /*
651  * Get index of the page within radix-tree (but not for hugetlb pages).
652  * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE)
653  */
654 static inline pgoff_t page_to_index(struct page *page)
655 {
656 	struct page *head;
657 
658 	if (likely(!PageTransTail(page)))
659 		return page->index;
660 
661 	head = compound_head(page);
662 	/*
663 	 *  We don't initialize ->index for tail pages: calculate based on
664 	 *  head page
665 	 */
666 	return head->index + page - head;
667 }
668 
669 extern pgoff_t hugetlb_basepage_index(struct page *page);
670 
671 /*
672  * Get the offset in PAGE_SIZE (even for hugetlb pages).
673  * (TODO: hugetlb pages should have ->index in PAGE_SIZE)
674  */
675 static inline pgoff_t page_to_pgoff(struct page *page)
676 {
677 	if (unlikely(PageHuge(page)))
678 		return hugetlb_basepage_index(page);
679 	return page_to_index(page);
680 }
681 
682 /*
683  * Return byte-offset into filesystem object for page.
684  */
685 static inline loff_t page_offset(struct page *page)
686 {
687 	return ((loff_t)page->index) << PAGE_SHIFT;
688 }
689 
690 static inline loff_t page_file_offset(struct page *page)
691 {
692 	return ((loff_t)page_index(page)) << PAGE_SHIFT;
693 }
694 
695 /**
696  * folio_pos - Returns the byte position of this folio in its file.
697  * @folio: The folio.
698  */
699 static inline loff_t folio_pos(struct folio *folio)
700 {
701 	return page_offset(&folio->page);
702 }
703 
704 /**
705  * folio_file_pos - Returns the byte position of this folio in its file.
706  * @folio: The folio.
707  *
708  * This differs from folio_pos() for folios which belong to a swap file.
709  * NFS is the only filesystem today which needs to use folio_file_pos().
710  */
711 static inline loff_t folio_file_pos(struct folio *folio)
712 {
713 	return page_file_offset(&folio->page);
714 }
715 
716 extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
717 				     unsigned long address);
718 
719 static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
720 					unsigned long address)
721 {
722 	pgoff_t pgoff;
723 	if (unlikely(is_vm_hugetlb_page(vma)))
724 		return linear_hugepage_index(vma, address);
725 	pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
726 	pgoff += vma->vm_pgoff;
727 	return pgoff;
728 }
729 
730 struct wait_page_key {
731 	struct folio *folio;
732 	int bit_nr;
733 	int page_match;
734 };
735 
736 struct wait_page_queue {
737 	struct folio *folio;
738 	int bit_nr;
739 	wait_queue_entry_t wait;
740 };
741 
742 static inline bool wake_page_match(struct wait_page_queue *wait_page,
743 				  struct wait_page_key *key)
744 {
745 	if (wait_page->folio != key->folio)
746 	       return false;
747 	key->page_match = 1;
748 
749 	if (wait_page->bit_nr != key->bit_nr)
750 		return false;
751 
752 	return true;
753 }
754 
755 void __folio_lock(struct folio *folio);
756 int __folio_lock_killable(struct folio *folio);
757 bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm,
758 				unsigned int flags);
759 void unlock_page(struct page *page);
760 void folio_unlock(struct folio *folio);
761 
762 static inline bool folio_trylock(struct folio *folio)
763 {
764 	return likely(!test_and_set_bit_lock(PG_locked, folio_flags(folio, 0)));
765 }
766 
767 /*
768  * Return true if the page was successfully locked
769  */
770 static inline int trylock_page(struct page *page)
771 {
772 	return folio_trylock(page_folio(page));
773 }
774 
775 static inline void folio_lock(struct folio *folio)
776 {
777 	might_sleep();
778 	if (!folio_trylock(folio))
779 		__folio_lock(folio);
780 }
781 
782 /*
783  * lock_page may only be called if we have the page's inode pinned.
784  */
785 static inline void lock_page(struct page *page)
786 {
787 	struct folio *folio;
788 	might_sleep();
789 
790 	folio = page_folio(page);
791 	if (!folio_trylock(folio))
792 		__folio_lock(folio);
793 }
794 
795 static inline int folio_lock_killable(struct folio *folio)
796 {
797 	might_sleep();
798 	if (!folio_trylock(folio))
799 		return __folio_lock_killable(folio);
800 	return 0;
801 }
802 
803 /*
804  * lock_page_killable is like lock_page but can be interrupted by fatal
805  * signals.  It returns 0 if it locked the page and -EINTR if it was
806  * killed while waiting.
807  */
808 static inline int lock_page_killable(struct page *page)
809 {
810 	return folio_lock_killable(page_folio(page));
811 }
812 
813 /*
814  * lock_page_or_retry - Lock the page, unless this would block and the
815  * caller indicated that it can handle a retry.
816  *
817  * Return value and mmap_lock implications depend on flags; see
818  * __folio_lock_or_retry().
819  */
820 static inline bool lock_page_or_retry(struct page *page, struct mm_struct *mm,
821 				     unsigned int flags)
822 {
823 	struct folio *folio;
824 	might_sleep();
825 
826 	folio = page_folio(page);
827 	return folio_trylock(folio) || __folio_lock_or_retry(folio, mm, flags);
828 }
829 
830 /*
831  * This is exported only for folio_wait_locked/folio_wait_writeback, etc.,
832  * and should not be used directly.
833  */
834 void folio_wait_bit(struct folio *folio, int bit_nr);
835 int folio_wait_bit_killable(struct folio *folio, int bit_nr);
836 
837 /*
838  * Wait for a folio to be unlocked.
839  *
840  * This must be called with the caller "holding" the folio,
841  * ie with increased "page->count" so that the folio won't
842  * go away during the wait..
843  */
844 static inline void folio_wait_locked(struct folio *folio)
845 {
846 	if (folio_test_locked(folio))
847 		folio_wait_bit(folio, PG_locked);
848 }
849 
850 static inline int folio_wait_locked_killable(struct folio *folio)
851 {
852 	if (!folio_test_locked(folio))
853 		return 0;
854 	return folio_wait_bit_killable(folio, PG_locked);
855 }
856 
857 static inline void wait_on_page_locked(struct page *page)
858 {
859 	folio_wait_locked(page_folio(page));
860 }
861 
862 static inline int wait_on_page_locked_killable(struct page *page)
863 {
864 	return folio_wait_locked_killable(page_folio(page));
865 }
866 
867 int folio_put_wait_locked(struct folio *folio, int state);
868 void wait_on_page_writeback(struct page *page);
869 void folio_wait_writeback(struct folio *folio);
870 int folio_wait_writeback_killable(struct folio *folio);
871 void end_page_writeback(struct page *page);
872 void folio_end_writeback(struct folio *folio);
873 void wait_for_stable_page(struct page *page);
874 void folio_wait_stable(struct folio *folio);
875 void __folio_mark_dirty(struct folio *folio, struct address_space *, int warn);
876 static inline void __set_page_dirty(struct page *page,
877 		struct address_space *mapping, int warn)
878 {
879 	__folio_mark_dirty(page_folio(page), mapping, warn);
880 }
881 void folio_account_cleaned(struct folio *folio, struct address_space *mapping,
882 			  struct bdi_writeback *wb);
883 void __folio_cancel_dirty(struct folio *folio);
884 static inline void folio_cancel_dirty(struct folio *folio)
885 {
886 	/* Avoid atomic ops, locking, etc. when not actually needed. */
887 	if (folio_test_dirty(folio))
888 		__folio_cancel_dirty(folio);
889 }
890 static inline void cancel_dirty_page(struct page *page)
891 {
892 	folio_cancel_dirty(page_folio(page));
893 }
894 bool folio_clear_dirty_for_io(struct folio *folio);
895 bool clear_page_dirty_for_io(struct page *page);
896 int __must_check folio_write_one(struct folio *folio);
897 static inline int __must_check write_one_page(struct page *page)
898 {
899 	return folio_write_one(page_folio(page));
900 }
901 
902 int __set_page_dirty_nobuffers(struct page *page);
903 int __set_page_dirty_no_writeback(struct page *page);
904 
905 void page_endio(struct page *page, bool is_write, int err);
906 
907 void folio_end_private_2(struct folio *folio);
908 void folio_wait_private_2(struct folio *folio);
909 int folio_wait_private_2_killable(struct folio *folio);
910 
911 /*
912  * Add an arbitrary waiter to a page's wait queue
913  */
914 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter);
915 
916 /*
917  * Fault in userspace address range.
918  */
919 size_t fault_in_writeable(char __user *uaddr, size_t size);
920 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size);
921 size_t fault_in_readable(const char __user *uaddr, size_t size);
922 
923 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
924 		pgoff_t index, gfp_t gfp);
925 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
926 		pgoff_t index, gfp_t gfp);
927 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
928 		pgoff_t index, gfp_t gfp);
929 void filemap_remove_folio(struct folio *folio);
930 void delete_from_page_cache(struct page *page);
931 void __filemap_remove_folio(struct folio *folio, void *shadow);
932 static inline void __delete_from_page_cache(struct page *page, void *shadow)
933 {
934 	__filemap_remove_folio(page_folio(page), shadow);
935 }
936 void replace_page_cache_page(struct page *old, struct page *new);
937 void delete_from_page_cache_batch(struct address_space *mapping,
938 				  struct folio_batch *fbatch);
939 int try_to_release_page(struct page *page, gfp_t gfp);
940 bool filemap_release_folio(struct folio *folio, gfp_t gfp);
941 loff_t mapping_seek_hole_data(struct address_space *, loff_t start, loff_t end,
942 		int whence);
943 
944 /*
945  * Like add_to_page_cache_locked, but used to add newly allocated pages:
946  * the page is new, so we can just run __SetPageLocked() against it.
947  */
948 static inline int add_to_page_cache(struct page *page,
949 		struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
950 {
951 	int error;
952 
953 	__SetPageLocked(page);
954 	error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
955 	if (unlikely(error))
956 		__ClearPageLocked(page);
957 	return error;
958 }
959 
960 /* Must be non-static for BPF error injection */
961 int __filemap_add_folio(struct address_space *mapping, struct folio *folio,
962 		pgoff_t index, gfp_t gfp, void **shadowp);
963 
964 bool filemap_range_has_writeback(struct address_space *mapping,
965 				 loff_t start_byte, loff_t end_byte);
966 
967 /**
968  * filemap_range_needs_writeback - check if range potentially needs writeback
969  * @mapping:           address space within which to check
970  * @start_byte:        offset in bytes where the range starts
971  * @end_byte:          offset in bytes where the range ends (inclusive)
972  *
973  * Find at least one page in the range supplied, usually used to check if
974  * direct writing in this range will trigger a writeback. Used by O_DIRECT
975  * read/write with IOCB_NOWAIT, to see if the caller needs to do
976  * filemap_write_and_wait_range() before proceeding.
977  *
978  * Return: %true if the caller should do filemap_write_and_wait_range() before
979  * doing O_DIRECT to a page in this range, %false otherwise.
980  */
981 static inline bool filemap_range_needs_writeback(struct address_space *mapping,
982 						 loff_t start_byte,
983 						 loff_t end_byte)
984 {
985 	if (!mapping->nrpages)
986 		return false;
987 	if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
988 	    !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
989 		return false;
990 	return filemap_range_has_writeback(mapping, start_byte, end_byte);
991 }
992 
993 /**
994  * struct readahead_control - Describes a readahead request.
995  *
996  * A readahead request is for consecutive pages.  Filesystems which
997  * implement the ->readahead method should call readahead_page() or
998  * readahead_page_batch() in a loop and attempt to start I/O against
999  * each page in the request.
1000  *
1001  * Most of the fields in this struct are private and should be accessed
1002  * by the functions below.
1003  *
1004  * @file: The file, used primarily by network filesystems for authentication.
1005  *	  May be NULL if invoked internally by the filesystem.
1006  * @mapping: Readahead this filesystem object.
1007  * @ra: File readahead state.  May be NULL.
1008  */
1009 struct readahead_control {
1010 	struct file *file;
1011 	struct address_space *mapping;
1012 	struct file_ra_state *ra;
1013 /* private: use the readahead_* accessors instead */
1014 	pgoff_t _index;
1015 	unsigned int _nr_pages;
1016 	unsigned int _batch_count;
1017 };
1018 
1019 #define DEFINE_READAHEAD(ractl, f, r, m, i)				\
1020 	struct readahead_control ractl = {				\
1021 		.file = f,						\
1022 		.mapping = m,						\
1023 		.ra = r,						\
1024 		._index = i,						\
1025 	}
1026 
1027 #define VM_READAHEAD_PAGES	(SZ_128K / PAGE_SIZE)
1028 
1029 void page_cache_ra_unbounded(struct readahead_control *,
1030 		unsigned long nr_to_read, unsigned long lookahead_count);
1031 void page_cache_sync_ra(struct readahead_control *, unsigned long req_count);
1032 void page_cache_async_ra(struct readahead_control *, struct folio *,
1033 		unsigned long req_count);
1034 void readahead_expand(struct readahead_control *ractl,
1035 		      loff_t new_start, size_t new_len);
1036 
1037 /**
1038  * page_cache_sync_readahead - generic file readahead
1039  * @mapping: address_space which holds the pagecache and I/O vectors
1040  * @ra: file_ra_state which holds the readahead state
1041  * @file: Used by the filesystem for authentication.
1042  * @index: Index of first page to be read.
1043  * @req_count: Total number of pages being read by the caller.
1044  *
1045  * page_cache_sync_readahead() should be called when a cache miss happened:
1046  * it will submit the read.  The readahead logic may decide to piggyback more
1047  * pages onto the read request if access patterns suggest it will improve
1048  * performance.
1049  */
1050 static inline
1051 void page_cache_sync_readahead(struct address_space *mapping,
1052 		struct file_ra_state *ra, struct file *file, pgoff_t index,
1053 		unsigned long req_count)
1054 {
1055 	DEFINE_READAHEAD(ractl, file, ra, mapping, index);
1056 	page_cache_sync_ra(&ractl, req_count);
1057 }
1058 
1059 /**
1060  * page_cache_async_readahead - file readahead for marked pages
1061  * @mapping: address_space which holds the pagecache and I/O vectors
1062  * @ra: file_ra_state which holds the readahead state
1063  * @file: Used by the filesystem for authentication.
1064  * @page: The page at @index which triggered the readahead call.
1065  * @index: Index of first page to be read.
1066  * @req_count: Total number of pages being read by the caller.
1067  *
1068  * page_cache_async_readahead() should be called when a page is used which
1069  * is marked as PageReadahead; this is a marker to suggest that the application
1070  * has used up enough of the readahead window that we should start pulling in
1071  * more pages.
1072  */
1073 static inline
1074 void page_cache_async_readahead(struct address_space *mapping,
1075 		struct file_ra_state *ra, struct file *file,
1076 		struct page *page, pgoff_t index, unsigned long req_count)
1077 {
1078 	DEFINE_READAHEAD(ractl, file, ra, mapping, index);
1079 	page_cache_async_ra(&ractl, page_folio(page), req_count);
1080 }
1081 
1082 static inline struct folio *__readahead_folio(struct readahead_control *ractl)
1083 {
1084 	struct folio *folio;
1085 
1086 	BUG_ON(ractl->_batch_count > ractl->_nr_pages);
1087 	ractl->_nr_pages -= ractl->_batch_count;
1088 	ractl->_index += ractl->_batch_count;
1089 
1090 	if (!ractl->_nr_pages) {
1091 		ractl->_batch_count = 0;
1092 		return NULL;
1093 	}
1094 
1095 	folio = xa_load(&ractl->mapping->i_pages, ractl->_index);
1096 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1097 	ractl->_batch_count = folio_nr_pages(folio);
1098 
1099 	return folio;
1100 }
1101 
1102 /**
1103  * readahead_page - Get the next page to read.
1104  * @ractl: The current readahead request.
1105  *
1106  * Context: The page is locked and has an elevated refcount.  The caller
1107  * should decreases the refcount once the page has been submitted for I/O
1108  * and unlock the page once all I/O to that page has completed.
1109  * Return: A pointer to the next page, or %NULL if we are done.
1110  */
1111 static inline struct page *readahead_page(struct readahead_control *ractl)
1112 {
1113 	struct folio *folio = __readahead_folio(ractl);
1114 
1115 	return &folio->page;
1116 }
1117 
1118 /**
1119  * readahead_folio - Get the next folio to read.
1120  * @ractl: The current readahead request.
1121  *
1122  * Context: The folio is locked.  The caller should unlock the folio once
1123  * all I/O to that folio has completed.
1124  * Return: A pointer to the next folio, or %NULL if we are done.
1125  */
1126 static inline struct folio *readahead_folio(struct readahead_control *ractl)
1127 {
1128 	struct folio *folio = __readahead_folio(ractl);
1129 
1130 	if (folio)
1131 		folio_put(folio);
1132 	return folio;
1133 }
1134 
1135 static inline unsigned int __readahead_batch(struct readahead_control *rac,
1136 		struct page **array, unsigned int array_sz)
1137 {
1138 	unsigned int i = 0;
1139 	XA_STATE(xas, &rac->mapping->i_pages, 0);
1140 	struct page *page;
1141 
1142 	BUG_ON(rac->_batch_count > rac->_nr_pages);
1143 	rac->_nr_pages -= rac->_batch_count;
1144 	rac->_index += rac->_batch_count;
1145 	rac->_batch_count = 0;
1146 
1147 	xas_set(&xas, rac->_index);
1148 	rcu_read_lock();
1149 	xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) {
1150 		if (xas_retry(&xas, page))
1151 			continue;
1152 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1153 		VM_BUG_ON_PAGE(PageTail(page), page);
1154 		array[i++] = page;
1155 		rac->_batch_count += thp_nr_pages(page);
1156 		if (i == array_sz)
1157 			break;
1158 	}
1159 	rcu_read_unlock();
1160 
1161 	return i;
1162 }
1163 
1164 /**
1165  * readahead_page_batch - Get a batch of pages to read.
1166  * @rac: The current readahead request.
1167  * @array: An array of pointers to struct page.
1168  *
1169  * Context: The pages are locked and have an elevated refcount.  The caller
1170  * should decreases the refcount once the page has been submitted for I/O
1171  * and unlock the page once all I/O to that page has completed.
1172  * Return: The number of pages placed in the array.  0 indicates the request
1173  * is complete.
1174  */
1175 #define readahead_page_batch(rac, array)				\
1176 	__readahead_batch(rac, array, ARRAY_SIZE(array))
1177 
1178 /**
1179  * readahead_pos - The byte offset into the file of this readahead request.
1180  * @rac: The readahead request.
1181  */
1182 static inline loff_t readahead_pos(struct readahead_control *rac)
1183 {
1184 	return (loff_t)rac->_index * PAGE_SIZE;
1185 }
1186 
1187 /**
1188  * readahead_length - The number of bytes in this readahead request.
1189  * @rac: The readahead request.
1190  */
1191 static inline size_t readahead_length(struct readahead_control *rac)
1192 {
1193 	return rac->_nr_pages * PAGE_SIZE;
1194 }
1195 
1196 /**
1197  * readahead_index - The index of the first page in this readahead request.
1198  * @rac: The readahead request.
1199  */
1200 static inline pgoff_t readahead_index(struct readahead_control *rac)
1201 {
1202 	return rac->_index;
1203 }
1204 
1205 /**
1206  * readahead_count - The number of pages in this readahead request.
1207  * @rac: The readahead request.
1208  */
1209 static inline unsigned int readahead_count(struct readahead_control *rac)
1210 {
1211 	return rac->_nr_pages;
1212 }
1213 
1214 /**
1215  * readahead_batch_length - The number of bytes in the current batch.
1216  * @rac: The readahead request.
1217  */
1218 static inline size_t readahead_batch_length(struct readahead_control *rac)
1219 {
1220 	return rac->_batch_count * PAGE_SIZE;
1221 }
1222 
1223 static inline unsigned long dir_pages(struct inode *inode)
1224 {
1225 	return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
1226 			       PAGE_SHIFT;
1227 }
1228 
1229 /**
1230  * folio_mkwrite_check_truncate - check if folio was truncated
1231  * @folio: the folio to check
1232  * @inode: the inode to check the folio against
1233  *
1234  * Return: the number of bytes in the folio up to EOF,
1235  * or -EFAULT if the folio was truncated.
1236  */
1237 static inline ssize_t folio_mkwrite_check_truncate(struct folio *folio,
1238 					      struct inode *inode)
1239 {
1240 	loff_t size = i_size_read(inode);
1241 	pgoff_t index = size >> PAGE_SHIFT;
1242 	size_t offset = offset_in_folio(folio, size);
1243 
1244 	if (!folio->mapping)
1245 		return -EFAULT;
1246 
1247 	/* folio is wholly inside EOF */
1248 	if (folio_next_index(folio) - 1 < index)
1249 		return folio_size(folio);
1250 	/* folio is wholly past EOF */
1251 	if (folio->index > index || !offset)
1252 		return -EFAULT;
1253 	/* folio is partially inside EOF */
1254 	return offset;
1255 }
1256 
1257 /**
1258  * page_mkwrite_check_truncate - check if page was truncated
1259  * @page: the page to check
1260  * @inode: the inode to check the page against
1261  *
1262  * Returns the number of bytes in the page up to EOF,
1263  * or -EFAULT if the page was truncated.
1264  */
1265 static inline int page_mkwrite_check_truncate(struct page *page,
1266 					      struct inode *inode)
1267 {
1268 	loff_t size = i_size_read(inode);
1269 	pgoff_t index = size >> PAGE_SHIFT;
1270 	int offset = offset_in_page(size);
1271 
1272 	if (page->mapping != inode->i_mapping)
1273 		return -EFAULT;
1274 
1275 	/* page is wholly inside EOF */
1276 	if (page->index < index)
1277 		return PAGE_SIZE;
1278 	/* page is wholly past EOF */
1279 	if (page->index > index || !offset)
1280 		return -EFAULT;
1281 	/* page is partially inside EOF */
1282 	return offset;
1283 }
1284 
1285 /**
1286  * i_blocks_per_folio - How many blocks fit in this folio.
1287  * @inode: The inode which contains the blocks.
1288  * @folio: The folio.
1289  *
1290  * If the block size is larger than the size of this folio, return zero.
1291  *
1292  * Context: The caller should hold a refcount on the folio to prevent it
1293  * from being split.
1294  * Return: The number of filesystem blocks covered by this folio.
1295  */
1296 static inline
1297 unsigned int i_blocks_per_folio(struct inode *inode, struct folio *folio)
1298 {
1299 	return folio_size(folio) >> inode->i_blkbits;
1300 }
1301 
1302 static inline
1303 unsigned int i_blocks_per_page(struct inode *inode, struct page *page)
1304 {
1305 	return i_blocks_per_folio(inode, page_folio(page));
1306 }
1307 #endif /* _LINUX_PAGEMAP_H */
1308