1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_PAGEMAP_H 3 #define _LINUX_PAGEMAP_H 4 5 /* 6 * Copyright 1995 Linus Torvalds 7 */ 8 #include <linux/mm.h> 9 #include <linux/fs.h> 10 #include <linux/list.h> 11 #include <linux/highmem.h> 12 #include <linux/compiler.h> 13 #include <linux/uaccess.h> 14 #include <linux/gfp.h> 15 #include <linux/bitops.h> 16 #include <linux/hardirq.h> /* for in_interrupt() */ 17 #include <linux/hugetlb_inline.h> 18 19 struct folio_batch; 20 21 static inline bool mapping_empty(struct address_space *mapping) 22 { 23 return xa_empty(&mapping->i_pages); 24 } 25 26 /* 27 * mapping_shrinkable - test if page cache state allows inode reclaim 28 * @mapping: the page cache mapping 29 * 30 * This checks the mapping's cache state for the pupose of inode 31 * reclaim and LRU management. 32 * 33 * The caller is expected to hold the i_lock, but is not required to 34 * hold the i_pages lock, which usually protects cache state. That's 35 * because the i_lock and the list_lru lock that protect the inode and 36 * its LRU state don't nest inside the irq-safe i_pages lock. 37 * 38 * Cache deletions are performed under the i_lock, which ensures that 39 * when an inode goes empty, it will reliably get queued on the LRU. 40 * 41 * Cache additions do not acquire the i_lock and may race with this 42 * check, in which case we'll report the inode as shrinkable when it 43 * has cache pages. This is okay: the shrinker also checks the 44 * refcount and the referenced bit, which will be elevated or set in 45 * the process of adding new cache pages to an inode. 46 */ 47 static inline bool mapping_shrinkable(struct address_space *mapping) 48 { 49 void *head; 50 51 /* 52 * On highmem systems, there could be lowmem pressure from the 53 * inodes before there is highmem pressure from the page 54 * cache. Make inodes shrinkable regardless of cache state. 55 */ 56 if (IS_ENABLED(CONFIG_HIGHMEM)) 57 return true; 58 59 /* Cache completely empty? Shrink away. */ 60 head = rcu_access_pointer(mapping->i_pages.xa_head); 61 if (!head) 62 return true; 63 64 /* 65 * The xarray stores single offset-0 entries directly in the 66 * head pointer, which allows non-resident page cache entries 67 * to escape the shadow shrinker's list of xarray nodes. The 68 * inode shrinker needs to pick them up under memory pressure. 69 */ 70 if (!xa_is_node(head) && xa_is_value(head)) 71 return true; 72 73 return false; 74 } 75 76 /* 77 * Bits in mapping->flags. 78 */ 79 enum mapping_flags { 80 AS_EIO = 0, /* IO error on async write */ 81 AS_ENOSPC = 1, /* ENOSPC on async write */ 82 AS_MM_ALL_LOCKS = 2, /* under mm_take_all_locks() */ 83 AS_UNEVICTABLE = 3, /* e.g., ramdisk, SHM_LOCK */ 84 AS_EXITING = 4, /* final truncate in progress */ 85 /* writeback related tags are not used */ 86 AS_NO_WRITEBACK_TAGS = 5, 87 AS_LARGE_FOLIO_SUPPORT = 6, 88 }; 89 90 /** 91 * mapping_set_error - record a writeback error in the address_space 92 * @mapping: the mapping in which an error should be set 93 * @error: the error to set in the mapping 94 * 95 * When writeback fails in some way, we must record that error so that 96 * userspace can be informed when fsync and the like are called. We endeavor 97 * to report errors on any file that was open at the time of the error. Some 98 * internal callers also need to know when writeback errors have occurred. 99 * 100 * When a writeback error occurs, most filesystems will want to call 101 * mapping_set_error to record the error in the mapping so that it can be 102 * reported when the application calls fsync(2). 103 */ 104 static inline void mapping_set_error(struct address_space *mapping, int error) 105 { 106 if (likely(!error)) 107 return; 108 109 /* Record in wb_err for checkers using errseq_t based tracking */ 110 __filemap_set_wb_err(mapping, error); 111 112 /* Record it in superblock */ 113 if (mapping->host) 114 errseq_set(&mapping->host->i_sb->s_wb_err, error); 115 116 /* Record it in flags for now, for legacy callers */ 117 if (error == -ENOSPC) 118 set_bit(AS_ENOSPC, &mapping->flags); 119 else 120 set_bit(AS_EIO, &mapping->flags); 121 } 122 123 static inline void mapping_set_unevictable(struct address_space *mapping) 124 { 125 set_bit(AS_UNEVICTABLE, &mapping->flags); 126 } 127 128 static inline void mapping_clear_unevictable(struct address_space *mapping) 129 { 130 clear_bit(AS_UNEVICTABLE, &mapping->flags); 131 } 132 133 static inline bool mapping_unevictable(struct address_space *mapping) 134 { 135 return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags); 136 } 137 138 static inline void mapping_set_exiting(struct address_space *mapping) 139 { 140 set_bit(AS_EXITING, &mapping->flags); 141 } 142 143 static inline int mapping_exiting(struct address_space *mapping) 144 { 145 return test_bit(AS_EXITING, &mapping->flags); 146 } 147 148 static inline void mapping_set_no_writeback_tags(struct address_space *mapping) 149 { 150 set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); 151 } 152 153 static inline int mapping_use_writeback_tags(struct address_space *mapping) 154 { 155 return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); 156 } 157 158 static inline gfp_t mapping_gfp_mask(struct address_space * mapping) 159 { 160 return mapping->gfp_mask; 161 } 162 163 /* Restricts the given gfp_mask to what the mapping allows. */ 164 static inline gfp_t mapping_gfp_constraint(struct address_space *mapping, 165 gfp_t gfp_mask) 166 { 167 return mapping_gfp_mask(mapping) & gfp_mask; 168 } 169 170 /* 171 * This is non-atomic. Only to be used before the mapping is activated. 172 * Probably needs a barrier... 173 */ 174 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask) 175 { 176 m->gfp_mask = mask; 177 } 178 179 /** 180 * mapping_set_large_folios() - Indicate the file supports large folios. 181 * @mapping: The file. 182 * 183 * The filesystem should call this function in its inode constructor to 184 * indicate that the VFS can use large folios to cache the contents of 185 * the file. 186 * 187 * Context: This should not be called while the inode is active as it 188 * is non-atomic. 189 */ 190 static inline void mapping_set_large_folios(struct address_space *mapping) 191 { 192 __set_bit(AS_LARGE_FOLIO_SUPPORT, &mapping->flags); 193 } 194 195 static inline bool mapping_large_folio_support(struct address_space *mapping) 196 { 197 return test_bit(AS_LARGE_FOLIO_SUPPORT, &mapping->flags); 198 } 199 200 static inline int filemap_nr_thps(struct address_space *mapping) 201 { 202 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 203 return atomic_read(&mapping->nr_thps); 204 #else 205 return 0; 206 #endif 207 } 208 209 static inline void filemap_nr_thps_inc(struct address_space *mapping) 210 { 211 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 212 if (!mapping_large_folio_support(mapping)) 213 atomic_inc(&mapping->nr_thps); 214 #else 215 WARN_ON_ONCE(1); 216 #endif 217 } 218 219 static inline void filemap_nr_thps_dec(struct address_space *mapping) 220 { 221 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 222 if (!mapping_large_folio_support(mapping)) 223 atomic_dec(&mapping->nr_thps); 224 #else 225 WARN_ON_ONCE(1); 226 #endif 227 } 228 229 void release_pages(struct page **pages, int nr); 230 231 struct address_space *page_mapping(struct page *); 232 struct address_space *folio_mapping(struct folio *); 233 struct address_space *swapcache_mapping(struct folio *); 234 235 /** 236 * folio_file_mapping - Find the mapping this folio belongs to. 237 * @folio: The folio. 238 * 239 * For folios which are in the page cache, return the mapping that this 240 * page belongs to. Folios in the swap cache return the mapping of the 241 * swap file or swap device where the data is stored. This is different 242 * from the mapping returned by folio_mapping(). The only reason to 243 * use it is if, like NFS, you return 0 from ->activate_swapfile. 244 * 245 * Do not call this for folios which aren't in the page cache or swap cache. 246 */ 247 static inline struct address_space *folio_file_mapping(struct folio *folio) 248 { 249 if (unlikely(folio_test_swapcache(folio))) 250 return swapcache_mapping(folio); 251 252 return folio->mapping; 253 } 254 255 static inline struct address_space *page_file_mapping(struct page *page) 256 { 257 return folio_file_mapping(page_folio(page)); 258 } 259 260 /* 261 * For file cache pages, return the address_space, otherwise return NULL 262 */ 263 static inline struct address_space *page_mapping_file(struct page *page) 264 { 265 struct folio *folio = page_folio(page); 266 267 if (unlikely(folio_test_swapcache(folio))) 268 return NULL; 269 return folio_mapping(folio); 270 } 271 272 /** 273 * folio_inode - Get the host inode for this folio. 274 * @folio: The folio. 275 * 276 * For folios which are in the page cache, return the inode that this folio 277 * belongs to. 278 * 279 * Do not call this for folios which aren't in the page cache. 280 */ 281 static inline struct inode *folio_inode(struct folio *folio) 282 { 283 return folio->mapping->host; 284 } 285 286 static inline bool page_cache_add_speculative(struct page *page, int count) 287 { 288 return folio_ref_try_add_rcu((struct folio *)page, count); 289 } 290 291 static inline bool page_cache_get_speculative(struct page *page) 292 { 293 return page_cache_add_speculative(page, 1); 294 } 295 296 /** 297 * folio_attach_private - Attach private data to a folio. 298 * @folio: Folio to attach data to. 299 * @data: Data to attach to folio. 300 * 301 * Attaching private data to a folio increments the page's reference count. 302 * The data must be detached before the folio will be freed. 303 */ 304 static inline void folio_attach_private(struct folio *folio, void *data) 305 { 306 folio_get(folio); 307 folio->private = data; 308 folio_set_private(folio); 309 } 310 311 /** 312 * folio_change_private - Change private data on a folio. 313 * @folio: Folio to change the data on. 314 * @data: Data to set on the folio. 315 * 316 * Change the private data attached to a folio and return the old 317 * data. The page must previously have had data attached and the data 318 * must be detached before the folio will be freed. 319 * 320 * Return: Data that was previously attached to the folio. 321 */ 322 static inline void *folio_change_private(struct folio *folio, void *data) 323 { 324 void *old = folio_get_private(folio); 325 326 folio->private = data; 327 return old; 328 } 329 330 /** 331 * folio_detach_private - Detach private data from a folio. 332 * @folio: Folio to detach data from. 333 * 334 * Removes the data that was previously attached to the folio and decrements 335 * the refcount on the page. 336 * 337 * Return: Data that was attached to the folio. 338 */ 339 static inline void *folio_detach_private(struct folio *folio) 340 { 341 void *data = folio_get_private(folio); 342 343 if (!folio_test_private(folio)) 344 return NULL; 345 folio_clear_private(folio); 346 folio->private = NULL; 347 folio_put(folio); 348 349 return data; 350 } 351 352 static inline void attach_page_private(struct page *page, void *data) 353 { 354 folio_attach_private(page_folio(page), data); 355 } 356 357 static inline void *detach_page_private(struct page *page) 358 { 359 return folio_detach_private(page_folio(page)); 360 } 361 362 #ifdef CONFIG_NUMA 363 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order); 364 #else 365 static inline struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order) 366 { 367 return folio_alloc(gfp, order); 368 } 369 #endif 370 371 static inline struct page *__page_cache_alloc(gfp_t gfp) 372 { 373 return &filemap_alloc_folio(gfp, 0)->page; 374 } 375 376 static inline struct page *page_cache_alloc(struct address_space *x) 377 { 378 return __page_cache_alloc(mapping_gfp_mask(x)); 379 } 380 381 static inline gfp_t readahead_gfp_mask(struct address_space *x) 382 { 383 return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN; 384 } 385 386 typedef int filler_t(void *, struct page *); 387 388 pgoff_t page_cache_next_miss(struct address_space *mapping, 389 pgoff_t index, unsigned long max_scan); 390 pgoff_t page_cache_prev_miss(struct address_space *mapping, 391 pgoff_t index, unsigned long max_scan); 392 393 #define FGP_ACCESSED 0x00000001 394 #define FGP_LOCK 0x00000002 395 #define FGP_CREAT 0x00000004 396 #define FGP_WRITE 0x00000008 397 #define FGP_NOFS 0x00000010 398 #define FGP_NOWAIT 0x00000020 399 #define FGP_FOR_MMAP 0x00000040 400 #define FGP_HEAD 0x00000080 401 #define FGP_ENTRY 0x00000100 402 #define FGP_STABLE 0x00000200 403 404 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index, 405 int fgp_flags, gfp_t gfp); 406 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index, 407 int fgp_flags, gfp_t gfp); 408 409 /** 410 * filemap_get_folio - Find and get a folio. 411 * @mapping: The address_space to search. 412 * @index: The page index. 413 * 414 * Looks up the page cache entry at @mapping & @index. If a folio is 415 * present, it is returned with an increased refcount. 416 * 417 * Otherwise, %NULL is returned. 418 */ 419 static inline struct folio *filemap_get_folio(struct address_space *mapping, 420 pgoff_t index) 421 { 422 return __filemap_get_folio(mapping, index, 0, 0); 423 } 424 425 /** 426 * find_get_page - find and get a page reference 427 * @mapping: the address_space to search 428 * @offset: the page index 429 * 430 * Looks up the page cache slot at @mapping & @offset. If there is a 431 * page cache page, it is returned with an increased refcount. 432 * 433 * Otherwise, %NULL is returned. 434 */ 435 static inline struct page *find_get_page(struct address_space *mapping, 436 pgoff_t offset) 437 { 438 return pagecache_get_page(mapping, offset, 0, 0); 439 } 440 441 static inline struct page *find_get_page_flags(struct address_space *mapping, 442 pgoff_t offset, int fgp_flags) 443 { 444 return pagecache_get_page(mapping, offset, fgp_flags, 0); 445 } 446 447 /** 448 * find_lock_page - locate, pin and lock a pagecache page 449 * @mapping: the address_space to search 450 * @index: the page index 451 * 452 * Looks up the page cache entry at @mapping & @index. If there is a 453 * page cache page, it is returned locked and with an increased 454 * refcount. 455 * 456 * Context: May sleep. 457 * Return: A struct page or %NULL if there is no page in the cache for this 458 * index. 459 */ 460 static inline struct page *find_lock_page(struct address_space *mapping, 461 pgoff_t index) 462 { 463 return pagecache_get_page(mapping, index, FGP_LOCK, 0); 464 } 465 466 /** 467 * find_or_create_page - locate or add a pagecache page 468 * @mapping: the page's address_space 469 * @index: the page's index into the mapping 470 * @gfp_mask: page allocation mode 471 * 472 * Looks up the page cache slot at @mapping & @offset. If there is a 473 * page cache page, it is returned locked and with an increased 474 * refcount. 475 * 476 * If the page is not present, a new page is allocated using @gfp_mask 477 * and added to the page cache and the VM's LRU list. The page is 478 * returned locked and with an increased refcount. 479 * 480 * On memory exhaustion, %NULL is returned. 481 * 482 * find_or_create_page() may sleep, even if @gfp_flags specifies an 483 * atomic allocation! 484 */ 485 static inline struct page *find_or_create_page(struct address_space *mapping, 486 pgoff_t index, gfp_t gfp_mask) 487 { 488 return pagecache_get_page(mapping, index, 489 FGP_LOCK|FGP_ACCESSED|FGP_CREAT, 490 gfp_mask); 491 } 492 493 /** 494 * grab_cache_page_nowait - returns locked page at given index in given cache 495 * @mapping: target address_space 496 * @index: the page index 497 * 498 * Same as grab_cache_page(), but do not wait if the page is unavailable. 499 * This is intended for speculative data generators, where the data can 500 * be regenerated if the page couldn't be grabbed. This routine should 501 * be safe to call while holding the lock for another page. 502 * 503 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 504 * and deadlock against the caller's locked page. 505 */ 506 static inline struct page *grab_cache_page_nowait(struct address_space *mapping, 507 pgoff_t index) 508 { 509 return pagecache_get_page(mapping, index, 510 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT, 511 mapping_gfp_mask(mapping)); 512 } 513 514 #define swapcache_index(folio) __page_file_index(&(folio)->page) 515 516 /** 517 * folio_index - File index of a folio. 518 * @folio: The folio. 519 * 520 * For a folio which is either in the page cache or the swap cache, 521 * return its index within the address_space it belongs to. If you know 522 * the page is definitely in the page cache, you can look at the folio's 523 * index directly. 524 * 525 * Return: The index (offset in units of pages) of a folio in its file. 526 */ 527 static inline pgoff_t folio_index(struct folio *folio) 528 { 529 if (unlikely(folio_test_swapcache(folio))) 530 return swapcache_index(folio); 531 return folio->index; 532 } 533 534 /** 535 * folio_next_index - Get the index of the next folio. 536 * @folio: The current folio. 537 * 538 * Return: The index of the folio which follows this folio in the file. 539 */ 540 static inline pgoff_t folio_next_index(struct folio *folio) 541 { 542 return folio->index + folio_nr_pages(folio); 543 } 544 545 /** 546 * folio_file_page - The page for a particular index. 547 * @folio: The folio which contains this index. 548 * @index: The index we want to look up. 549 * 550 * Sometimes after looking up a folio in the page cache, we need to 551 * obtain the specific page for an index (eg a page fault). 552 * 553 * Return: The page containing the file data for this index. 554 */ 555 static inline struct page *folio_file_page(struct folio *folio, pgoff_t index) 556 { 557 /* HugeTLBfs indexes the page cache in units of hpage_size */ 558 if (folio_test_hugetlb(folio)) 559 return &folio->page; 560 return folio_page(folio, index & (folio_nr_pages(folio) - 1)); 561 } 562 563 /** 564 * folio_contains - Does this folio contain this index? 565 * @folio: The folio. 566 * @index: The page index within the file. 567 * 568 * Context: The caller should have the page locked in order to prevent 569 * (eg) shmem from moving the page between the page cache and swap cache 570 * and changing its index in the middle of the operation. 571 * Return: true or false. 572 */ 573 static inline bool folio_contains(struct folio *folio, pgoff_t index) 574 { 575 /* HugeTLBfs indexes the page cache in units of hpage_size */ 576 if (folio_test_hugetlb(folio)) 577 return folio->index == index; 578 return index - folio_index(folio) < folio_nr_pages(folio); 579 } 580 581 /* 582 * Given the page we found in the page cache, return the page corresponding 583 * to this index in the file 584 */ 585 static inline struct page *find_subpage(struct page *head, pgoff_t index) 586 { 587 /* HugeTLBfs wants the head page regardless */ 588 if (PageHuge(head)) 589 return head; 590 591 return head + (index & (thp_nr_pages(head) - 1)); 592 } 593 594 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, 595 pgoff_t end, unsigned int nr_pages, 596 struct page **pages); 597 static inline unsigned find_get_pages(struct address_space *mapping, 598 pgoff_t *start, unsigned int nr_pages, 599 struct page **pages) 600 { 601 return find_get_pages_range(mapping, start, (pgoff_t)-1, nr_pages, 602 pages); 603 } 604 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start, 605 unsigned int nr_pages, struct page **pages); 606 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, 607 pgoff_t end, xa_mark_t tag, unsigned int nr_pages, 608 struct page **pages); 609 static inline unsigned find_get_pages_tag(struct address_space *mapping, 610 pgoff_t *index, xa_mark_t tag, unsigned int nr_pages, 611 struct page **pages) 612 { 613 return find_get_pages_range_tag(mapping, index, (pgoff_t)-1, tag, 614 nr_pages, pages); 615 } 616 617 struct page *grab_cache_page_write_begin(struct address_space *mapping, 618 pgoff_t index, unsigned flags); 619 620 /* 621 * Returns locked page at given index in given cache, creating it if needed. 622 */ 623 static inline struct page *grab_cache_page(struct address_space *mapping, 624 pgoff_t index) 625 { 626 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping)); 627 } 628 629 struct folio *read_cache_folio(struct address_space *, pgoff_t index, 630 filler_t *filler, void *data); 631 struct page *read_cache_page(struct address_space *, pgoff_t index, 632 filler_t *filler, void *data); 633 extern struct page * read_cache_page_gfp(struct address_space *mapping, 634 pgoff_t index, gfp_t gfp_mask); 635 extern int read_cache_pages(struct address_space *mapping, 636 struct list_head *pages, filler_t *filler, void *data); 637 638 static inline struct page *read_mapping_page(struct address_space *mapping, 639 pgoff_t index, void *data) 640 { 641 return read_cache_page(mapping, index, NULL, data); 642 } 643 644 static inline struct folio *read_mapping_folio(struct address_space *mapping, 645 pgoff_t index, void *data) 646 { 647 return read_cache_folio(mapping, index, NULL, data); 648 } 649 650 /* 651 * Get index of the page within radix-tree (but not for hugetlb pages). 652 * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE) 653 */ 654 static inline pgoff_t page_to_index(struct page *page) 655 { 656 struct page *head; 657 658 if (likely(!PageTransTail(page))) 659 return page->index; 660 661 head = compound_head(page); 662 /* 663 * We don't initialize ->index for tail pages: calculate based on 664 * head page 665 */ 666 return head->index + page - head; 667 } 668 669 extern pgoff_t hugetlb_basepage_index(struct page *page); 670 671 /* 672 * Get the offset in PAGE_SIZE (even for hugetlb pages). 673 * (TODO: hugetlb pages should have ->index in PAGE_SIZE) 674 */ 675 static inline pgoff_t page_to_pgoff(struct page *page) 676 { 677 if (unlikely(PageHuge(page))) 678 return hugetlb_basepage_index(page); 679 return page_to_index(page); 680 } 681 682 /* 683 * Return byte-offset into filesystem object for page. 684 */ 685 static inline loff_t page_offset(struct page *page) 686 { 687 return ((loff_t)page->index) << PAGE_SHIFT; 688 } 689 690 static inline loff_t page_file_offset(struct page *page) 691 { 692 return ((loff_t)page_index(page)) << PAGE_SHIFT; 693 } 694 695 /** 696 * folio_pos - Returns the byte position of this folio in its file. 697 * @folio: The folio. 698 */ 699 static inline loff_t folio_pos(struct folio *folio) 700 { 701 return page_offset(&folio->page); 702 } 703 704 /** 705 * folio_file_pos - Returns the byte position of this folio in its file. 706 * @folio: The folio. 707 * 708 * This differs from folio_pos() for folios which belong to a swap file. 709 * NFS is the only filesystem today which needs to use folio_file_pos(). 710 */ 711 static inline loff_t folio_file_pos(struct folio *folio) 712 { 713 return page_file_offset(&folio->page); 714 } 715 716 extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 717 unsigned long address); 718 719 static inline pgoff_t linear_page_index(struct vm_area_struct *vma, 720 unsigned long address) 721 { 722 pgoff_t pgoff; 723 if (unlikely(is_vm_hugetlb_page(vma))) 724 return linear_hugepage_index(vma, address); 725 pgoff = (address - vma->vm_start) >> PAGE_SHIFT; 726 pgoff += vma->vm_pgoff; 727 return pgoff; 728 } 729 730 struct wait_page_key { 731 struct folio *folio; 732 int bit_nr; 733 int page_match; 734 }; 735 736 struct wait_page_queue { 737 struct folio *folio; 738 int bit_nr; 739 wait_queue_entry_t wait; 740 }; 741 742 static inline bool wake_page_match(struct wait_page_queue *wait_page, 743 struct wait_page_key *key) 744 { 745 if (wait_page->folio != key->folio) 746 return false; 747 key->page_match = 1; 748 749 if (wait_page->bit_nr != key->bit_nr) 750 return false; 751 752 return true; 753 } 754 755 void __folio_lock(struct folio *folio); 756 int __folio_lock_killable(struct folio *folio); 757 bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm, 758 unsigned int flags); 759 void unlock_page(struct page *page); 760 void folio_unlock(struct folio *folio); 761 762 static inline bool folio_trylock(struct folio *folio) 763 { 764 return likely(!test_and_set_bit_lock(PG_locked, folio_flags(folio, 0))); 765 } 766 767 /* 768 * Return true if the page was successfully locked 769 */ 770 static inline int trylock_page(struct page *page) 771 { 772 return folio_trylock(page_folio(page)); 773 } 774 775 static inline void folio_lock(struct folio *folio) 776 { 777 might_sleep(); 778 if (!folio_trylock(folio)) 779 __folio_lock(folio); 780 } 781 782 /* 783 * lock_page may only be called if we have the page's inode pinned. 784 */ 785 static inline void lock_page(struct page *page) 786 { 787 struct folio *folio; 788 might_sleep(); 789 790 folio = page_folio(page); 791 if (!folio_trylock(folio)) 792 __folio_lock(folio); 793 } 794 795 static inline int folio_lock_killable(struct folio *folio) 796 { 797 might_sleep(); 798 if (!folio_trylock(folio)) 799 return __folio_lock_killable(folio); 800 return 0; 801 } 802 803 /* 804 * lock_page_killable is like lock_page but can be interrupted by fatal 805 * signals. It returns 0 if it locked the page and -EINTR if it was 806 * killed while waiting. 807 */ 808 static inline int lock_page_killable(struct page *page) 809 { 810 return folio_lock_killable(page_folio(page)); 811 } 812 813 /* 814 * lock_page_or_retry - Lock the page, unless this would block and the 815 * caller indicated that it can handle a retry. 816 * 817 * Return value and mmap_lock implications depend on flags; see 818 * __folio_lock_or_retry(). 819 */ 820 static inline bool lock_page_or_retry(struct page *page, struct mm_struct *mm, 821 unsigned int flags) 822 { 823 struct folio *folio; 824 might_sleep(); 825 826 folio = page_folio(page); 827 return folio_trylock(folio) || __folio_lock_or_retry(folio, mm, flags); 828 } 829 830 /* 831 * This is exported only for folio_wait_locked/folio_wait_writeback, etc., 832 * and should not be used directly. 833 */ 834 void folio_wait_bit(struct folio *folio, int bit_nr); 835 int folio_wait_bit_killable(struct folio *folio, int bit_nr); 836 837 /* 838 * Wait for a folio to be unlocked. 839 * 840 * This must be called with the caller "holding" the folio, 841 * ie with increased "page->count" so that the folio won't 842 * go away during the wait.. 843 */ 844 static inline void folio_wait_locked(struct folio *folio) 845 { 846 if (folio_test_locked(folio)) 847 folio_wait_bit(folio, PG_locked); 848 } 849 850 static inline int folio_wait_locked_killable(struct folio *folio) 851 { 852 if (!folio_test_locked(folio)) 853 return 0; 854 return folio_wait_bit_killable(folio, PG_locked); 855 } 856 857 static inline void wait_on_page_locked(struct page *page) 858 { 859 folio_wait_locked(page_folio(page)); 860 } 861 862 static inline int wait_on_page_locked_killable(struct page *page) 863 { 864 return folio_wait_locked_killable(page_folio(page)); 865 } 866 867 int folio_put_wait_locked(struct folio *folio, int state); 868 void wait_on_page_writeback(struct page *page); 869 void folio_wait_writeback(struct folio *folio); 870 int folio_wait_writeback_killable(struct folio *folio); 871 void end_page_writeback(struct page *page); 872 void folio_end_writeback(struct folio *folio); 873 void wait_for_stable_page(struct page *page); 874 void folio_wait_stable(struct folio *folio); 875 void __folio_mark_dirty(struct folio *folio, struct address_space *, int warn); 876 static inline void __set_page_dirty(struct page *page, 877 struct address_space *mapping, int warn) 878 { 879 __folio_mark_dirty(page_folio(page), mapping, warn); 880 } 881 void folio_account_cleaned(struct folio *folio, struct address_space *mapping, 882 struct bdi_writeback *wb); 883 void __folio_cancel_dirty(struct folio *folio); 884 static inline void folio_cancel_dirty(struct folio *folio) 885 { 886 /* Avoid atomic ops, locking, etc. when not actually needed. */ 887 if (folio_test_dirty(folio)) 888 __folio_cancel_dirty(folio); 889 } 890 static inline void cancel_dirty_page(struct page *page) 891 { 892 folio_cancel_dirty(page_folio(page)); 893 } 894 bool folio_clear_dirty_for_io(struct folio *folio); 895 bool clear_page_dirty_for_io(struct page *page); 896 int __must_check folio_write_one(struct folio *folio); 897 static inline int __must_check write_one_page(struct page *page) 898 { 899 return folio_write_one(page_folio(page)); 900 } 901 902 int __set_page_dirty_nobuffers(struct page *page); 903 int __set_page_dirty_no_writeback(struct page *page); 904 905 void page_endio(struct page *page, bool is_write, int err); 906 907 void folio_end_private_2(struct folio *folio); 908 void folio_wait_private_2(struct folio *folio); 909 int folio_wait_private_2_killable(struct folio *folio); 910 911 /* 912 * Add an arbitrary waiter to a page's wait queue 913 */ 914 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter); 915 916 /* 917 * Fault in userspace address range. 918 */ 919 size_t fault_in_writeable(char __user *uaddr, size_t size); 920 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size); 921 size_t fault_in_readable(const char __user *uaddr, size_t size); 922 923 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 924 pgoff_t index, gfp_t gfp); 925 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 926 pgoff_t index, gfp_t gfp); 927 int filemap_add_folio(struct address_space *mapping, struct folio *folio, 928 pgoff_t index, gfp_t gfp); 929 void filemap_remove_folio(struct folio *folio); 930 void delete_from_page_cache(struct page *page); 931 void __filemap_remove_folio(struct folio *folio, void *shadow); 932 static inline void __delete_from_page_cache(struct page *page, void *shadow) 933 { 934 __filemap_remove_folio(page_folio(page), shadow); 935 } 936 void replace_page_cache_page(struct page *old, struct page *new); 937 void delete_from_page_cache_batch(struct address_space *mapping, 938 struct folio_batch *fbatch); 939 int try_to_release_page(struct page *page, gfp_t gfp); 940 bool filemap_release_folio(struct folio *folio, gfp_t gfp); 941 loff_t mapping_seek_hole_data(struct address_space *, loff_t start, loff_t end, 942 int whence); 943 944 /* 945 * Like add_to_page_cache_locked, but used to add newly allocated pages: 946 * the page is new, so we can just run __SetPageLocked() against it. 947 */ 948 static inline int add_to_page_cache(struct page *page, 949 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask) 950 { 951 int error; 952 953 __SetPageLocked(page); 954 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask); 955 if (unlikely(error)) 956 __ClearPageLocked(page); 957 return error; 958 } 959 960 /* Must be non-static for BPF error injection */ 961 int __filemap_add_folio(struct address_space *mapping, struct folio *folio, 962 pgoff_t index, gfp_t gfp, void **shadowp); 963 964 bool filemap_range_has_writeback(struct address_space *mapping, 965 loff_t start_byte, loff_t end_byte); 966 967 /** 968 * filemap_range_needs_writeback - check if range potentially needs writeback 969 * @mapping: address space within which to check 970 * @start_byte: offset in bytes where the range starts 971 * @end_byte: offset in bytes where the range ends (inclusive) 972 * 973 * Find at least one page in the range supplied, usually used to check if 974 * direct writing in this range will trigger a writeback. Used by O_DIRECT 975 * read/write with IOCB_NOWAIT, to see if the caller needs to do 976 * filemap_write_and_wait_range() before proceeding. 977 * 978 * Return: %true if the caller should do filemap_write_and_wait_range() before 979 * doing O_DIRECT to a page in this range, %false otherwise. 980 */ 981 static inline bool filemap_range_needs_writeback(struct address_space *mapping, 982 loff_t start_byte, 983 loff_t end_byte) 984 { 985 if (!mapping->nrpages) 986 return false; 987 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 988 !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) 989 return false; 990 return filemap_range_has_writeback(mapping, start_byte, end_byte); 991 } 992 993 /** 994 * struct readahead_control - Describes a readahead request. 995 * 996 * A readahead request is for consecutive pages. Filesystems which 997 * implement the ->readahead method should call readahead_page() or 998 * readahead_page_batch() in a loop and attempt to start I/O against 999 * each page in the request. 1000 * 1001 * Most of the fields in this struct are private and should be accessed 1002 * by the functions below. 1003 * 1004 * @file: The file, used primarily by network filesystems for authentication. 1005 * May be NULL if invoked internally by the filesystem. 1006 * @mapping: Readahead this filesystem object. 1007 * @ra: File readahead state. May be NULL. 1008 */ 1009 struct readahead_control { 1010 struct file *file; 1011 struct address_space *mapping; 1012 struct file_ra_state *ra; 1013 /* private: use the readahead_* accessors instead */ 1014 pgoff_t _index; 1015 unsigned int _nr_pages; 1016 unsigned int _batch_count; 1017 }; 1018 1019 #define DEFINE_READAHEAD(ractl, f, r, m, i) \ 1020 struct readahead_control ractl = { \ 1021 .file = f, \ 1022 .mapping = m, \ 1023 .ra = r, \ 1024 ._index = i, \ 1025 } 1026 1027 #define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE) 1028 1029 void page_cache_ra_unbounded(struct readahead_control *, 1030 unsigned long nr_to_read, unsigned long lookahead_count); 1031 void page_cache_sync_ra(struct readahead_control *, unsigned long req_count); 1032 void page_cache_async_ra(struct readahead_control *, struct folio *, 1033 unsigned long req_count); 1034 void readahead_expand(struct readahead_control *ractl, 1035 loff_t new_start, size_t new_len); 1036 1037 /** 1038 * page_cache_sync_readahead - generic file readahead 1039 * @mapping: address_space which holds the pagecache and I/O vectors 1040 * @ra: file_ra_state which holds the readahead state 1041 * @file: Used by the filesystem for authentication. 1042 * @index: Index of first page to be read. 1043 * @req_count: Total number of pages being read by the caller. 1044 * 1045 * page_cache_sync_readahead() should be called when a cache miss happened: 1046 * it will submit the read. The readahead logic may decide to piggyback more 1047 * pages onto the read request if access patterns suggest it will improve 1048 * performance. 1049 */ 1050 static inline 1051 void page_cache_sync_readahead(struct address_space *mapping, 1052 struct file_ra_state *ra, struct file *file, pgoff_t index, 1053 unsigned long req_count) 1054 { 1055 DEFINE_READAHEAD(ractl, file, ra, mapping, index); 1056 page_cache_sync_ra(&ractl, req_count); 1057 } 1058 1059 /** 1060 * page_cache_async_readahead - file readahead for marked pages 1061 * @mapping: address_space which holds the pagecache and I/O vectors 1062 * @ra: file_ra_state which holds the readahead state 1063 * @file: Used by the filesystem for authentication. 1064 * @page: The page at @index which triggered the readahead call. 1065 * @index: Index of first page to be read. 1066 * @req_count: Total number of pages being read by the caller. 1067 * 1068 * page_cache_async_readahead() should be called when a page is used which 1069 * is marked as PageReadahead; this is a marker to suggest that the application 1070 * has used up enough of the readahead window that we should start pulling in 1071 * more pages. 1072 */ 1073 static inline 1074 void page_cache_async_readahead(struct address_space *mapping, 1075 struct file_ra_state *ra, struct file *file, 1076 struct page *page, pgoff_t index, unsigned long req_count) 1077 { 1078 DEFINE_READAHEAD(ractl, file, ra, mapping, index); 1079 page_cache_async_ra(&ractl, page_folio(page), req_count); 1080 } 1081 1082 static inline struct folio *__readahead_folio(struct readahead_control *ractl) 1083 { 1084 struct folio *folio; 1085 1086 BUG_ON(ractl->_batch_count > ractl->_nr_pages); 1087 ractl->_nr_pages -= ractl->_batch_count; 1088 ractl->_index += ractl->_batch_count; 1089 1090 if (!ractl->_nr_pages) { 1091 ractl->_batch_count = 0; 1092 return NULL; 1093 } 1094 1095 folio = xa_load(&ractl->mapping->i_pages, ractl->_index); 1096 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1097 ractl->_batch_count = folio_nr_pages(folio); 1098 1099 return folio; 1100 } 1101 1102 /** 1103 * readahead_page - Get the next page to read. 1104 * @ractl: The current readahead request. 1105 * 1106 * Context: The page is locked and has an elevated refcount. The caller 1107 * should decreases the refcount once the page has been submitted for I/O 1108 * and unlock the page once all I/O to that page has completed. 1109 * Return: A pointer to the next page, or %NULL if we are done. 1110 */ 1111 static inline struct page *readahead_page(struct readahead_control *ractl) 1112 { 1113 struct folio *folio = __readahead_folio(ractl); 1114 1115 return &folio->page; 1116 } 1117 1118 /** 1119 * readahead_folio - Get the next folio to read. 1120 * @ractl: The current readahead request. 1121 * 1122 * Context: The folio is locked. The caller should unlock the folio once 1123 * all I/O to that folio has completed. 1124 * Return: A pointer to the next folio, or %NULL if we are done. 1125 */ 1126 static inline struct folio *readahead_folio(struct readahead_control *ractl) 1127 { 1128 struct folio *folio = __readahead_folio(ractl); 1129 1130 if (folio) 1131 folio_put(folio); 1132 return folio; 1133 } 1134 1135 static inline unsigned int __readahead_batch(struct readahead_control *rac, 1136 struct page **array, unsigned int array_sz) 1137 { 1138 unsigned int i = 0; 1139 XA_STATE(xas, &rac->mapping->i_pages, 0); 1140 struct page *page; 1141 1142 BUG_ON(rac->_batch_count > rac->_nr_pages); 1143 rac->_nr_pages -= rac->_batch_count; 1144 rac->_index += rac->_batch_count; 1145 rac->_batch_count = 0; 1146 1147 xas_set(&xas, rac->_index); 1148 rcu_read_lock(); 1149 xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) { 1150 if (xas_retry(&xas, page)) 1151 continue; 1152 VM_BUG_ON_PAGE(!PageLocked(page), page); 1153 VM_BUG_ON_PAGE(PageTail(page), page); 1154 array[i++] = page; 1155 rac->_batch_count += thp_nr_pages(page); 1156 if (i == array_sz) 1157 break; 1158 } 1159 rcu_read_unlock(); 1160 1161 return i; 1162 } 1163 1164 /** 1165 * readahead_page_batch - Get a batch of pages to read. 1166 * @rac: The current readahead request. 1167 * @array: An array of pointers to struct page. 1168 * 1169 * Context: The pages are locked and have an elevated refcount. The caller 1170 * should decreases the refcount once the page has been submitted for I/O 1171 * and unlock the page once all I/O to that page has completed. 1172 * Return: The number of pages placed in the array. 0 indicates the request 1173 * is complete. 1174 */ 1175 #define readahead_page_batch(rac, array) \ 1176 __readahead_batch(rac, array, ARRAY_SIZE(array)) 1177 1178 /** 1179 * readahead_pos - The byte offset into the file of this readahead request. 1180 * @rac: The readahead request. 1181 */ 1182 static inline loff_t readahead_pos(struct readahead_control *rac) 1183 { 1184 return (loff_t)rac->_index * PAGE_SIZE; 1185 } 1186 1187 /** 1188 * readahead_length - The number of bytes in this readahead request. 1189 * @rac: The readahead request. 1190 */ 1191 static inline size_t readahead_length(struct readahead_control *rac) 1192 { 1193 return rac->_nr_pages * PAGE_SIZE; 1194 } 1195 1196 /** 1197 * readahead_index - The index of the first page in this readahead request. 1198 * @rac: The readahead request. 1199 */ 1200 static inline pgoff_t readahead_index(struct readahead_control *rac) 1201 { 1202 return rac->_index; 1203 } 1204 1205 /** 1206 * readahead_count - The number of pages in this readahead request. 1207 * @rac: The readahead request. 1208 */ 1209 static inline unsigned int readahead_count(struct readahead_control *rac) 1210 { 1211 return rac->_nr_pages; 1212 } 1213 1214 /** 1215 * readahead_batch_length - The number of bytes in the current batch. 1216 * @rac: The readahead request. 1217 */ 1218 static inline size_t readahead_batch_length(struct readahead_control *rac) 1219 { 1220 return rac->_batch_count * PAGE_SIZE; 1221 } 1222 1223 static inline unsigned long dir_pages(struct inode *inode) 1224 { 1225 return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >> 1226 PAGE_SHIFT; 1227 } 1228 1229 /** 1230 * folio_mkwrite_check_truncate - check if folio was truncated 1231 * @folio: the folio to check 1232 * @inode: the inode to check the folio against 1233 * 1234 * Return: the number of bytes in the folio up to EOF, 1235 * or -EFAULT if the folio was truncated. 1236 */ 1237 static inline ssize_t folio_mkwrite_check_truncate(struct folio *folio, 1238 struct inode *inode) 1239 { 1240 loff_t size = i_size_read(inode); 1241 pgoff_t index = size >> PAGE_SHIFT; 1242 size_t offset = offset_in_folio(folio, size); 1243 1244 if (!folio->mapping) 1245 return -EFAULT; 1246 1247 /* folio is wholly inside EOF */ 1248 if (folio_next_index(folio) - 1 < index) 1249 return folio_size(folio); 1250 /* folio is wholly past EOF */ 1251 if (folio->index > index || !offset) 1252 return -EFAULT; 1253 /* folio is partially inside EOF */ 1254 return offset; 1255 } 1256 1257 /** 1258 * page_mkwrite_check_truncate - check if page was truncated 1259 * @page: the page to check 1260 * @inode: the inode to check the page against 1261 * 1262 * Returns the number of bytes in the page up to EOF, 1263 * or -EFAULT if the page was truncated. 1264 */ 1265 static inline int page_mkwrite_check_truncate(struct page *page, 1266 struct inode *inode) 1267 { 1268 loff_t size = i_size_read(inode); 1269 pgoff_t index = size >> PAGE_SHIFT; 1270 int offset = offset_in_page(size); 1271 1272 if (page->mapping != inode->i_mapping) 1273 return -EFAULT; 1274 1275 /* page is wholly inside EOF */ 1276 if (page->index < index) 1277 return PAGE_SIZE; 1278 /* page is wholly past EOF */ 1279 if (page->index > index || !offset) 1280 return -EFAULT; 1281 /* page is partially inside EOF */ 1282 return offset; 1283 } 1284 1285 /** 1286 * i_blocks_per_folio - How many blocks fit in this folio. 1287 * @inode: The inode which contains the blocks. 1288 * @folio: The folio. 1289 * 1290 * If the block size is larger than the size of this folio, return zero. 1291 * 1292 * Context: The caller should hold a refcount on the folio to prevent it 1293 * from being split. 1294 * Return: The number of filesystem blocks covered by this folio. 1295 */ 1296 static inline 1297 unsigned int i_blocks_per_folio(struct inode *inode, struct folio *folio) 1298 { 1299 return folio_size(folio) >> inode->i_blkbits; 1300 } 1301 1302 static inline 1303 unsigned int i_blocks_per_page(struct inode *inode, struct page *page) 1304 { 1305 return i_blocks_per_folio(inode, page_folio(page)); 1306 } 1307 #endif /* _LINUX_PAGEMAP_H */ 1308