1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_PAGEMAP_H 3 #define _LINUX_PAGEMAP_H 4 5 /* 6 * Copyright 1995 Linus Torvalds 7 */ 8 #include <linux/mm.h> 9 #include <linux/fs.h> 10 #include <linux/list.h> 11 #include <linux/highmem.h> 12 #include <linux/compiler.h> 13 #include <linux/uaccess.h> 14 #include <linux/gfp.h> 15 #include <linux/bitops.h> 16 #include <linux/hardirq.h> /* for in_interrupt() */ 17 #include <linux/hugetlb_inline.h> 18 19 struct pagevec; 20 21 static inline bool mapping_empty(struct address_space *mapping) 22 { 23 return xa_empty(&mapping->i_pages); 24 } 25 26 /* 27 * Bits in mapping->flags. 28 */ 29 enum mapping_flags { 30 AS_EIO = 0, /* IO error on async write */ 31 AS_ENOSPC = 1, /* ENOSPC on async write */ 32 AS_MM_ALL_LOCKS = 2, /* under mm_take_all_locks() */ 33 AS_UNEVICTABLE = 3, /* e.g., ramdisk, SHM_LOCK */ 34 AS_EXITING = 4, /* final truncate in progress */ 35 /* writeback related tags are not used */ 36 AS_NO_WRITEBACK_TAGS = 5, 37 AS_THP_SUPPORT = 6, /* THPs supported */ 38 }; 39 40 /** 41 * mapping_set_error - record a writeback error in the address_space 42 * @mapping: the mapping in which an error should be set 43 * @error: the error to set in the mapping 44 * 45 * When writeback fails in some way, we must record that error so that 46 * userspace can be informed when fsync and the like are called. We endeavor 47 * to report errors on any file that was open at the time of the error. Some 48 * internal callers also need to know when writeback errors have occurred. 49 * 50 * When a writeback error occurs, most filesystems will want to call 51 * mapping_set_error to record the error in the mapping so that it can be 52 * reported when the application calls fsync(2). 53 */ 54 static inline void mapping_set_error(struct address_space *mapping, int error) 55 { 56 if (likely(!error)) 57 return; 58 59 /* Record in wb_err for checkers using errseq_t based tracking */ 60 __filemap_set_wb_err(mapping, error); 61 62 /* Record it in superblock */ 63 if (mapping->host) 64 errseq_set(&mapping->host->i_sb->s_wb_err, error); 65 66 /* Record it in flags for now, for legacy callers */ 67 if (error == -ENOSPC) 68 set_bit(AS_ENOSPC, &mapping->flags); 69 else 70 set_bit(AS_EIO, &mapping->flags); 71 } 72 73 static inline void mapping_set_unevictable(struct address_space *mapping) 74 { 75 set_bit(AS_UNEVICTABLE, &mapping->flags); 76 } 77 78 static inline void mapping_clear_unevictable(struct address_space *mapping) 79 { 80 clear_bit(AS_UNEVICTABLE, &mapping->flags); 81 } 82 83 static inline bool mapping_unevictable(struct address_space *mapping) 84 { 85 return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags); 86 } 87 88 static inline void mapping_set_exiting(struct address_space *mapping) 89 { 90 set_bit(AS_EXITING, &mapping->flags); 91 } 92 93 static inline int mapping_exiting(struct address_space *mapping) 94 { 95 return test_bit(AS_EXITING, &mapping->flags); 96 } 97 98 static inline void mapping_set_no_writeback_tags(struct address_space *mapping) 99 { 100 set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); 101 } 102 103 static inline int mapping_use_writeback_tags(struct address_space *mapping) 104 { 105 return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); 106 } 107 108 static inline gfp_t mapping_gfp_mask(struct address_space * mapping) 109 { 110 return mapping->gfp_mask; 111 } 112 113 /* Restricts the given gfp_mask to what the mapping allows. */ 114 static inline gfp_t mapping_gfp_constraint(struct address_space *mapping, 115 gfp_t gfp_mask) 116 { 117 return mapping_gfp_mask(mapping) & gfp_mask; 118 } 119 120 /* 121 * This is non-atomic. Only to be used before the mapping is activated. 122 * Probably needs a barrier... 123 */ 124 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask) 125 { 126 m->gfp_mask = mask; 127 } 128 129 static inline bool mapping_thp_support(struct address_space *mapping) 130 { 131 return test_bit(AS_THP_SUPPORT, &mapping->flags); 132 } 133 134 static inline int filemap_nr_thps(struct address_space *mapping) 135 { 136 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 137 return atomic_read(&mapping->nr_thps); 138 #else 139 return 0; 140 #endif 141 } 142 143 static inline void filemap_nr_thps_inc(struct address_space *mapping) 144 { 145 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 146 if (!mapping_thp_support(mapping)) 147 atomic_inc(&mapping->nr_thps); 148 #else 149 WARN_ON_ONCE(1); 150 #endif 151 } 152 153 static inline void filemap_nr_thps_dec(struct address_space *mapping) 154 { 155 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 156 if (!mapping_thp_support(mapping)) 157 atomic_dec(&mapping->nr_thps); 158 #else 159 WARN_ON_ONCE(1); 160 #endif 161 } 162 163 void release_pages(struct page **pages, int nr); 164 165 /* 166 * For file cache pages, return the address_space, otherwise return NULL 167 */ 168 static inline struct address_space *page_mapping_file(struct page *page) 169 { 170 if (unlikely(PageSwapCache(page))) 171 return NULL; 172 return page_mapping(page); 173 } 174 175 /* 176 * speculatively take a reference to a page. 177 * If the page is free (_refcount == 0), then _refcount is untouched, and 0 178 * is returned. Otherwise, _refcount is incremented by 1 and 1 is returned. 179 * 180 * This function must be called inside the same rcu_read_lock() section as has 181 * been used to lookup the page in the pagecache radix-tree (or page table): 182 * this allows allocators to use a synchronize_rcu() to stabilize _refcount. 183 * 184 * Unless an RCU grace period has passed, the count of all pages coming out 185 * of the allocator must be considered unstable. page_count may return higher 186 * than expected, and put_page must be able to do the right thing when the 187 * page has been finished with, no matter what it is subsequently allocated 188 * for (because put_page is what is used here to drop an invalid speculative 189 * reference). 190 * 191 * This is the interesting part of the lockless pagecache (and lockless 192 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page) 193 * has the following pattern: 194 * 1. find page in radix tree 195 * 2. conditionally increment refcount 196 * 3. check the page is still in pagecache (if no, goto 1) 197 * 198 * Remove-side that cares about stability of _refcount (eg. reclaim) has the 199 * following (with the i_pages lock held): 200 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg) 201 * B. remove page from pagecache 202 * C. free the page 203 * 204 * There are 2 critical interleavings that matter: 205 * - 2 runs before A: in this case, A sees elevated refcount and bails out 206 * - A runs before 2: in this case, 2 sees zero refcount and retries; 207 * subsequently, B will complete and 1 will find no page, causing the 208 * lookup to return NULL. 209 * 210 * It is possible that between 1 and 2, the page is removed then the exact same 211 * page is inserted into the same position in pagecache. That's OK: the 212 * old find_get_page using a lock could equally have run before or after 213 * such a re-insertion, depending on order that locks are granted. 214 * 215 * Lookups racing against pagecache insertion isn't a big problem: either 1 216 * will find the page or it will not. Likewise, the old find_get_page could run 217 * either before the insertion or afterwards, depending on timing. 218 */ 219 static inline int __page_cache_add_speculative(struct page *page, int count) 220 { 221 #ifdef CONFIG_TINY_RCU 222 # ifdef CONFIG_PREEMPT_COUNT 223 VM_BUG_ON(!in_atomic() && !irqs_disabled()); 224 # endif 225 /* 226 * Preempt must be disabled here - we rely on rcu_read_lock doing 227 * this for us. 228 * 229 * Pagecache won't be truncated from interrupt context, so if we have 230 * found a page in the radix tree here, we have pinned its refcount by 231 * disabling preempt, and hence no need for the "speculative get" that 232 * SMP requires. 233 */ 234 VM_BUG_ON_PAGE(page_count(page) == 0, page); 235 page_ref_add(page, count); 236 237 #else 238 if (unlikely(!page_ref_add_unless(page, count, 0))) { 239 /* 240 * Either the page has been freed, or will be freed. 241 * In either case, retry here and the caller should 242 * do the right thing (see comments above). 243 */ 244 return 0; 245 } 246 #endif 247 VM_BUG_ON_PAGE(PageTail(page), page); 248 249 return 1; 250 } 251 252 static inline int page_cache_get_speculative(struct page *page) 253 { 254 return __page_cache_add_speculative(page, 1); 255 } 256 257 static inline int page_cache_add_speculative(struct page *page, int count) 258 { 259 return __page_cache_add_speculative(page, count); 260 } 261 262 /** 263 * attach_page_private - Attach private data to a page. 264 * @page: Page to attach data to. 265 * @data: Data to attach to page. 266 * 267 * Attaching private data to a page increments the page's reference count. 268 * The data must be detached before the page will be freed. 269 */ 270 static inline void attach_page_private(struct page *page, void *data) 271 { 272 get_page(page); 273 set_page_private(page, (unsigned long)data); 274 SetPagePrivate(page); 275 } 276 277 /** 278 * detach_page_private - Detach private data from a page. 279 * @page: Page to detach data from. 280 * 281 * Removes the data that was previously attached to the page and decrements 282 * the refcount on the page. 283 * 284 * Return: Data that was attached to the page. 285 */ 286 static inline void *detach_page_private(struct page *page) 287 { 288 void *data = (void *)page_private(page); 289 290 if (!PagePrivate(page)) 291 return NULL; 292 ClearPagePrivate(page); 293 set_page_private(page, 0); 294 put_page(page); 295 296 return data; 297 } 298 299 #ifdef CONFIG_NUMA 300 extern struct page *__page_cache_alloc(gfp_t gfp); 301 #else 302 static inline struct page *__page_cache_alloc(gfp_t gfp) 303 { 304 return alloc_pages(gfp, 0); 305 } 306 #endif 307 308 static inline struct page *page_cache_alloc(struct address_space *x) 309 { 310 return __page_cache_alloc(mapping_gfp_mask(x)); 311 } 312 313 static inline gfp_t readahead_gfp_mask(struct address_space *x) 314 { 315 return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN; 316 } 317 318 typedef int filler_t(void *, struct page *); 319 320 pgoff_t page_cache_next_miss(struct address_space *mapping, 321 pgoff_t index, unsigned long max_scan); 322 pgoff_t page_cache_prev_miss(struct address_space *mapping, 323 pgoff_t index, unsigned long max_scan); 324 325 #define FGP_ACCESSED 0x00000001 326 #define FGP_LOCK 0x00000002 327 #define FGP_CREAT 0x00000004 328 #define FGP_WRITE 0x00000008 329 #define FGP_NOFS 0x00000010 330 #define FGP_NOWAIT 0x00000020 331 #define FGP_FOR_MMAP 0x00000040 332 #define FGP_HEAD 0x00000080 333 #define FGP_ENTRY 0x00000100 334 335 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, 336 int fgp_flags, gfp_t cache_gfp_mask); 337 338 /** 339 * find_get_page - find and get a page reference 340 * @mapping: the address_space to search 341 * @offset: the page index 342 * 343 * Looks up the page cache slot at @mapping & @offset. If there is a 344 * page cache page, it is returned with an increased refcount. 345 * 346 * Otherwise, %NULL is returned. 347 */ 348 static inline struct page *find_get_page(struct address_space *mapping, 349 pgoff_t offset) 350 { 351 return pagecache_get_page(mapping, offset, 0, 0); 352 } 353 354 static inline struct page *find_get_page_flags(struct address_space *mapping, 355 pgoff_t offset, int fgp_flags) 356 { 357 return pagecache_get_page(mapping, offset, fgp_flags, 0); 358 } 359 360 /** 361 * find_lock_page - locate, pin and lock a pagecache page 362 * @mapping: the address_space to search 363 * @index: the page index 364 * 365 * Looks up the page cache entry at @mapping & @index. If there is a 366 * page cache page, it is returned locked and with an increased 367 * refcount. 368 * 369 * Context: May sleep. 370 * Return: A struct page or %NULL if there is no page in the cache for this 371 * index. 372 */ 373 static inline struct page *find_lock_page(struct address_space *mapping, 374 pgoff_t index) 375 { 376 return pagecache_get_page(mapping, index, FGP_LOCK, 0); 377 } 378 379 /** 380 * find_lock_head - Locate, pin and lock a pagecache page. 381 * @mapping: The address_space to search. 382 * @index: The page index. 383 * 384 * Looks up the page cache entry at @mapping & @index. If there is a 385 * page cache page, its head page is returned locked and with an increased 386 * refcount. 387 * 388 * Context: May sleep. 389 * Return: A struct page which is !PageTail, or %NULL if there is no page 390 * in the cache for this index. 391 */ 392 static inline struct page *find_lock_head(struct address_space *mapping, 393 pgoff_t index) 394 { 395 return pagecache_get_page(mapping, index, FGP_LOCK | FGP_HEAD, 0); 396 } 397 398 /** 399 * find_or_create_page - locate or add a pagecache page 400 * @mapping: the page's address_space 401 * @index: the page's index into the mapping 402 * @gfp_mask: page allocation mode 403 * 404 * Looks up the page cache slot at @mapping & @offset. If there is a 405 * page cache page, it is returned locked and with an increased 406 * refcount. 407 * 408 * If the page is not present, a new page is allocated using @gfp_mask 409 * and added to the page cache and the VM's LRU list. The page is 410 * returned locked and with an increased refcount. 411 * 412 * On memory exhaustion, %NULL is returned. 413 * 414 * find_or_create_page() may sleep, even if @gfp_flags specifies an 415 * atomic allocation! 416 */ 417 static inline struct page *find_or_create_page(struct address_space *mapping, 418 pgoff_t index, gfp_t gfp_mask) 419 { 420 return pagecache_get_page(mapping, index, 421 FGP_LOCK|FGP_ACCESSED|FGP_CREAT, 422 gfp_mask); 423 } 424 425 /** 426 * grab_cache_page_nowait - returns locked page at given index in given cache 427 * @mapping: target address_space 428 * @index: the page index 429 * 430 * Same as grab_cache_page(), but do not wait if the page is unavailable. 431 * This is intended for speculative data generators, where the data can 432 * be regenerated if the page couldn't be grabbed. This routine should 433 * be safe to call while holding the lock for another page. 434 * 435 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 436 * and deadlock against the caller's locked page. 437 */ 438 static inline struct page *grab_cache_page_nowait(struct address_space *mapping, 439 pgoff_t index) 440 { 441 return pagecache_get_page(mapping, index, 442 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT, 443 mapping_gfp_mask(mapping)); 444 } 445 446 /* Does this page contain this index? */ 447 static inline bool thp_contains(struct page *head, pgoff_t index) 448 { 449 /* HugeTLBfs indexes the page cache in units of hpage_size */ 450 if (PageHuge(head)) 451 return head->index == index; 452 return page_index(head) == (index & ~(thp_nr_pages(head) - 1UL)); 453 } 454 455 /* 456 * Given the page we found in the page cache, return the page corresponding 457 * to this index in the file 458 */ 459 static inline struct page *find_subpage(struct page *head, pgoff_t index) 460 { 461 /* HugeTLBfs wants the head page regardless */ 462 if (PageHuge(head)) 463 return head; 464 465 return head + (index & (thp_nr_pages(head) - 1)); 466 } 467 468 unsigned find_get_entries(struct address_space *mapping, pgoff_t start, 469 pgoff_t end, struct pagevec *pvec, pgoff_t *indices); 470 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, 471 pgoff_t end, unsigned int nr_pages, 472 struct page **pages); 473 static inline unsigned find_get_pages(struct address_space *mapping, 474 pgoff_t *start, unsigned int nr_pages, 475 struct page **pages) 476 { 477 return find_get_pages_range(mapping, start, (pgoff_t)-1, nr_pages, 478 pages); 479 } 480 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start, 481 unsigned int nr_pages, struct page **pages); 482 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, 483 pgoff_t end, xa_mark_t tag, unsigned int nr_pages, 484 struct page **pages); 485 static inline unsigned find_get_pages_tag(struct address_space *mapping, 486 pgoff_t *index, xa_mark_t tag, unsigned int nr_pages, 487 struct page **pages) 488 { 489 return find_get_pages_range_tag(mapping, index, (pgoff_t)-1, tag, 490 nr_pages, pages); 491 } 492 493 struct page *grab_cache_page_write_begin(struct address_space *mapping, 494 pgoff_t index, unsigned flags); 495 496 /* 497 * Returns locked page at given index in given cache, creating it if needed. 498 */ 499 static inline struct page *grab_cache_page(struct address_space *mapping, 500 pgoff_t index) 501 { 502 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping)); 503 } 504 505 extern struct page * read_cache_page(struct address_space *mapping, 506 pgoff_t index, filler_t *filler, void *data); 507 extern struct page * read_cache_page_gfp(struct address_space *mapping, 508 pgoff_t index, gfp_t gfp_mask); 509 extern int read_cache_pages(struct address_space *mapping, 510 struct list_head *pages, filler_t *filler, void *data); 511 512 static inline struct page *read_mapping_page(struct address_space *mapping, 513 pgoff_t index, void *data) 514 { 515 return read_cache_page(mapping, index, NULL, data); 516 } 517 518 /* 519 * Get index of the page with in radix-tree 520 * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE) 521 */ 522 static inline pgoff_t page_to_index(struct page *page) 523 { 524 pgoff_t pgoff; 525 526 if (likely(!PageTransTail(page))) 527 return page->index; 528 529 /* 530 * We don't initialize ->index for tail pages: calculate based on 531 * head page 532 */ 533 pgoff = compound_head(page)->index; 534 pgoff += page - compound_head(page); 535 return pgoff; 536 } 537 538 /* 539 * Get the offset in PAGE_SIZE. 540 * (TODO: hugepage should have ->index in PAGE_SIZE) 541 */ 542 static inline pgoff_t page_to_pgoff(struct page *page) 543 { 544 if (unlikely(PageHeadHuge(page))) 545 return page->index << compound_order(page); 546 547 return page_to_index(page); 548 } 549 550 /* 551 * Return byte-offset into filesystem object for page. 552 */ 553 static inline loff_t page_offset(struct page *page) 554 { 555 return ((loff_t)page->index) << PAGE_SHIFT; 556 } 557 558 static inline loff_t page_file_offset(struct page *page) 559 { 560 return ((loff_t)page_index(page)) << PAGE_SHIFT; 561 } 562 563 extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 564 unsigned long address); 565 566 static inline pgoff_t linear_page_index(struct vm_area_struct *vma, 567 unsigned long address) 568 { 569 pgoff_t pgoff; 570 if (unlikely(is_vm_hugetlb_page(vma))) 571 return linear_hugepage_index(vma, address); 572 pgoff = (address - vma->vm_start) >> PAGE_SHIFT; 573 pgoff += vma->vm_pgoff; 574 return pgoff; 575 } 576 577 struct wait_page_key { 578 struct page *page; 579 int bit_nr; 580 int page_match; 581 }; 582 583 struct wait_page_queue { 584 struct page *page; 585 int bit_nr; 586 wait_queue_entry_t wait; 587 }; 588 589 static inline bool wake_page_match(struct wait_page_queue *wait_page, 590 struct wait_page_key *key) 591 { 592 if (wait_page->page != key->page) 593 return false; 594 key->page_match = 1; 595 596 if (wait_page->bit_nr != key->bit_nr) 597 return false; 598 599 return true; 600 } 601 602 extern void __lock_page(struct page *page); 603 extern int __lock_page_killable(struct page *page); 604 extern int __lock_page_async(struct page *page, struct wait_page_queue *wait); 605 extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 606 unsigned int flags); 607 extern void unlock_page(struct page *page); 608 609 /* 610 * Return true if the page was successfully locked 611 */ 612 static inline int trylock_page(struct page *page) 613 { 614 page = compound_head(page); 615 return (likely(!test_and_set_bit_lock(PG_locked, &page->flags))); 616 } 617 618 /* 619 * lock_page may only be called if we have the page's inode pinned. 620 */ 621 static inline void lock_page(struct page *page) 622 { 623 might_sleep(); 624 if (!trylock_page(page)) 625 __lock_page(page); 626 } 627 628 /* 629 * lock_page_killable is like lock_page but can be interrupted by fatal 630 * signals. It returns 0 if it locked the page and -EINTR if it was 631 * killed while waiting. 632 */ 633 static inline int lock_page_killable(struct page *page) 634 { 635 might_sleep(); 636 if (!trylock_page(page)) 637 return __lock_page_killable(page); 638 return 0; 639 } 640 641 /* 642 * lock_page_async - Lock the page, unless this would block. If the page 643 * is already locked, then queue a callback when the page becomes unlocked. 644 * This callback can then retry the operation. 645 * 646 * Returns 0 if the page is locked successfully, or -EIOCBQUEUED if the page 647 * was already locked and the callback defined in 'wait' was queued. 648 */ 649 static inline int lock_page_async(struct page *page, 650 struct wait_page_queue *wait) 651 { 652 if (!trylock_page(page)) 653 return __lock_page_async(page, wait); 654 return 0; 655 } 656 657 /* 658 * lock_page_or_retry - Lock the page, unless this would block and the 659 * caller indicated that it can handle a retry. 660 * 661 * Return value and mmap_lock implications depend on flags; see 662 * __lock_page_or_retry(). 663 */ 664 static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm, 665 unsigned int flags) 666 { 667 might_sleep(); 668 return trylock_page(page) || __lock_page_or_retry(page, mm, flags); 669 } 670 671 /* 672 * This is exported only for wait_on_page_locked/wait_on_page_writeback, etc., 673 * and should not be used directly. 674 */ 675 extern void wait_on_page_bit(struct page *page, int bit_nr); 676 extern int wait_on_page_bit_killable(struct page *page, int bit_nr); 677 678 /* 679 * Wait for a page to be unlocked. 680 * 681 * This must be called with the caller "holding" the page, 682 * ie with increased "page->count" so that the page won't 683 * go away during the wait.. 684 */ 685 static inline void wait_on_page_locked(struct page *page) 686 { 687 if (PageLocked(page)) 688 wait_on_page_bit(compound_head(page), PG_locked); 689 } 690 691 static inline int wait_on_page_locked_killable(struct page *page) 692 { 693 if (!PageLocked(page)) 694 return 0; 695 return wait_on_page_bit_killable(compound_head(page), PG_locked); 696 } 697 698 int put_and_wait_on_page_locked(struct page *page, int state); 699 void wait_on_page_writeback(struct page *page); 700 int wait_on_page_writeback_killable(struct page *page); 701 extern void end_page_writeback(struct page *page); 702 void wait_for_stable_page(struct page *page); 703 704 void page_endio(struct page *page, bool is_write, int err); 705 706 /** 707 * set_page_private_2 - Set PG_private_2 on a page and take a ref 708 * @page: The page. 709 * 710 * Set the PG_private_2 flag on a page and take the reference needed for the VM 711 * to handle its lifetime correctly. This sets the flag and takes the 712 * reference unconditionally, so care must be taken not to set the flag again 713 * if it's already set. 714 */ 715 static inline void set_page_private_2(struct page *page) 716 { 717 page = compound_head(page); 718 get_page(page); 719 SetPagePrivate2(page); 720 } 721 722 void end_page_private_2(struct page *page); 723 void wait_on_page_private_2(struct page *page); 724 int wait_on_page_private_2_killable(struct page *page); 725 726 /* 727 * Add an arbitrary waiter to a page's wait queue 728 */ 729 extern void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter); 730 731 /* 732 * Fault everything in given userspace address range in. 733 */ 734 static inline int fault_in_pages_writeable(char __user *uaddr, int size) 735 { 736 char __user *end = uaddr + size - 1; 737 738 if (unlikely(size == 0)) 739 return 0; 740 741 if (unlikely(uaddr > end)) 742 return -EFAULT; 743 /* 744 * Writing zeroes into userspace here is OK, because we know that if 745 * the zero gets there, we'll be overwriting it. 746 */ 747 do { 748 if (unlikely(__put_user(0, uaddr) != 0)) 749 return -EFAULT; 750 uaddr += PAGE_SIZE; 751 } while (uaddr <= end); 752 753 /* Check whether the range spilled into the next page. */ 754 if (((unsigned long)uaddr & PAGE_MASK) == 755 ((unsigned long)end & PAGE_MASK)) 756 return __put_user(0, end); 757 758 return 0; 759 } 760 761 static inline int fault_in_pages_readable(const char __user *uaddr, int size) 762 { 763 volatile char c; 764 const char __user *end = uaddr + size - 1; 765 766 if (unlikely(size == 0)) 767 return 0; 768 769 if (unlikely(uaddr > end)) 770 return -EFAULT; 771 772 do { 773 if (unlikely(__get_user(c, uaddr) != 0)) 774 return -EFAULT; 775 uaddr += PAGE_SIZE; 776 } while (uaddr <= end); 777 778 /* Check whether the range spilled into the next page. */ 779 if (((unsigned long)uaddr & PAGE_MASK) == 780 ((unsigned long)end & PAGE_MASK)) { 781 return __get_user(c, end); 782 } 783 784 (void)c; 785 return 0; 786 } 787 788 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 789 pgoff_t index, gfp_t gfp_mask); 790 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 791 pgoff_t index, gfp_t gfp_mask); 792 extern void delete_from_page_cache(struct page *page); 793 extern void __delete_from_page_cache(struct page *page, void *shadow); 794 void replace_page_cache_page(struct page *old, struct page *new); 795 void delete_from_page_cache_batch(struct address_space *mapping, 796 struct pagevec *pvec); 797 loff_t mapping_seek_hole_data(struct address_space *, loff_t start, loff_t end, 798 int whence); 799 800 /* 801 * Like add_to_page_cache_locked, but used to add newly allocated pages: 802 * the page is new, so we can just run __SetPageLocked() against it. 803 */ 804 static inline int add_to_page_cache(struct page *page, 805 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask) 806 { 807 int error; 808 809 __SetPageLocked(page); 810 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask); 811 if (unlikely(error)) 812 __ClearPageLocked(page); 813 return error; 814 } 815 816 /** 817 * struct readahead_control - Describes a readahead request. 818 * 819 * A readahead request is for consecutive pages. Filesystems which 820 * implement the ->readahead method should call readahead_page() or 821 * readahead_page_batch() in a loop and attempt to start I/O against 822 * each page in the request. 823 * 824 * Most of the fields in this struct are private and should be accessed 825 * by the functions below. 826 * 827 * @file: The file, used primarily by network filesystems for authentication. 828 * May be NULL if invoked internally by the filesystem. 829 * @mapping: Readahead this filesystem object. 830 * @ra: File readahead state. May be NULL. 831 */ 832 struct readahead_control { 833 struct file *file; 834 struct address_space *mapping; 835 struct file_ra_state *ra; 836 /* private: use the readahead_* accessors instead */ 837 pgoff_t _index; 838 unsigned int _nr_pages; 839 unsigned int _batch_count; 840 }; 841 842 #define DEFINE_READAHEAD(ractl, f, r, m, i) \ 843 struct readahead_control ractl = { \ 844 .file = f, \ 845 .mapping = m, \ 846 .ra = r, \ 847 ._index = i, \ 848 } 849 850 #define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE) 851 852 void page_cache_ra_unbounded(struct readahead_control *, 853 unsigned long nr_to_read, unsigned long lookahead_count); 854 void page_cache_sync_ra(struct readahead_control *, unsigned long req_count); 855 void page_cache_async_ra(struct readahead_control *, struct page *, 856 unsigned long req_count); 857 void readahead_expand(struct readahead_control *ractl, 858 loff_t new_start, size_t new_len); 859 860 /** 861 * page_cache_sync_readahead - generic file readahead 862 * @mapping: address_space which holds the pagecache and I/O vectors 863 * @ra: file_ra_state which holds the readahead state 864 * @file: Used by the filesystem for authentication. 865 * @index: Index of first page to be read. 866 * @req_count: Total number of pages being read by the caller. 867 * 868 * page_cache_sync_readahead() should be called when a cache miss happened: 869 * it will submit the read. The readahead logic may decide to piggyback more 870 * pages onto the read request if access patterns suggest it will improve 871 * performance. 872 */ 873 static inline 874 void page_cache_sync_readahead(struct address_space *mapping, 875 struct file_ra_state *ra, struct file *file, pgoff_t index, 876 unsigned long req_count) 877 { 878 DEFINE_READAHEAD(ractl, file, ra, mapping, index); 879 page_cache_sync_ra(&ractl, req_count); 880 } 881 882 /** 883 * page_cache_async_readahead - file readahead for marked pages 884 * @mapping: address_space which holds the pagecache and I/O vectors 885 * @ra: file_ra_state which holds the readahead state 886 * @file: Used by the filesystem for authentication. 887 * @page: The page at @index which triggered the readahead call. 888 * @index: Index of first page to be read. 889 * @req_count: Total number of pages being read by the caller. 890 * 891 * page_cache_async_readahead() should be called when a page is used which 892 * is marked as PageReadahead; this is a marker to suggest that the application 893 * has used up enough of the readahead window that we should start pulling in 894 * more pages. 895 */ 896 static inline 897 void page_cache_async_readahead(struct address_space *mapping, 898 struct file_ra_state *ra, struct file *file, 899 struct page *page, pgoff_t index, unsigned long req_count) 900 { 901 DEFINE_READAHEAD(ractl, file, ra, mapping, index); 902 page_cache_async_ra(&ractl, page, req_count); 903 } 904 905 /** 906 * readahead_page - Get the next page to read. 907 * @rac: The current readahead request. 908 * 909 * Context: The page is locked and has an elevated refcount. The caller 910 * should decreases the refcount once the page has been submitted for I/O 911 * and unlock the page once all I/O to that page has completed. 912 * Return: A pointer to the next page, or %NULL if we are done. 913 */ 914 static inline struct page *readahead_page(struct readahead_control *rac) 915 { 916 struct page *page; 917 918 BUG_ON(rac->_batch_count > rac->_nr_pages); 919 rac->_nr_pages -= rac->_batch_count; 920 rac->_index += rac->_batch_count; 921 922 if (!rac->_nr_pages) { 923 rac->_batch_count = 0; 924 return NULL; 925 } 926 927 page = xa_load(&rac->mapping->i_pages, rac->_index); 928 VM_BUG_ON_PAGE(!PageLocked(page), page); 929 rac->_batch_count = thp_nr_pages(page); 930 931 return page; 932 } 933 934 static inline unsigned int __readahead_batch(struct readahead_control *rac, 935 struct page **array, unsigned int array_sz) 936 { 937 unsigned int i = 0; 938 XA_STATE(xas, &rac->mapping->i_pages, 0); 939 struct page *page; 940 941 BUG_ON(rac->_batch_count > rac->_nr_pages); 942 rac->_nr_pages -= rac->_batch_count; 943 rac->_index += rac->_batch_count; 944 rac->_batch_count = 0; 945 946 xas_set(&xas, rac->_index); 947 rcu_read_lock(); 948 xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) { 949 if (xas_retry(&xas, page)) 950 continue; 951 VM_BUG_ON_PAGE(!PageLocked(page), page); 952 VM_BUG_ON_PAGE(PageTail(page), page); 953 array[i++] = page; 954 rac->_batch_count += thp_nr_pages(page); 955 956 /* 957 * The page cache isn't using multi-index entries yet, 958 * so the xas cursor needs to be manually moved to the 959 * next index. This can be removed once the page cache 960 * is converted. 961 */ 962 if (PageHead(page)) 963 xas_set(&xas, rac->_index + rac->_batch_count); 964 965 if (i == array_sz) 966 break; 967 } 968 rcu_read_unlock(); 969 970 return i; 971 } 972 973 /** 974 * readahead_page_batch - Get a batch of pages to read. 975 * @rac: The current readahead request. 976 * @array: An array of pointers to struct page. 977 * 978 * Context: The pages are locked and have an elevated refcount. The caller 979 * should decreases the refcount once the page has been submitted for I/O 980 * and unlock the page once all I/O to that page has completed. 981 * Return: The number of pages placed in the array. 0 indicates the request 982 * is complete. 983 */ 984 #define readahead_page_batch(rac, array) \ 985 __readahead_batch(rac, array, ARRAY_SIZE(array)) 986 987 /** 988 * readahead_pos - The byte offset into the file of this readahead request. 989 * @rac: The readahead request. 990 */ 991 static inline loff_t readahead_pos(struct readahead_control *rac) 992 { 993 return (loff_t)rac->_index * PAGE_SIZE; 994 } 995 996 /** 997 * readahead_length - The number of bytes in this readahead request. 998 * @rac: The readahead request. 999 */ 1000 static inline loff_t readahead_length(struct readahead_control *rac) 1001 { 1002 return (loff_t)rac->_nr_pages * PAGE_SIZE; 1003 } 1004 1005 /** 1006 * readahead_index - The index of the first page in this readahead request. 1007 * @rac: The readahead request. 1008 */ 1009 static inline pgoff_t readahead_index(struct readahead_control *rac) 1010 { 1011 return rac->_index; 1012 } 1013 1014 /** 1015 * readahead_count - The number of pages in this readahead request. 1016 * @rac: The readahead request. 1017 */ 1018 static inline unsigned int readahead_count(struct readahead_control *rac) 1019 { 1020 return rac->_nr_pages; 1021 } 1022 1023 /** 1024 * readahead_batch_length - The number of bytes in the current batch. 1025 * @rac: The readahead request. 1026 */ 1027 static inline loff_t readahead_batch_length(struct readahead_control *rac) 1028 { 1029 return rac->_batch_count * PAGE_SIZE; 1030 } 1031 1032 static inline unsigned long dir_pages(struct inode *inode) 1033 { 1034 return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >> 1035 PAGE_SHIFT; 1036 } 1037 1038 /** 1039 * page_mkwrite_check_truncate - check if page was truncated 1040 * @page: the page to check 1041 * @inode: the inode to check the page against 1042 * 1043 * Returns the number of bytes in the page up to EOF, 1044 * or -EFAULT if the page was truncated. 1045 */ 1046 static inline int page_mkwrite_check_truncate(struct page *page, 1047 struct inode *inode) 1048 { 1049 loff_t size = i_size_read(inode); 1050 pgoff_t index = size >> PAGE_SHIFT; 1051 int offset = offset_in_page(size); 1052 1053 if (page->mapping != inode->i_mapping) 1054 return -EFAULT; 1055 1056 /* page is wholly inside EOF */ 1057 if (page->index < index) 1058 return PAGE_SIZE; 1059 /* page is wholly past EOF */ 1060 if (page->index > index || !offset) 1061 return -EFAULT; 1062 /* page is partially inside EOF */ 1063 return offset; 1064 } 1065 1066 /** 1067 * i_blocks_per_page - How many blocks fit in this page. 1068 * @inode: The inode which contains the blocks. 1069 * @page: The page (head page if the page is a THP). 1070 * 1071 * If the block size is larger than the size of this page, return zero. 1072 * 1073 * Context: The caller should hold a refcount on the page to prevent it 1074 * from being split. 1075 * Return: The number of filesystem blocks covered by this page. 1076 */ 1077 static inline 1078 unsigned int i_blocks_per_page(struct inode *inode, struct page *page) 1079 { 1080 return thp_size(page) >> inode->i_blkbits; 1081 } 1082 #endif /* _LINUX_PAGEMAP_H */ 1083