xref: /linux-6.15/include/linux/pagemap.h (revision bcefe12e)
1 #ifndef _LINUX_PAGEMAP_H
2 #define _LINUX_PAGEMAP_H
3 
4 /*
5  * Copyright 1995 Linus Torvalds
6  */
7 #include <linux/mm.h>
8 #include <linux/fs.h>
9 #include <linux/list.h>
10 #include <linux/highmem.h>
11 #include <linux/compiler.h>
12 #include <asm/uaccess.h>
13 #include <linux/gfp.h>
14 #include <linux/bitops.h>
15 #include <linux/hardirq.h> /* for in_interrupt() */
16 
17 /*
18  * Bits in mapping->flags.  The lower __GFP_BITS_SHIFT bits are the page
19  * allocation mode flags.
20  */
21 enum mapping_flags {
22 	AS_EIO		= __GFP_BITS_SHIFT + 0,	/* IO error on async write */
23 	AS_ENOSPC	= __GFP_BITS_SHIFT + 1,	/* ENOSPC on async write */
24 	AS_MM_ALL_LOCKS	= __GFP_BITS_SHIFT + 2,	/* under mm_take_all_locks() */
25 	AS_UNEVICTABLE	= __GFP_BITS_SHIFT + 3,	/* e.g., ramdisk, SHM_LOCK */
26 };
27 
28 static inline void mapping_set_error(struct address_space *mapping, int error)
29 {
30 	if (unlikely(error)) {
31 		if (error == -ENOSPC)
32 			set_bit(AS_ENOSPC, &mapping->flags);
33 		else
34 			set_bit(AS_EIO, &mapping->flags);
35 	}
36 }
37 
38 static inline void mapping_set_unevictable(struct address_space *mapping)
39 {
40 	set_bit(AS_UNEVICTABLE, &mapping->flags);
41 }
42 
43 static inline void mapping_clear_unevictable(struct address_space *mapping)
44 {
45 	clear_bit(AS_UNEVICTABLE, &mapping->flags);
46 }
47 
48 static inline int mapping_unevictable(struct address_space *mapping)
49 {
50 	if (likely(mapping))
51 		return test_bit(AS_UNEVICTABLE, &mapping->flags);
52 	return !!mapping;
53 }
54 
55 static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
56 {
57 	return (__force gfp_t)mapping->flags & __GFP_BITS_MASK;
58 }
59 
60 /*
61  * This is non-atomic.  Only to be used before the mapping is activated.
62  * Probably needs a barrier...
63  */
64 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
65 {
66 	m->flags = (m->flags & ~(__force unsigned long)__GFP_BITS_MASK) |
67 				(__force unsigned long)mask;
68 }
69 
70 /*
71  * The page cache can done in larger chunks than
72  * one page, because it allows for more efficient
73  * throughput (it can then be mapped into user
74  * space in smaller chunks for same flexibility).
75  *
76  * Or rather, it _will_ be done in larger chunks.
77  */
78 #define PAGE_CACHE_SHIFT	PAGE_SHIFT
79 #define PAGE_CACHE_SIZE		PAGE_SIZE
80 #define PAGE_CACHE_MASK		PAGE_MASK
81 #define PAGE_CACHE_ALIGN(addr)	(((addr)+PAGE_CACHE_SIZE-1)&PAGE_CACHE_MASK)
82 
83 #define page_cache_get(page)		get_page(page)
84 #define page_cache_release(page)	put_page(page)
85 void release_pages(struct page **pages, int nr, int cold);
86 
87 /*
88  * speculatively take a reference to a page.
89  * If the page is free (_count == 0), then _count is untouched, and 0
90  * is returned. Otherwise, _count is incremented by 1 and 1 is returned.
91  *
92  * This function must be called inside the same rcu_read_lock() section as has
93  * been used to lookup the page in the pagecache radix-tree (or page table):
94  * this allows allocators to use a synchronize_rcu() to stabilize _count.
95  *
96  * Unless an RCU grace period has passed, the count of all pages coming out
97  * of the allocator must be considered unstable. page_count may return higher
98  * than expected, and put_page must be able to do the right thing when the
99  * page has been finished with, no matter what it is subsequently allocated
100  * for (because put_page is what is used here to drop an invalid speculative
101  * reference).
102  *
103  * This is the interesting part of the lockless pagecache (and lockless
104  * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
105  * has the following pattern:
106  * 1. find page in radix tree
107  * 2. conditionally increment refcount
108  * 3. check the page is still in pagecache (if no, goto 1)
109  *
110  * Remove-side that cares about stability of _count (eg. reclaim) has the
111  * following (with tree_lock held for write):
112  * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
113  * B. remove page from pagecache
114  * C. free the page
115  *
116  * There are 2 critical interleavings that matter:
117  * - 2 runs before A: in this case, A sees elevated refcount and bails out
118  * - A runs before 2: in this case, 2 sees zero refcount and retries;
119  *   subsequently, B will complete and 1 will find no page, causing the
120  *   lookup to return NULL.
121  *
122  * It is possible that between 1 and 2, the page is removed then the exact same
123  * page is inserted into the same position in pagecache. That's OK: the
124  * old find_get_page using tree_lock could equally have run before or after
125  * such a re-insertion, depending on order that locks are granted.
126  *
127  * Lookups racing against pagecache insertion isn't a big problem: either 1
128  * will find the page or it will not. Likewise, the old find_get_page could run
129  * either before the insertion or afterwards, depending on timing.
130  */
131 static inline int page_cache_get_speculative(struct page *page)
132 {
133 	VM_BUG_ON(in_interrupt());
134 
135 #if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU)
136 # ifdef CONFIG_PREEMPT
137 	VM_BUG_ON(!in_atomic());
138 # endif
139 	/*
140 	 * Preempt must be disabled here - we rely on rcu_read_lock doing
141 	 * this for us.
142 	 *
143 	 * Pagecache won't be truncated from interrupt context, so if we have
144 	 * found a page in the radix tree here, we have pinned its refcount by
145 	 * disabling preempt, and hence no need for the "speculative get" that
146 	 * SMP requires.
147 	 */
148 	VM_BUG_ON(page_count(page) == 0);
149 	atomic_inc(&page->_count);
150 
151 #else
152 	if (unlikely(!get_page_unless_zero(page))) {
153 		/*
154 		 * Either the page has been freed, or will be freed.
155 		 * In either case, retry here and the caller should
156 		 * do the right thing (see comments above).
157 		 */
158 		return 0;
159 	}
160 #endif
161 	VM_BUG_ON(PageTail(page));
162 
163 	return 1;
164 }
165 
166 /*
167  * Same as above, but add instead of inc (could just be merged)
168  */
169 static inline int page_cache_add_speculative(struct page *page, int count)
170 {
171 	VM_BUG_ON(in_interrupt());
172 
173 #if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU)
174 # ifdef CONFIG_PREEMPT
175 	VM_BUG_ON(!in_atomic());
176 # endif
177 	VM_BUG_ON(page_count(page) == 0);
178 	atomic_add(count, &page->_count);
179 
180 #else
181 	if (unlikely(!atomic_add_unless(&page->_count, count, 0)))
182 		return 0;
183 #endif
184 	VM_BUG_ON(PageCompound(page) && page != compound_head(page));
185 
186 	return 1;
187 }
188 
189 static inline int page_freeze_refs(struct page *page, int count)
190 {
191 	return likely(atomic_cmpxchg(&page->_count, count, 0) == count);
192 }
193 
194 static inline void page_unfreeze_refs(struct page *page, int count)
195 {
196 	VM_BUG_ON(page_count(page) != 0);
197 	VM_BUG_ON(count == 0);
198 
199 	atomic_set(&page->_count, count);
200 }
201 
202 #ifdef CONFIG_NUMA
203 extern struct page *__page_cache_alloc(gfp_t gfp);
204 #else
205 static inline struct page *__page_cache_alloc(gfp_t gfp)
206 {
207 	return alloc_pages(gfp, 0);
208 }
209 #endif
210 
211 static inline struct page *page_cache_alloc(struct address_space *x)
212 {
213 	return __page_cache_alloc(mapping_gfp_mask(x));
214 }
215 
216 static inline struct page *page_cache_alloc_cold(struct address_space *x)
217 {
218 	return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD);
219 }
220 
221 typedef int filler_t(void *, struct page *);
222 
223 extern struct page * find_get_page(struct address_space *mapping,
224 				pgoff_t index);
225 extern struct page * find_lock_page(struct address_space *mapping,
226 				pgoff_t index);
227 extern struct page * find_or_create_page(struct address_space *mapping,
228 				pgoff_t index, gfp_t gfp_mask);
229 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
230 			unsigned int nr_pages, struct page **pages);
231 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
232 			       unsigned int nr_pages, struct page **pages);
233 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
234 			int tag, unsigned int nr_pages, struct page **pages);
235 
236 struct page *grab_cache_page_write_begin(struct address_space *mapping,
237 			pgoff_t index, unsigned flags);
238 
239 /*
240  * Returns locked page at given index in given cache, creating it if needed.
241  */
242 static inline struct page *grab_cache_page(struct address_space *mapping,
243 								pgoff_t index)
244 {
245 	return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
246 }
247 
248 extern struct page * grab_cache_page_nowait(struct address_space *mapping,
249 				pgoff_t index);
250 extern struct page * read_cache_page_async(struct address_space *mapping,
251 				pgoff_t index, filler_t *filler,
252 				void *data);
253 extern struct page * read_cache_page(struct address_space *mapping,
254 				pgoff_t index, filler_t *filler,
255 				void *data);
256 extern int read_cache_pages(struct address_space *mapping,
257 		struct list_head *pages, filler_t *filler, void *data);
258 
259 static inline struct page *read_mapping_page_async(
260 						struct address_space *mapping,
261 						     pgoff_t index, void *data)
262 {
263 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
264 	return read_cache_page_async(mapping, index, filler, data);
265 }
266 
267 static inline struct page *read_mapping_page(struct address_space *mapping,
268 					     pgoff_t index, void *data)
269 {
270 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
271 	return read_cache_page(mapping, index, filler, data);
272 }
273 
274 /*
275  * Return byte-offset into filesystem object for page.
276  */
277 static inline loff_t page_offset(struct page *page)
278 {
279 	return ((loff_t)page->index) << PAGE_CACHE_SHIFT;
280 }
281 
282 static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
283 					unsigned long address)
284 {
285 	pgoff_t pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
286 	pgoff += vma->vm_pgoff;
287 	return pgoff >> (PAGE_CACHE_SHIFT - PAGE_SHIFT);
288 }
289 
290 extern void __lock_page(struct page *page);
291 extern int __lock_page_killable(struct page *page);
292 extern void __lock_page_nosync(struct page *page);
293 extern void unlock_page(struct page *page);
294 
295 static inline void __set_page_locked(struct page *page)
296 {
297 	__set_bit(PG_locked, &page->flags);
298 }
299 
300 static inline void __clear_page_locked(struct page *page)
301 {
302 	__clear_bit(PG_locked, &page->flags);
303 }
304 
305 static inline int trylock_page(struct page *page)
306 {
307 	return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
308 }
309 
310 /*
311  * lock_page may only be called if we have the page's inode pinned.
312  */
313 static inline void lock_page(struct page *page)
314 {
315 	might_sleep();
316 	if (!trylock_page(page))
317 		__lock_page(page);
318 }
319 
320 /*
321  * lock_page_killable is like lock_page but can be interrupted by fatal
322  * signals.  It returns 0 if it locked the page and -EINTR if it was
323  * killed while waiting.
324  */
325 static inline int lock_page_killable(struct page *page)
326 {
327 	might_sleep();
328 	if (!trylock_page(page))
329 		return __lock_page_killable(page);
330 	return 0;
331 }
332 
333 /*
334  * lock_page_nosync should only be used if we can't pin the page's inode.
335  * Doesn't play quite so well with block device plugging.
336  */
337 static inline void lock_page_nosync(struct page *page)
338 {
339 	might_sleep();
340 	if (!trylock_page(page))
341 		__lock_page_nosync(page);
342 }
343 
344 /*
345  * This is exported only for wait_on_page_locked/wait_on_page_writeback.
346  * Never use this directly!
347  */
348 extern void wait_on_page_bit(struct page *page, int bit_nr);
349 
350 /*
351  * Wait for a page to be unlocked.
352  *
353  * This must be called with the caller "holding" the page,
354  * ie with increased "page->count" so that the page won't
355  * go away during the wait..
356  */
357 static inline void wait_on_page_locked(struct page *page)
358 {
359 	if (PageLocked(page))
360 		wait_on_page_bit(page, PG_locked);
361 }
362 
363 /*
364  * Wait for a page to complete writeback
365  */
366 static inline void wait_on_page_writeback(struct page *page)
367 {
368 	if (PageWriteback(page))
369 		wait_on_page_bit(page, PG_writeback);
370 }
371 
372 extern void end_page_writeback(struct page *page);
373 
374 /*
375  * Add an arbitrary waiter to a page's wait queue
376  */
377 extern void add_page_wait_queue(struct page *page, wait_queue_t *waiter);
378 
379 /*
380  * Fault a userspace page into pagetables.  Return non-zero on a fault.
381  *
382  * This assumes that two userspace pages are always sufficient.  That's
383  * not true if PAGE_CACHE_SIZE > PAGE_SIZE.
384  */
385 static inline int fault_in_pages_writeable(char __user *uaddr, int size)
386 {
387 	int ret;
388 
389 	if (unlikely(size == 0))
390 		return 0;
391 
392 	/*
393 	 * Writing zeroes into userspace here is OK, because we know that if
394 	 * the zero gets there, we'll be overwriting it.
395 	 */
396 	ret = __put_user(0, uaddr);
397 	if (ret == 0) {
398 		char __user *end = uaddr + size - 1;
399 
400 		/*
401 		 * If the page was already mapped, this will get a cache miss
402 		 * for sure, so try to avoid doing it.
403 		 */
404 		if (((unsigned long)uaddr & PAGE_MASK) !=
405 				((unsigned long)end & PAGE_MASK))
406 		 	ret = __put_user(0, end);
407 	}
408 	return ret;
409 }
410 
411 static inline int fault_in_pages_readable(const char __user *uaddr, int size)
412 {
413 	volatile char c;
414 	int ret;
415 
416 	if (unlikely(size == 0))
417 		return 0;
418 
419 	ret = __get_user(c, uaddr);
420 	if (ret == 0) {
421 		const char __user *end = uaddr + size - 1;
422 
423 		if (((unsigned long)uaddr & PAGE_MASK) !=
424 				((unsigned long)end & PAGE_MASK))
425 		 	ret = __get_user(c, end);
426 	}
427 	return ret;
428 }
429 
430 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
431 				pgoff_t index, gfp_t gfp_mask);
432 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
433 				pgoff_t index, gfp_t gfp_mask);
434 extern void remove_from_page_cache(struct page *page);
435 extern void __remove_from_page_cache(struct page *page);
436 
437 /*
438  * Like add_to_page_cache_locked, but used to add newly allocated pages:
439  * the page is new, so we can just run __set_page_locked() against it.
440  */
441 static inline int add_to_page_cache(struct page *page,
442 		struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
443 {
444 	int error;
445 
446 	__set_page_locked(page);
447 	error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
448 	if (unlikely(error))
449 		__clear_page_locked(page);
450 	return error;
451 }
452 
453 #endif /* _LINUX_PAGEMAP_H */
454