1 #ifndef _LINUX_PAGEMAP_H 2 #define _LINUX_PAGEMAP_H 3 4 /* 5 * Copyright 1995 Linus Torvalds 6 */ 7 #include <linux/mm.h> 8 #include <linux/fs.h> 9 #include <linux/list.h> 10 #include <linux/highmem.h> 11 #include <linux/compiler.h> 12 #include <asm/uaccess.h> 13 #include <linux/gfp.h> 14 #include <linux/bitops.h> 15 #include <linux/hardirq.h> /* for in_interrupt() */ 16 17 /* 18 * Bits in mapping->flags. The lower __GFP_BITS_SHIFT bits are the page 19 * allocation mode flags. 20 */ 21 enum mapping_flags { 22 AS_EIO = __GFP_BITS_SHIFT + 0, /* IO error on async write */ 23 AS_ENOSPC = __GFP_BITS_SHIFT + 1, /* ENOSPC on async write */ 24 AS_MM_ALL_LOCKS = __GFP_BITS_SHIFT + 2, /* under mm_take_all_locks() */ 25 AS_UNEVICTABLE = __GFP_BITS_SHIFT + 3, /* e.g., ramdisk, SHM_LOCK */ 26 }; 27 28 static inline void mapping_set_error(struct address_space *mapping, int error) 29 { 30 if (unlikely(error)) { 31 if (error == -ENOSPC) 32 set_bit(AS_ENOSPC, &mapping->flags); 33 else 34 set_bit(AS_EIO, &mapping->flags); 35 } 36 } 37 38 static inline void mapping_set_unevictable(struct address_space *mapping) 39 { 40 set_bit(AS_UNEVICTABLE, &mapping->flags); 41 } 42 43 static inline void mapping_clear_unevictable(struct address_space *mapping) 44 { 45 clear_bit(AS_UNEVICTABLE, &mapping->flags); 46 } 47 48 static inline int mapping_unevictable(struct address_space *mapping) 49 { 50 if (likely(mapping)) 51 return test_bit(AS_UNEVICTABLE, &mapping->flags); 52 return !!mapping; 53 } 54 55 static inline gfp_t mapping_gfp_mask(struct address_space * mapping) 56 { 57 return (__force gfp_t)mapping->flags & __GFP_BITS_MASK; 58 } 59 60 /* 61 * This is non-atomic. Only to be used before the mapping is activated. 62 * Probably needs a barrier... 63 */ 64 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask) 65 { 66 m->flags = (m->flags & ~(__force unsigned long)__GFP_BITS_MASK) | 67 (__force unsigned long)mask; 68 } 69 70 /* 71 * The page cache can done in larger chunks than 72 * one page, because it allows for more efficient 73 * throughput (it can then be mapped into user 74 * space in smaller chunks for same flexibility). 75 * 76 * Or rather, it _will_ be done in larger chunks. 77 */ 78 #define PAGE_CACHE_SHIFT PAGE_SHIFT 79 #define PAGE_CACHE_SIZE PAGE_SIZE 80 #define PAGE_CACHE_MASK PAGE_MASK 81 #define PAGE_CACHE_ALIGN(addr) (((addr)+PAGE_CACHE_SIZE-1)&PAGE_CACHE_MASK) 82 83 #define page_cache_get(page) get_page(page) 84 #define page_cache_release(page) put_page(page) 85 void release_pages(struct page **pages, int nr, int cold); 86 87 /* 88 * speculatively take a reference to a page. 89 * If the page is free (_count == 0), then _count is untouched, and 0 90 * is returned. Otherwise, _count is incremented by 1 and 1 is returned. 91 * 92 * This function must be called inside the same rcu_read_lock() section as has 93 * been used to lookup the page in the pagecache radix-tree (or page table): 94 * this allows allocators to use a synchronize_rcu() to stabilize _count. 95 * 96 * Unless an RCU grace period has passed, the count of all pages coming out 97 * of the allocator must be considered unstable. page_count may return higher 98 * than expected, and put_page must be able to do the right thing when the 99 * page has been finished with, no matter what it is subsequently allocated 100 * for (because put_page is what is used here to drop an invalid speculative 101 * reference). 102 * 103 * This is the interesting part of the lockless pagecache (and lockless 104 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page) 105 * has the following pattern: 106 * 1. find page in radix tree 107 * 2. conditionally increment refcount 108 * 3. check the page is still in pagecache (if no, goto 1) 109 * 110 * Remove-side that cares about stability of _count (eg. reclaim) has the 111 * following (with tree_lock held for write): 112 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg) 113 * B. remove page from pagecache 114 * C. free the page 115 * 116 * There are 2 critical interleavings that matter: 117 * - 2 runs before A: in this case, A sees elevated refcount and bails out 118 * - A runs before 2: in this case, 2 sees zero refcount and retries; 119 * subsequently, B will complete and 1 will find no page, causing the 120 * lookup to return NULL. 121 * 122 * It is possible that between 1 and 2, the page is removed then the exact same 123 * page is inserted into the same position in pagecache. That's OK: the 124 * old find_get_page using tree_lock could equally have run before or after 125 * such a re-insertion, depending on order that locks are granted. 126 * 127 * Lookups racing against pagecache insertion isn't a big problem: either 1 128 * will find the page or it will not. Likewise, the old find_get_page could run 129 * either before the insertion or afterwards, depending on timing. 130 */ 131 static inline int page_cache_get_speculative(struct page *page) 132 { 133 VM_BUG_ON(in_interrupt()); 134 135 #if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU) 136 # ifdef CONFIG_PREEMPT 137 VM_BUG_ON(!in_atomic()); 138 # endif 139 /* 140 * Preempt must be disabled here - we rely on rcu_read_lock doing 141 * this for us. 142 * 143 * Pagecache won't be truncated from interrupt context, so if we have 144 * found a page in the radix tree here, we have pinned its refcount by 145 * disabling preempt, and hence no need for the "speculative get" that 146 * SMP requires. 147 */ 148 VM_BUG_ON(page_count(page) == 0); 149 atomic_inc(&page->_count); 150 151 #else 152 if (unlikely(!get_page_unless_zero(page))) { 153 /* 154 * Either the page has been freed, or will be freed. 155 * In either case, retry here and the caller should 156 * do the right thing (see comments above). 157 */ 158 return 0; 159 } 160 #endif 161 VM_BUG_ON(PageTail(page)); 162 163 return 1; 164 } 165 166 /* 167 * Same as above, but add instead of inc (could just be merged) 168 */ 169 static inline int page_cache_add_speculative(struct page *page, int count) 170 { 171 VM_BUG_ON(in_interrupt()); 172 173 #if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU) 174 # ifdef CONFIG_PREEMPT 175 VM_BUG_ON(!in_atomic()); 176 # endif 177 VM_BUG_ON(page_count(page) == 0); 178 atomic_add(count, &page->_count); 179 180 #else 181 if (unlikely(!atomic_add_unless(&page->_count, count, 0))) 182 return 0; 183 #endif 184 VM_BUG_ON(PageCompound(page) && page != compound_head(page)); 185 186 return 1; 187 } 188 189 static inline int page_freeze_refs(struct page *page, int count) 190 { 191 return likely(atomic_cmpxchg(&page->_count, count, 0) == count); 192 } 193 194 static inline void page_unfreeze_refs(struct page *page, int count) 195 { 196 VM_BUG_ON(page_count(page) != 0); 197 VM_BUG_ON(count == 0); 198 199 atomic_set(&page->_count, count); 200 } 201 202 #ifdef CONFIG_NUMA 203 extern struct page *__page_cache_alloc(gfp_t gfp); 204 #else 205 static inline struct page *__page_cache_alloc(gfp_t gfp) 206 { 207 return alloc_pages(gfp, 0); 208 } 209 #endif 210 211 static inline struct page *page_cache_alloc(struct address_space *x) 212 { 213 return __page_cache_alloc(mapping_gfp_mask(x)); 214 } 215 216 static inline struct page *page_cache_alloc_cold(struct address_space *x) 217 { 218 return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD); 219 } 220 221 typedef int filler_t(void *, struct page *); 222 223 extern struct page * find_get_page(struct address_space *mapping, 224 pgoff_t index); 225 extern struct page * find_lock_page(struct address_space *mapping, 226 pgoff_t index); 227 extern struct page * find_or_create_page(struct address_space *mapping, 228 pgoff_t index, gfp_t gfp_mask); 229 unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 230 unsigned int nr_pages, struct page **pages); 231 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start, 232 unsigned int nr_pages, struct page **pages); 233 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 234 int tag, unsigned int nr_pages, struct page **pages); 235 236 struct page *grab_cache_page_write_begin(struct address_space *mapping, 237 pgoff_t index, unsigned flags); 238 239 /* 240 * Returns locked page at given index in given cache, creating it if needed. 241 */ 242 static inline struct page *grab_cache_page(struct address_space *mapping, 243 pgoff_t index) 244 { 245 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping)); 246 } 247 248 extern struct page * grab_cache_page_nowait(struct address_space *mapping, 249 pgoff_t index); 250 extern struct page * read_cache_page_async(struct address_space *mapping, 251 pgoff_t index, filler_t *filler, 252 void *data); 253 extern struct page * read_cache_page(struct address_space *mapping, 254 pgoff_t index, filler_t *filler, 255 void *data); 256 extern int read_cache_pages(struct address_space *mapping, 257 struct list_head *pages, filler_t *filler, void *data); 258 259 static inline struct page *read_mapping_page_async( 260 struct address_space *mapping, 261 pgoff_t index, void *data) 262 { 263 filler_t *filler = (filler_t *)mapping->a_ops->readpage; 264 return read_cache_page_async(mapping, index, filler, data); 265 } 266 267 static inline struct page *read_mapping_page(struct address_space *mapping, 268 pgoff_t index, void *data) 269 { 270 filler_t *filler = (filler_t *)mapping->a_ops->readpage; 271 return read_cache_page(mapping, index, filler, data); 272 } 273 274 /* 275 * Return byte-offset into filesystem object for page. 276 */ 277 static inline loff_t page_offset(struct page *page) 278 { 279 return ((loff_t)page->index) << PAGE_CACHE_SHIFT; 280 } 281 282 static inline pgoff_t linear_page_index(struct vm_area_struct *vma, 283 unsigned long address) 284 { 285 pgoff_t pgoff = (address - vma->vm_start) >> PAGE_SHIFT; 286 pgoff += vma->vm_pgoff; 287 return pgoff >> (PAGE_CACHE_SHIFT - PAGE_SHIFT); 288 } 289 290 extern void __lock_page(struct page *page); 291 extern int __lock_page_killable(struct page *page); 292 extern void __lock_page_nosync(struct page *page); 293 extern void unlock_page(struct page *page); 294 295 static inline void __set_page_locked(struct page *page) 296 { 297 __set_bit(PG_locked, &page->flags); 298 } 299 300 static inline void __clear_page_locked(struct page *page) 301 { 302 __clear_bit(PG_locked, &page->flags); 303 } 304 305 static inline int trylock_page(struct page *page) 306 { 307 return (likely(!test_and_set_bit_lock(PG_locked, &page->flags))); 308 } 309 310 /* 311 * lock_page may only be called if we have the page's inode pinned. 312 */ 313 static inline void lock_page(struct page *page) 314 { 315 might_sleep(); 316 if (!trylock_page(page)) 317 __lock_page(page); 318 } 319 320 /* 321 * lock_page_killable is like lock_page but can be interrupted by fatal 322 * signals. It returns 0 if it locked the page and -EINTR if it was 323 * killed while waiting. 324 */ 325 static inline int lock_page_killable(struct page *page) 326 { 327 might_sleep(); 328 if (!trylock_page(page)) 329 return __lock_page_killable(page); 330 return 0; 331 } 332 333 /* 334 * lock_page_nosync should only be used if we can't pin the page's inode. 335 * Doesn't play quite so well with block device plugging. 336 */ 337 static inline void lock_page_nosync(struct page *page) 338 { 339 might_sleep(); 340 if (!trylock_page(page)) 341 __lock_page_nosync(page); 342 } 343 344 /* 345 * This is exported only for wait_on_page_locked/wait_on_page_writeback. 346 * Never use this directly! 347 */ 348 extern void wait_on_page_bit(struct page *page, int bit_nr); 349 350 /* 351 * Wait for a page to be unlocked. 352 * 353 * This must be called with the caller "holding" the page, 354 * ie with increased "page->count" so that the page won't 355 * go away during the wait.. 356 */ 357 static inline void wait_on_page_locked(struct page *page) 358 { 359 if (PageLocked(page)) 360 wait_on_page_bit(page, PG_locked); 361 } 362 363 /* 364 * Wait for a page to complete writeback 365 */ 366 static inline void wait_on_page_writeback(struct page *page) 367 { 368 if (PageWriteback(page)) 369 wait_on_page_bit(page, PG_writeback); 370 } 371 372 extern void end_page_writeback(struct page *page); 373 374 /* 375 * Add an arbitrary waiter to a page's wait queue 376 */ 377 extern void add_page_wait_queue(struct page *page, wait_queue_t *waiter); 378 379 /* 380 * Fault a userspace page into pagetables. Return non-zero on a fault. 381 * 382 * This assumes that two userspace pages are always sufficient. That's 383 * not true if PAGE_CACHE_SIZE > PAGE_SIZE. 384 */ 385 static inline int fault_in_pages_writeable(char __user *uaddr, int size) 386 { 387 int ret; 388 389 if (unlikely(size == 0)) 390 return 0; 391 392 /* 393 * Writing zeroes into userspace here is OK, because we know that if 394 * the zero gets there, we'll be overwriting it. 395 */ 396 ret = __put_user(0, uaddr); 397 if (ret == 0) { 398 char __user *end = uaddr + size - 1; 399 400 /* 401 * If the page was already mapped, this will get a cache miss 402 * for sure, so try to avoid doing it. 403 */ 404 if (((unsigned long)uaddr & PAGE_MASK) != 405 ((unsigned long)end & PAGE_MASK)) 406 ret = __put_user(0, end); 407 } 408 return ret; 409 } 410 411 static inline int fault_in_pages_readable(const char __user *uaddr, int size) 412 { 413 volatile char c; 414 int ret; 415 416 if (unlikely(size == 0)) 417 return 0; 418 419 ret = __get_user(c, uaddr); 420 if (ret == 0) { 421 const char __user *end = uaddr + size - 1; 422 423 if (((unsigned long)uaddr & PAGE_MASK) != 424 ((unsigned long)end & PAGE_MASK)) 425 ret = __get_user(c, end); 426 } 427 return ret; 428 } 429 430 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 431 pgoff_t index, gfp_t gfp_mask); 432 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 433 pgoff_t index, gfp_t gfp_mask); 434 extern void remove_from_page_cache(struct page *page); 435 extern void __remove_from_page_cache(struct page *page); 436 437 /* 438 * Like add_to_page_cache_locked, but used to add newly allocated pages: 439 * the page is new, so we can just run __set_page_locked() against it. 440 */ 441 static inline int add_to_page_cache(struct page *page, 442 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask) 443 { 444 int error; 445 446 __set_page_locked(page); 447 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask); 448 if (unlikely(error)) 449 __clear_page_locked(page); 450 return error; 451 } 452 453 #endif /* _LINUX_PAGEMAP_H */ 454