1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_PAGEMAP_H 3 #define _LINUX_PAGEMAP_H 4 5 /* 6 * Copyright 1995 Linus Torvalds 7 */ 8 #include <linux/mm.h> 9 #include <linux/fs.h> 10 #include <linux/list.h> 11 #include <linux/highmem.h> 12 #include <linux/compiler.h> 13 #include <linux/uaccess.h> 14 #include <linux/gfp.h> 15 #include <linux/bitops.h> 16 #include <linux/hardirq.h> /* for in_interrupt() */ 17 #include <linux/hugetlb_inline.h> 18 19 struct pagevec; 20 21 /* 22 * Bits in mapping->flags. 23 */ 24 enum mapping_flags { 25 AS_EIO = 0, /* IO error on async write */ 26 AS_ENOSPC = 1, /* ENOSPC on async write */ 27 AS_MM_ALL_LOCKS = 2, /* under mm_take_all_locks() */ 28 AS_UNEVICTABLE = 3, /* e.g., ramdisk, SHM_LOCK */ 29 AS_EXITING = 4, /* final truncate in progress */ 30 /* writeback related tags are not used */ 31 AS_NO_WRITEBACK_TAGS = 5, 32 }; 33 34 /** 35 * mapping_set_error - record a writeback error in the address_space 36 * @mapping: the mapping in which an error should be set 37 * @error: the error to set in the mapping 38 * 39 * When writeback fails in some way, we must record that error so that 40 * userspace can be informed when fsync and the like are called. We endeavor 41 * to report errors on any file that was open at the time of the error. Some 42 * internal callers also need to know when writeback errors have occurred. 43 * 44 * When a writeback error occurs, most filesystems will want to call 45 * mapping_set_error to record the error in the mapping so that it can be 46 * reported when the application calls fsync(2). 47 */ 48 static inline void mapping_set_error(struct address_space *mapping, int error) 49 { 50 if (likely(!error)) 51 return; 52 53 /* Record in wb_err for checkers using errseq_t based tracking */ 54 __filemap_set_wb_err(mapping, error); 55 56 /* Record it in superblock */ 57 if (mapping->host) 58 errseq_set(&mapping->host->i_sb->s_wb_err, error); 59 60 /* Record it in flags for now, for legacy callers */ 61 if (error == -ENOSPC) 62 set_bit(AS_ENOSPC, &mapping->flags); 63 else 64 set_bit(AS_EIO, &mapping->flags); 65 } 66 67 static inline void mapping_set_unevictable(struct address_space *mapping) 68 { 69 set_bit(AS_UNEVICTABLE, &mapping->flags); 70 } 71 72 static inline void mapping_clear_unevictable(struct address_space *mapping) 73 { 74 clear_bit(AS_UNEVICTABLE, &mapping->flags); 75 } 76 77 static inline bool mapping_unevictable(struct address_space *mapping) 78 { 79 return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags); 80 } 81 82 static inline void mapping_set_exiting(struct address_space *mapping) 83 { 84 set_bit(AS_EXITING, &mapping->flags); 85 } 86 87 static inline int mapping_exiting(struct address_space *mapping) 88 { 89 return test_bit(AS_EXITING, &mapping->flags); 90 } 91 92 static inline void mapping_set_no_writeback_tags(struct address_space *mapping) 93 { 94 set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); 95 } 96 97 static inline int mapping_use_writeback_tags(struct address_space *mapping) 98 { 99 return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); 100 } 101 102 static inline gfp_t mapping_gfp_mask(struct address_space * mapping) 103 { 104 return mapping->gfp_mask; 105 } 106 107 /* Restricts the given gfp_mask to what the mapping allows. */ 108 static inline gfp_t mapping_gfp_constraint(struct address_space *mapping, 109 gfp_t gfp_mask) 110 { 111 return mapping_gfp_mask(mapping) & gfp_mask; 112 } 113 114 /* 115 * This is non-atomic. Only to be used before the mapping is activated. 116 * Probably needs a barrier... 117 */ 118 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask) 119 { 120 m->gfp_mask = mask; 121 } 122 123 void release_pages(struct page **pages, int nr); 124 125 /* 126 * speculatively take a reference to a page. 127 * If the page is free (_refcount == 0), then _refcount is untouched, and 0 128 * is returned. Otherwise, _refcount is incremented by 1 and 1 is returned. 129 * 130 * This function must be called inside the same rcu_read_lock() section as has 131 * been used to lookup the page in the pagecache radix-tree (or page table): 132 * this allows allocators to use a synchronize_rcu() to stabilize _refcount. 133 * 134 * Unless an RCU grace period has passed, the count of all pages coming out 135 * of the allocator must be considered unstable. page_count may return higher 136 * than expected, and put_page must be able to do the right thing when the 137 * page has been finished with, no matter what it is subsequently allocated 138 * for (because put_page is what is used here to drop an invalid speculative 139 * reference). 140 * 141 * This is the interesting part of the lockless pagecache (and lockless 142 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page) 143 * has the following pattern: 144 * 1. find page in radix tree 145 * 2. conditionally increment refcount 146 * 3. check the page is still in pagecache (if no, goto 1) 147 * 148 * Remove-side that cares about stability of _refcount (eg. reclaim) has the 149 * following (with the i_pages lock held): 150 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg) 151 * B. remove page from pagecache 152 * C. free the page 153 * 154 * There are 2 critical interleavings that matter: 155 * - 2 runs before A: in this case, A sees elevated refcount and bails out 156 * - A runs before 2: in this case, 2 sees zero refcount and retries; 157 * subsequently, B will complete and 1 will find no page, causing the 158 * lookup to return NULL. 159 * 160 * It is possible that between 1 and 2, the page is removed then the exact same 161 * page is inserted into the same position in pagecache. That's OK: the 162 * old find_get_page using a lock could equally have run before or after 163 * such a re-insertion, depending on order that locks are granted. 164 * 165 * Lookups racing against pagecache insertion isn't a big problem: either 1 166 * will find the page or it will not. Likewise, the old find_get_page could run 167 * either before the insertion or afterwards, depending on timing. 168 */ 169 static inline int __page_cache_add_speculative(struct page *page, int count) 170 { 171 #ifdef CONFIG_TINY_RCU 172 # ifdef CONFIG_PREEMPT_COUNT 173 VM_BUG_ON(!in_atomic() && !irqs_disabled()); 174 # endif 175 /* 176 * Preempt must be disabled here - we rely on rcu_read_lock doing 177 * this for us. 178 * 179 * Pagecache won't be truncated from interrupt context, so if we have 180 * found a page in the radix tree here, we have pinned its refcount by 181 * disabling preempt, and hence no need for the "speculative get" that 182 * SMP requires. 183 */ 184 VM_BUG_ON_PAGE(page_count(page) == 0, page); 185 page_ref_add(page, count); 186 187 #else 188 if (unlikely(!page_ref_add_unless(page, count, 0))) { 189 /* 190 * Either the page has been freed, or will be freed. 191 * In either case, retry here and the caller should 192 * do the right thing (see comments above). 193 */ 194 return 0; 195 } 196 #endif 197 VM_BUG_ON_PAGE(PageTail(page), page); 198 199 return 1; 200 } 201 202 static inline int page_cache_get_speculative(struct page *page) 203 { 204 return __page_cache_add_speculative(page, 1); 205 } 206 207 static inline int page_cache_add_speculative(struct page *page, int count) 208 { 209 return __page_cache_add_speculative(page, count); 210 } 211 212 /** 213 * attach_page_private - Attach private data to a page. 214 * @page: Page to attach data to. 215 * @data: Data to attach to page. 216 * 217 * Attaching private data to a page increments the page's reference count. 218 * The data must be detached before the page will be freed. 219 */ 220 static inline void attach_page_private(struct page *page, void *data) 221 { 222 get_page(page); 223 set_page_private(page, (unsigned long)data); 224 SetPagePrivate(page); 225 } 226 227 /** 228 * detach_page_private - Detach private data from a page. 229 * @page: Page to detach data from. 230 * 231 * Removes the data that was previously attached to the page and decrements 232 * the refcount on the page. 233 * 234 * Return: Data that was attached to the page. 235 */ 236 static inline void *detach_page_private(struct page *page) 237 { 238 void *data = (void *)page_private(page); 239 240 if (!PagePrivate(page)) 241 return NULL; 242 ClearPagePrivate(page); 243 set_page_private(page, 0); 244 put_page(page); 245 246 return data; 247 } 248 249 #ifdef CONFIG_NUMA 250 extern struct page *__page_cache_alloc(gfp_t gfp); 251 #else 252 static inline struct page *__page_cache_alloc(gfp_t gfp) 253 { 254 return alloc_pages(gfp, 0); 255 } 256 #endif 257 258 static inline struct page *page_cache_alloc(struct address_space *x) 259 { 260 return __page_cache_alloc(mapping_gfp_mask(x)); 261 } 262 263 static inline gfp_t readahead_gfp_mask(struct address_space *x) 264 { 265 return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN; 266 } 267 268 typedef int filler_t(void *, struct page *); 269 270 pgoff_t page_cache_next_miss(struct address_space *mapping, 271 pgoff_t index, unsigned long max_scan); 272 pgoff_t page_cache_prev_miss(struct address_space *mapping, 273 pgoff_t index, unsigned long max_scan); 274 275 #define FGP_ACCESSED 0x00000001 276 #define FGP_LOCK 0x00000002 277 #define FGP_CREAT 0x00000004 278 #define FGP_WRITE 0x00000008 279 #define FGP_NOFS 0x00000010 280 #define FGP_NOWAIT 0x00000020 281 #define FGP_FOR_MMAP 0x00000040 282 #define FGP_HEAD 0x00000080 283 284 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, 285 int fgp_flags, gfp_t cache_gfp_mask); 286 287 /** 288 * find_get_page - find and get a page reference 289 * @mapping: the address_space to search 290 * @offset: the page index 291 * 292 * Looks up the page cache slot at @mapping & @offset. If there is a 293 * page cache page, it is returned with an increased refcount. 294 * 295 * Otherwise, %NULL is returned. 296 */ 297 static inline struct page *find_get_page(struct address_space *mapping, 298 pgoff_t offset) 299 { 300 return pagecache_get_page(mapping, offset, 0, 0); 301 } 302 303 static inline struct page *find_get_page_flags(struct address_space *mapping, 304 pgoff_t offset, int fgp_flags) 305 { 306 return pagecache_get_page(mapping, offset, fgp_flags, 0); 307 } 308 309 /** 310 * find_lock_page - locate, pin and lock a pagecache page 311 * @mapping: the address_space to search 312 * @offset: the page index 313 * 314 * Looks up the page cache entry at @mapping & @offset. If there is a 315 * page cache page, it is returned locked and with an increased 316 * refcount. 317 * 318 * Context: May sleep. 319 * Return: A struct page or %NULL if there is no page in the cache for this 320 * index. 321 */ 322 static inline struct page *find_lock_page(struct address_space *mapping, 323 pgoff_t index) 324 { 325 return pagecache_get_page(mapping, index, FGP_LOCK, 0); 326 } 327 328 /** 329 * find_lock_head - Locate, pin and lock a pagecache page. 330 * @mapping: The address_space to search. 331 * @offset: The page index. 332 * 333 * Looks up the page cache entry at @mapping & @offset. If there is a 334 * page cache page, its head page is returned locked and with an increased 335 * refcount. 336 * 337 * Context: May sleep. 338 * Return: A struct page which is !PageTail, or %NULL if there is no page 339 * in the cache for this index. 340 */ 341 static inline struct page *find_lock_head(struct address_space *mapping, 342 pgoff_t index) 343 { 344 return pagecache_get_page(mapping, index, FGP_LOCK | FGP_HEAD, 0); 345 } 346 347 /** 348 * find_or_create_page - locate or add a pagecache page 349 * @mapping: the page's address_space 350 * @index: the page's index into the mapping 351 * @gfp_mask: page allocation mode 352 * 353 * Looks up the page cache slot at @mapping & @offset. If there is a 354 * page cache page, it is returned locked and with an increased 355 * refcount. 356 * 357 * If the page is not present, a new page is allocated using @gfp_mask 358 * and added to the page cache and the VM's LRU list. The page is 359 * returned locked and with an increased refcount. 360 * 361 * On memory exhaustion, %NULL is returned. 362 * 363 * find_or_create_page() may sleep, even if @gfp_flags specifies an 364 * atomic allocation! 365 */ 366 static inline struct page *find_or_create_page(struct address_space *mapping, 367 pgoff_t index, gfp_t gfp_mask) 368 { 369 return pagecache_get_page(mapping, index, 370 FGP_LOCK|FGP_ACCESSED|FGP_CREAT, 371 gfp_mask); 372 } 373 374 /** 375 * grab_cache_page_nowait - returns locked page at given index in given cache 376 * @mapping: target address_space 377 * @index: the page index 378 * 379 * Same as grab_cache_page(), but do not wait if the page is unavailable. 380 * This is intended for speculative data generators, where the data can 381 * be regenerated if the page couldn't be grabbed. This routine should 382 * be safe to call while holding the lock for another page. 383 * 384 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 385 * and deadlock against the caller's locked page. 386 */ 387 static inline struct page *grab_cache_page_nowait(struct address_space *mapping, 388 pgoff_t index) 389 { 390 return pagecache_get_page(mapping, index, 391 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT, 392 mapping_gfp_mask(mapping)); 393 } 394 395 /* Does this page contain this index? */ 396 static inline bool thp_contains(struct page *head, pgoff_t index) 397 { 398 /* HugeTLBfs indexes the page cache in units of hpage_size */ 399 if (PageHuge(head)) 400 return head->index == index; 401 return page_index(head) == (index & ~(thp_nr_pages(head) - 1UL)); 402 } 403 404 /* 405 * Given the page we found in the page cache, return the page corresponding 406 * to this index in the file 407 */ 408 static inline struct page *find_subpage(struct page *head, pgoff_t index) 409 { 410 /* HugeTLBfs wants the head page regardless */ 411 if (PageHuge(head)) 412 return head; 413 414 return head + (index & (thp_nr_pages(head) - 1)); 415 } 416 417 unsigned find_get_entries(struct address_space *mapping, pgoff_t start, 418 unsigned int nr_entries, struct page **entries, 419 pgoff_t *indices); 420 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, 421 pgoff_t end, unsigned int nr_pages, 422 struct page **pages); 423 static inline unsigned find_get_pages(struct address_space *mapping, 424 pgoff_t *start, unsigned int nr_pages, 425 struct page **pages) 426 { 427 return find_get_pages_range(mapping, start, (pgoff_t)-1, nr_pages, 428 pages); 429 } 430 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start, 431 unsigned int nr_pages, struct page **pages); 432 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, 433 pgoff_t end, xa_mark_t tag, unsigned int nr_pages, 434 struct page **pages); 435 static inline unsigned find_get_pages_tag(struct address_space *mapping, 436 pgoff_t *index, xa_mark_t tag, unsigned int nr_pages, 437 struct page **pages) 438 { 439 return find_get_pages_range_tag(mapping, index, (pgoff_t)-1, tag, 440 nr_pages, pages); 441 } 442 443 struct page *grab_cache_page_write_begin(struct address_space *mapping, 444 pgoff_t index, unsigned flags); 445 446 /* 447 * Returns locked page at given index in given cache, creating it if needed. 448 */ 449 static inline struct page *grab_cache_page(struct address_space *mapping, 450 pgoff_t index) 451 { 452 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping)); 453 } 454 455 extern struct page * read_cache_page(struct address_space *mapping, 456 pgoff_t index, filler_t *filler, void *data); 457 extern struct page * read_cache_page_gfp(struct address_space *mapping, 458 pgoff_t index, gfp_t gfp_mask); 459 extern int read_cache_pages(struct address_space *mapping, 460 struct list_head *pages, filler_t *filler, void *data); 461 462 static inline struct page *read_mapping_page(struct address_space *mapping, 463 pgoff_t index, void *data) 464 { 465 return read_cache_page(mapping, index, NULL, data); 466 } 467 468 /* 469 * Get index of the page with in radix-tree 470 * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE) 471 */ 472 static inline pgoff_t page_to_index(struct page *page) 473 { 474 pgoff_t pgoff; 475 476 if (likely(!PageTransTail(page))) 477 return page->index; 478 479 /* 480 * We don't initialize ->index for tail pages: calculate based on 481 * head page 482 */ 483 pgoff = compound_head(page)->index; 484 pgoff += page - compound_head(page); 485 return pgoff; 486 } 487 488 /* 489 * Get the offset in PAGE_SIZE. 490 * (TODO: hugepage should have ->index in PAGE_SIZE) 491 */ 492 static inline pgoff_t page_to_pgoff(struct page *page) 493 { 494 if (unlikely(PageHeadHuge(page))) 495 return page->index << compound_order(page); 496 497 return page_to_index(page); 498 } 499 500 /* 501 * Return byte-offset into filesystem object for page. 502 */ 503 static inline loff_t page_offset(struct page *page) 504 { 505 return ((loff_t)page->index) << PAGE_SHIFT; 506 } 507 508 static inline loff_t page_file_offset(struct page *page) 509 { 510 return ((loff_t)page_index(page)) << PAGE_SHIFT; 511 } 512 513 extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 514 unsigned long address); 515 516 static inline pgoff_t linear_page_index(struct vm_area_struct *vma, 517 unsigned long address) 518 { 519 pgoff_t pgoff; 520 if (unlikely(is_vm_hugetlb_page(vma))) 521 return linear_hugepage_index(vma, address); 522 pgoff = (address - vma->vm_start) >> PAGE_SHIFT; 523 pgoff += vma->vm_pgoff; 524 return pgoff; 525 } 526 527 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */ 528 struct wait_page_key { 529 struct page *page; 530 int bit_nr; 531 int page_match; 532 }; 533 534 struct wait_page_queue { 535 struct page *page; 536 int bit_nr; 537 wait_queue_entry_t wait; 538 }; 539 540 static inline bool wake_page_match(struct wait_page_queue *wait_page, 541 struct wait_page_key *key) 542 { 543 if (wait_page->page != key->page) 544 return false; 545 key->page_match = 1; 546 547 if (wait_page->bit_nr != key->bit_nr) 548 return false; 549 550 return true; 551 } 552 553 extern void __lock_page(struct page *page); 554 extern int __lock_page_killable(struct page *page); 555 extern int __lock_page_async(struct page *page, struct wait_page_queue *wait); 556 extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 557 unsigned int flags); 558 extern void unlock_page(struct page *page); 559 560 /* 561 * Return true if the page was successfully locked 562 */ 563 static inline int trylock_page(struct page *page) 564 { 565 page = compound_head(page); 566 return (likely(!test_and_set_bit_lock(PG_locked, &page->flags))); 567 } 568 569 /* 570 * lock_page may only be called if we have the page's inode pinned. 571 */ 572 static inline void lock_page(struct page *page) 573 { 574 might_sleep(); 575 if (!trylock_page(page)) 576 __lock_page(page); 577 } 578 579 /* 580 * lock_page_killable is like lock_page but can be interrupted by fatal 581 * signals. It returns 0 if it locked the page and -EINTR if it was 582 * killed while waiting. 583 */ 584 static inline int lock_page_killable(struct page *page) 585 { 586 might_sleep(); 587 if (!trylock_page(page)) 588 return __lock_page_killable(page); 589 return 0; 590 } 591 592 /* 593 * lock_page_async - Lock the page, unless this would block. If the page 594 * is already locked, then queue a callback when the page becomes unlocked. 595 * This callback can then retry the operation. 596 * 597 * Returns 0 if the page is locked successfully, or -EIOCBQUEUED if the page 598 * was already locked and the callback defined in 'wait' was queued. 599 */ 600 static inline int lock_page_async(struct page *page, 601 struct wait_page_queue *wait) 602 { 603 if (!trylock_page(page)) 604 return __lock_page_async(page, wait); 605 return 0; 606 } 607 608 /* 609 * lock_page_or_retry - Lock the page, unless this would block and the 610 * caller indicated that it can handle a retry. 611 * 612 * Return value and mmap_lock implications depend on flags; see 613 * __lock_page_or_retry(). 614 */ 615 static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm, 616 unsigned int flags) 617 { 618 might_sleep(); 619 return trylock_page(page) || __lock_page_or_retry(page, mm, flags); 620 } 621 622 /* 623 * This is exported only for wait_on_page_locked/wait_on_page_writeback, etc., 624 * and should not be used directly. 625 */ 626 extern void wait_on_page_bit(struct page *page, int bit_nr); 627 extern int wait_on_page_bit_killable(struct page *page, int bit_nr); 628 629 /* 630 * Wait for a page to be unlocked. 631 * 632 * This must be called with the caller "holding" the page, 633 * ie with increased "page->count" so that the page won't 634 * go away during the wait.. 635 */ 636 static inline void wait_on_page_locked(struct page *page) 637 { 638 if (PageLocked(page)) 639 wait_on_page_bit(compound_head(page), PG_locked); 640 } 641 642 static inline int wait_on_page_locked_killable(struct page *page) 643 { 644 if (!PageLocked(page)) 645 return 0; 646 return wait_on_page_bit_killable(compound_head(page), PG_locked); 647 } 648 649 extern void put_and_wait_on_page_locked(struct page *page); 650 651 void wait_on_page_writeback(struct page *page); 652 extern void end_page_writeback(struct page *page); 653 void wait_for_stable_page(struct page *page); 654 655 void page_endio(struct page *page, bool is_write, int err); 656 657 /* 658 * Add an arbitrary waiter to a page's wait queue 659 */ 660 extern void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter); 661 662 /* 663 * Fault everything in given userspace address range in. 664 */ 665 static inline int fault_in_pages_writeable(char __user *uaddr, int size) 666 { 667 char __user *end = uaddr + size - 1; 668 669 if (unlikely(size == 0)) 670 return 0; 671 672 if (unlikely(uaddr > end)) 673 return -EFAULT; 674 /* 675 * Writing zeroes into userspace here is OK, because we know that if 676 * the zero gets there, we'll be overwriting it. 677 */ 678 do { 679 if (unlikely(__put_user(0, uaddr) != 0)) 680 return -EFAULT; 681 uaddr += PAGE_SIZE; 682 } while (uaddr <= end); 683 684 /* Check whether the range spilled into the next page. */ 685 if (((unsigned long)uaddr & PAGE_MASK) == 686 ((unsigned long)end & PAGE_MASK)) 687 return __put_user(0, end); 688 689 return 0; 690 } 691 692 static inline int fault_in_pages_readable(const char __user *uaddr, int size) 693 { 694 volatile char c; 695 const char __user *end = uaddr + size - 1; 696 697 if (unlikely(size == 0)) 698 return 0; 699 700 if (unlikely(uaddr > end)) 701 return -EFAULT; 702 703 do { 704 if (unlikely(__get_user(c, uaddr) != 0)) 705 return -EFAULT; 706 uaddr += PAGE_SIZE; 707 } while (uaddr <= end); 708 709 /* Check whether the range spilled into the next page. */ 710 if (((unsigned long)uaddr & PAGE_MASK) == 711 ((unsigned long)end & PAGE_MASK)) { 712 return __get_user(c, end); 713 } 714 715 (void)c; 716 return 0; 717 } 718 719 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 720 pgoff_t index, gfp_t gfp_mask); 721 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 722 pgoff_t index, gfp_t gfp_mask); 723 extern void delete_from_page_cache(struct page *page); 724 extern void __delete_from_page_cache(struct page *page, void *shadow); 725 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask); 726 void delete_from_page_cache_batch(struct address_space *mapping, 727 struct pagevec *pvec); 728 729 #define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE) 730 731 void page_cache_sync_readahead(struct address_space *, struct file_ra_state *, 732 struct file *, pgoff_t index, unsigned long req_count); 733 void page_cache_async_readahead(struct address_space *, struct file_ra_state *, 734 struct file *, struct page *, pgoff_t index, 735 unsigned long req_count); 736 void page_cache_readahead_unbounded(struct address_space *, struct file *, 737 pgoff_t index, unsigned long nr_to_read, 738 unsigned long lookahead_count); 739 740 /* 741 * Like add_to_page_cache_locked, but used to add newly allocated pages: 742 * the page is new, so we can just run __SetPageLocked() against it. 743 */ 744 static inline int add_to_page_cache(struct page *page, 745 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask) 746 { 747 int error; 748 749 __SetPageLocked(page); 750 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask); 751 if (unlikely(error)) 752 __ClearPageLocked(page); 753 return error; 754 } 755 756 /** 757 * struct readahead_control - Describes a readahead request. 758 * 759 * A readahead request is for consecutive pages. Filesystems which 760 * implement the ->readahead method should call readahead_page() or 761 * readahead_page_batch() in a loop and attempt to start I/O against 762 * each page in the request. 763 * 764 * Most of the fields in this struct are private and should be accessed 765 * by the functions below. 766 * 767 * @file: The file, used primarily by network filesystems for authentication. 768 * May be NULL if invoked internally by the filesystem. 769 * @mapping: Readahead this filesystem object. 770 */ 771 struct readahead_control { 772 struct file *file; 773 struct address_space *mapping; 774 /* private: use the readahead_* accessors instead */ 775 pgoff_t _index; 776 unsigned int _nr_pages; 777 unsigned int _batch_count; 778 }; 779 780 /** 781 * readahead_page - Get the next page to read. 782 * @rac: The current readahead request. 783 * 784 * Context: The page is locked and has an elevated refcount. The caller 785 * should decreases the refcount once the page has been submitted for I/O 786 * and unlock the page once all I/O to that page has completed. 787 * Return: A pointer to the next page, or %NULL if we are done. 788 */ 789 static inline struct page *readahead_page(struct readahead_control *rac) 790 { 791 struct page *page; 792 793 BUG_ON(rac->_batch_count > rac->_nr_pages); 794 rac->_nr_pages -= rac->_batch_count; 795 rac->_index += rac->_batch_count; 796 797 if (!rac->_nr_pages) { 798 rac->_batch_count = 0; 799 return NULL; 800 } 801 802 page = xa_load(&rac->mapping->i_pages, rac->_index); 803 VM_BUG_ON_PAGE(!PageLocked(page), page); 804 rac->_batch_count = thp_nr_pages(page); 805 806 return page; 807 } 808 809 static inline unsigned int __readahead_batch(struct readahead_control *rac, 810 struct page **array, unsigned int array_sz) 811 { 812 unsigned int i = 0; 813 XA_STATE(xas, &rac->mapping->i_pages, 0); 814 struct page *page; 815 816 BUG_ON(rac->_batch_count > rac->_nr_pages); 817 rac->_nr_pages -= rac->_batch_count; 818 rac->_index += rac->_batch_count; 819 rac->_batch_count = 0; 820 821 xas_set(&xas, rac->_index); 822 rcu_read_lock(); 823 xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) { 824 VM_BUG_ON_PAGE(!PageLocked(page), page); 825 VM_BUG_ON_PAGE(PageTail(page), page); 826 array[i++] = page; 827 rac->_batch_count += thp_nr_pages(page); 828 829 /* 830 * The page cache isn't using multi-index entries yet, 831 * so the xas cursor needs to be manually moved to the 832 * next index. This can be removed once the page cache 833 * is converted. 834 */ 835 if (PageHead(page)) 836 xas_set(&xas, rac->_index + rac->_batch_count); 837 838 if (i == array_sz) 839 break; 840 } 841 rcu_read_unlock(); 842 843 return i; 844 } 845 846 /** 847 * readahead_page_batch - Get a batch of pages to read. 848 * @rac: The current readahead request. 849 * @array: An array of pointers to struct page. 850 * 851 * Context: The pages are locked and have an elevated refcount. The caller 852 * should decreases the refcount once the page has been submitted for I/O 853 * and unlock the page once all I/O to that page has completed. 854 * Return: The number of pages placed in the array. 0 indicates the request 855 * is complete. 856 */ 857 #define readahead_page_batch(rac, array) \ 858 __readahead_batch(rac, array, ARRAY_SIZE(array)) 859 860 /** 861 * readahead_pos - The byte offset into the file of this readahead request. 862 * @rac: The readahead request. 863 */ 864 static inline loff_t readahead_pos(struct readahead_control *rac) 865 { 866 return (loff_t)rac->_index * PAGE_SIZE; 867 } 868 869 /** 870 * readahead_length - The number of bytes in this readahead request. 871 * @rac: The readahead request. 872 */ 873 static inline loff_t readahead_length(struct readahead_control *rac) 874 { 875 return (loff_t)rac->_nr_pages * PAGE_SIZE; 876 } 877 878 /** 879 * readahead_index - The index of the first page in this readahead request. 880 * @rac: The readahead request. 881 */ 882 static inline pgoff_t readahead_index(struct readahead_control *rac) 883 { 884 return rac->_index; 885 } 886 887 /** 888 * readahead_count - The number of pages in this readahead request. 889 * @rac: The readahead request. 890 */ 891 static inline unsigned int readahead_count(struct readahead_control *rac) 892 { 893 return rac->_nr_pages; 894 } 895 896 static inline unsigned long dir_pages(struct inode *inode) 897 { 898 return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >> 899 PAGE_SHIFT; 900 } 901 902 /** 903 * page_mkwrite_check_truncate - check if page was truncated 904 * @page: the page to check 905 * @inode: the inode to check the page against 906 * 907 * Returns the number of bytes in the page up to EOF, 908 * or -EFAULT if the page was truncated. 909 */ 910 static inline int page_mkwrite_check_truncate(struct page *page, 911 struct inode *inode) 912 { 913 loff_t size = i_size_read(inode); 914 pgoff_t index = size >> PAGE_SHIFT; 915 int offset = offset_in_page(size); 916 917 if (page->mapping != inode->i_mapping) 918 return -EFAULT; 919 920 /* page is wholly inside EOF */ 921 if (page->index < index) 922 return PAGE_SIZE; 923 /* page is wholly past EOF */ 924 if (page->index > index || !offset) 925 return -EFAULT; 926 /* page is partially inside EOF */ 927 return offset; 928 } 929 930 /** 931 * i_blocks_per_page - How many blocks fit in this page. 932 * @inode: The inode which contains the blocks. 933 * @page: The page (head page if the page is a THP). 934 * 935 * If the block size is larger than the size of this page, return zero. 936 * 937 * Context: The caller should hold a refcount on the page to prevent it 938 * from being split. 939 * Return: The number of filesystem blocks covered by this page. 940 */ 941 static inline 942 unsigned int i_blocks_per_page(struct inode *inode, struct page *page) 943 { 944 return thp_size(page) >> inode->i_blkbits; 945 } 946 #endif /* _LINUX_PAGEMAP_H */ 947