xref: /linux-6.15/include/linux/pagemap.h (revision bbf62599)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PAGEMAP_H
3 #define _LINUX_PAGEMAP_H
4 
5 /*
6  * Copyright 1995 Linus Torvalds
7  */
8 #include <linux/mm.h>
9 #include <linux/fs.h>
10 #include <linux/list.h>
11 #include <linux/highmem.h>
12 #include <linux/compiler.h>
13 #include <linux/uaccess.h>
14 #include <linux/gfp.h>
15 #include <linux/bitops.h>
16 #include <linux/hardirq.h> /* for in_interrupt() */
17 #include <linux/hugetlb_inline.h>
18 
19 struct pagevec;
20 
21 /*
22  * Bits in mapping->flags.
23  */
24 enum mapping_flags {
25 	AS_EIO		= 0,	/* IO error on async write */
26 	AS_ENOSPC	= 1,	/* ENOSPC on async write */
27 	AS_MM_ALL_LOCKS	= 2,	/* under mm_take_all_locks() */
28 	AS_UNEVICTABLE	= 3,	/* e.g., ramdisk, SHM_LOCK */
29 	AS_EXITING	= 4, 	/* final truncate in progress */
30 	/* writeback related tags are not used */
31 	AS_NO_WRITEBACK_TAGS = 5,
32 };
33 
34 /**
35  * mapping_set_error - record a writeback error in the address_space
36  * @mapping: the mapping in which an error should be set
37  * @error: the error to set in the mapping
38  *
39  * When writeback fails in some way, we must record that error so that
40  * userspace can be informed when fsync and the like are called.  We endeavor
41  * to report errors on any file that was open at the time of the error.  Some
42  * internal callers also need to know when writeback errors have occurred.
43  *
44  * When a writeback error occurs, most filesystems will want to call
45  * mapping_set_error to record the error in the mapping so that it can be
46  * reported when the application calls fsync(2).
47  */
48 static inline void mapping_set_error(struct address_space *mapping, int error)
49 {
50 	if (likely(!error))
51 		return;
52 
53 	/* Record in wb_err for checkers using errseq_t based tracking */
54 	__filemap_set_wb_err(mapping, error);
55 
56 	/* Record it in superblock */
57 	if (mapping->host)
58 		errseq_set(&mapping->host->i_sb->s_wb_err, error);
59 
60 	/* Record it in flags for now, for legacy callers */
61 	if (error == -ENOSPC)
62 		set_bit(AS_ENOSPC, &mapping->flags);
63 	else
64 		set_bit(AS_EIO, &mapping->flags);
65 }
66 
67 static inline void mapping_set_unevictable(struct address_space *mapping)
68 {
69 	set_bit(AS_UNEVICTABLE, &mapping->flags);
70 }
71 
72 static inline void mapping_clear_unevictable(struct address_space *mapping)
73 {
74 	clear_bit(AS_UNEVICTABLE, &mapping->flags);
75 }
76 
77 static inline bool mapping_unevictable(struct address_space *mapping)
78 {
79 	return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags);
80 }
81 
82 static inline void mapping_set_exiting(struct address_space *mapping)
83 {
84 	set_bit(AS_EXITING, &mapping->flags);
85 }
86 
87 static inline int mapping_exiting(struct address_space *mapping)
88 {
89 	return test_bit(AS_EXITING, &mapping->flags);
90 }
91 
92 static inline void mapping_set_no_writeback_tags(struct address_space *mapping)
93 {
94 	set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
95 }
96 
97 static inline int mapping_use_writeback_tags(struct address_space *mapping)
98 {
99 	return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
100 }
101 
102 static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
103 {
104 	return mapping->gfp_mask;
105 }
106 
107 /* Restricts the given gfp_mask to what the mapping allows. */
108 static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
109 		gfp_t gfp_mask)
110 {
111 	return mapping_gfp_mask(mapping) & gfp_mask;
112 }
113 
114 /*
115  * This is non-atomic.  Only to be used before the mapping is activated.
116  * Probably needs a barrier...
117  */
118 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
119 {
120 	m->gfp_mask = mask;
121 }
122 
123 void release_pages(struct page **pages, int nr);
124 
125 /*
126  * speculatively take a reference to a page.
127  * If the page is free (_refcount == 0), then _refcount is untouched, and 0
128  * is returned. Otherwise, _refcount is incremented by 1 and 1 is returned.
129  *
130  * This function must be called inside the same rcu_read_lock() section as has
131  * been used to lookup the page in the pagecache radix-tree (or page table):
132  * this allows allocators to use a synchronize_rcu() to stabilize _refcount.
133  *
134  * Unless an RCU grace period has passed, the count of all pages coming out
135  * of the allocator must be considered unstable. page_count may return higher
136  * than expected, and put_page must be able to do the right thing when the
137  * page has been finished with, no matter what it is subsequently allocated
138  * for (because put_page is what is used here to drop an invalid speculative
139  * reference).
140  *
141  * This is the interesting part of the lockless pagecache (and lockless
142  * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
143  * has the following pattern:
144  * 1. find page in radix tree
145  * 2. conditionally increment refcount
146  * 3. check the page is still in pagecache (if no, goto 1)
147  *
148  * Remove-side that cares about stability of _refcount (eg. reclaim) has the
149  * following (with the i_pages lock held):
150  * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
151  * B. remove page from pagecache
152  * C. free the page
153  *
154  * There are 2 critical interleavings that matter:
155  * - 2 runs before A: in this case, A sees elevated refcount and bails out
156  * - A runs before 2: in this case, 2 sees zero refcount and retries;
157  *   subsequently, B will complete and 1 will find no page, causing the
158  *   lookup to return NULL.
159  *
160  * It is possible that between 1 and 2, the page is removed then the exact same
161  * page is inserted into the same position in pagecache. That's OK: the
162  * old find_get_page using a lock could equally have run before or after
163  * such a re-insertion, depending on order that locks are granted.
164  *
165  * Lookups racing against pagecache insertion isn't a big problem: either 1
166  * will find the page or it will not. Likewise, the old find_get_page could run
167  * either before the insertion or afterwards, depending on timing.
168  */
169 static inline int __page_cache_add_speculative(struct page *page, int count)
170 {
171 #ifdef CONFIG_TINY_RCU
172 # ifdef CONFIG_PREEMPT_COUNT
173 	VM_BUG_ON(!in_atomic() && !irqs_disabled());
174 # endif
175 	/*
176 	 * Preempt must be disabled here - we rely on rcu_read_lock doing
177 	 * this for us.
178 	 *
179 	 * Pagecache won't be truncated from interrupt context, so if we have
180 	 * found a page in the radix tree here, we have pinned its refcount by
181 	 * disabling preempt, and hence no need for the "speculative get" that
182 	 * SMP requires.
183 	 */
184 	VM_BUG_ON_PAGE(page_count(page) == 0, page);
185 	page_ref_add(page, count);
186 
187 #else
188 	if (unlikely(!page_ref_add_unless(page, count, 0))) {
189 		/*
190 		 * Either the page has been freed, or will be freed.
191 		 * In either case, retry here and the caller should
192 		 * do the right thing (see comments above).
193 		 */
194 		return 0;
195 	}
196 #endif
197 	VM_BUG_ON_PAGE(PageTail(page), page);
198 
199 	return 1;
200 }
201 
202 static inline int page_cache_get_speculative(struct page *page)
203 {
204 	return __page_cache_add_speculative(page, 1);
205 }
206 
207 static inline int page_cache_add_speculative(struct page *page, int count)
208 {
209 	return __page_cache_add_speculative(page, count);
210 }
211 
212 /**
213  * attach_page_private - Attach private data to a page.
214  * @page: Page to attach data to.
215  * @data: Data to attach to page.
216  *
217  * Attaching private data to a page increments the page's reference count.
218  * The data must be detached before the page will be freed.
219  */
220 static inline void attach_page_private(struct page *page, void *data)
221 {
222 	get_page(page);
223 	set_page_private(page, (unsigned long)data);
224 	SetPagePrivate(page);
225 }
226 
227 /**
228  * detach_page_private - Detach private data from a page.
229  * @page: Page to detach data from.
230  *
231  * Removes the data that was previously attached to the page and decrements
232  * the refcount on the page.
233  *
234  * Return: Data that was attached to the page.
235  */
236 static inline void *detach_page_private(struct page *page)
237 {
238 	void *data = (void *)page_private(page);
239 
240 	if (!PagePrivate(page))
241 		return NULL;
242 	ClearPagePrivate(page);
243 	set_page_private(page, 0);
244 	put_page(page);
245 
246 	return data;
247 }
248 
249 #ifdef CONFIG_NUMA
250 extern struct page *__page_cache_alloc(gfp_t gfp);
251 #else
252 static inline struct page *__page_cache_alloc(gfp_t gfp)
253 {
254 	return alloc_pages(gfp, 0);
255 }
256 #endif
257 
258 static inline struct page *page_cache_alloc(struct address_space *x)
259 {
260 	return __page_cache_alloc(mapping_gfp_mask(x));
261 }
262 
263 static inline gfp_t readahead_gfp_mask(struct address_space *x)
264 {
265 	return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN;
266 }
267 
268 typedef int filler_t(void *, struct page *);
269 
270 pgoff_t page_cache_next_miss(struct address_space *mapping,
271 			     pgoff_t index, unsigned long max_scan);
272 pgoff_t page_cache_prev_miss(struct address_space *mapping,
273 			     pgoff_t index, unsigned long max_scan);
274 
275 #define FGP_ACCESSED		0x00000001
276 #define FGP_LOCK		0x00000002
277 #define FGP_CREAT		0x00000004
278 #define FGP_WRITE		0x00000008
279 #define FGP_NOFS		0x00000010
280 #define FGP_NOWAIT		0x00000020
281 #define FGP_FOR_MMAP		0x00000040
282 #define FGP_HEAD		0x00000080
283 
284 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
285 		int fgp_flags, gfp_t cache_gfp_mask);
286 
287 /**
288  * find_get_page - find and get a page reference
289  * @mapping: the address_space to search
290  * @offset: the page index
291  *
292  * Looks up the page cache slot at @mapping & @offset.  If there is a
293  * page cache page, it is returned with an increased refcount.
294  *
295  * Otherwise, %NULL is returned.
296  */
297 static inline struct page *find_get_page(struct address_space *mapping,
298 					pgoff_t offset)
299 {
300 	return pagecache_get_page(mapping, offset, 0, 0);
301 }
302 
303 static inline struct page *find_get_page_flags(struct address_space *mapping,
304 					pgoff_t offset, int fgp_flags)
305 {
306 	return pagecache_get_page(mapping, offset, fgp_flags, 0);
307 }
308 
309 /**
310  * find_lock_page - locate, pin and lock a pagecache page
311  * @mapping: the address_space to search
312  * @offset: the page index
313  *
314  * Looks up the page cache entry at @mapping & @offset.  If there is a
315  * page cache page, it is returned locked and with an increased
316  * refcount.
317  *
318  * Context: May sleep.
319  * Return: A struct page or %NULL if there is no page in the cache for this
320  * index.
321  */
322 static inline struct page *find_lock_page(struct address_space *mapping,
323 					pgoff_t index)
324 {
325 	return pagecache_get_page(mapping, index, FGP_LOCK, 0);
326 }
327 
328 /**
329  * find_lock_head - Locate, pin and lock a pagecache page.
330  * @mapping: The address_space to search.
331  * @offset: The page index.
332  *
333  * Looks up the page cache entry at @mapping & @offset.  If there is a
334  * page cache page, its head page is returned locked and with an increased
335  * refcount.
336  *
337  * Context: May sleep.
338  * Return: A struct page which is !PageTail, or %NULL if there is no page
339  * in the cache for this index.
340  */
341 static inline struct page *find_lock_head(struct address_space *mapping,
342 					pgoff_t index)
343 {
344 	return pagecache_get_page(mapping, index, FGP_LOCK | FGP_HEAD, 0);
345 }
346 
347 /**
348  * find_or_create_page - locate or add a pagecache page
349  * @mapping: the page's address_space
350  * @index: the page's index into the mapping
351  * @gfp_mask: page allocation mode
352  *
353  * Looks up the page cache slot at @mapping & @offset.  If there is a
354  * page cache page, it is returned locked and with an increased
355  * refcount.
356  *
357  * If the page is not present, a new page is allocated using @gfp_mask
358  * and added to the page cache and the VM's LRU list.  The page is
359  * returned locked and with an increased refcount.
360  *
361  * On memory exhaustion, %NULL is returned.
362  *
363  * find_or_create_page() may sleep, even if @gfp_flags specifies an
364  * atomic allocation!
365  */
366 static inline struct page *find_or_create_page(struct address_space *mapping,
367 					pgoff_t index, gfp_t gfp_mask)
368 {
369 	return pagecache_get_page(mapping, index,
370 					FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
371 					gfp_mask);
372 }
373 
374 /**
375  * grab_cache_page_nowait - returns locked page at given index in given cache
376  * @mapping: target address_space
377  * @index: the page index
378  *
379  * Same as grab_cache_page(), but do not wait if the page is unavailable.
380  * This is intended for speculative data generators, where the data can
381  * be regenerated if the page couldn't be grabbed.  This routine should
382  * be safe to call while holding the lock for another page.
383  *
384  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
385  * and deadlock against the caller's locked page.
386  */
387 static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
388 				pgoff_t index)
389 {
390 	return pagecache_get_page(mapping, index,
391 			FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
392 			mapping_gfp_mask(mapping));
393 }
394 
395 /* Does this page contain this index? */
396 static inline bool thp_contains(struct page *head, pgoff_t index)
397 {
398 	/* HugeTLBfs indexes the page cache in units of hpage_size */
399 	if (PageHuge(head))
400 		return head->index == index;
401 	return page_index(head) == (index & ~(thp_nr_pages(head) - 1UL));
402 }
403 
404 /*
405  * Given the page we found in the page cache, return the page corresponding
406  * to this index in the file
407  */
408 static inline struct page *find_subpage(struct page *head, pgoff_t index)
409 {
410 	/* HugeTLBfs wants the head page regardless */
411 	if (PageHuge(head))
412 		return head;
413 
414 	return head + (index & (thp_nr_pages(head) - 1));
415 }
416 
417 unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
418 			  unsigned int nr_entries, struct page **entries,
419 			  pgoff_t *indices);
420 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
421 			pgoff_t end, unsigned int nr_pages,
422 			struct page **pages);
423 static inline unsigned find_get_pages(struct address_space *mapping,
424 			pgoff_t *start, unsigned int nr_pages,
425 			struct page **pages)
426 {
427 	return find_get_pages_range(mapping, start, (pgoff_t)-1, nr_pages,
428 				    pages);
429 }
430 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
431 			       unsigned int nr_pages, struct page **pages);
432 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
433 			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
434 			struct page **pages);
435 static inline unsigned find_get_pages_tag(struct address_space *mapping,
436 			pgoff_t *index, xa_mark_t tag, unsigned int nr_pages,
437 			struct page **pages)
438 {
439 	return find_get_pages_range_tag(mapping, index, (pgoff_t)-1, tag,
440 					nr_pages, pages);
441 }
442 
443 struct page *grab_cache_page_write_begin(struct address_space *mapping,
444 			pgoff_t index, unsigned flags);
445 
446 /*
447  * Returns locked page at given index in given cache, creating it if needed.
448  */
449 static inline struct page *grab_cache_page(struct address_space *mapping,
450 								pgoff_t index)
451 {
452 	return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
453 }
454 
455 extern struct page * read_cache_page(struct address_space *mapping,
456 				pgoff_t index, filler_t *filler, void *data);
457 extern struct page * read_cache_page_gfp(struct address_space *mapping,
458 				pgoff_t index, gfp_t gfp_mask);
459 extern int read_cache_pages(struct address_space *mapping,
460 		struct list_head *pages, filler_t *filler, void *data);
461 
462 static inline struct page *read_mapping_page(struct address_space *mapping,
463 				pgoff_t index, void *data)
464 {
465 	return read_cache_page(mapping, index, NULL, data);
466 }
467 
468 /*
469  * Get index of the page with in radix-tree
470  * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE)
471  */
472 static inline pgoff_t page_to_index(struct page *page)
473 {
474 	pgoff_t pgoff;
475 
476 	if (likely(!PageTransTail(page)))
477 		return page->index;
478 
479 	/*
480 	 *  We don't initialize ->index for tail pages: calculate based on
481 	 *  head page
482 	 */
483 	pgoff = compound_head(page)->index;
484 	pgoff += page - compound_head(page);
485 	return pgoff;
486 }
487 
488 /*
489  * Get the offset in PAGE_SIZE.
490  * (TODO: hugepage should have ->index in PAGE_SIZE)
491  */
492 static inline pgoff_t page_to_pgoff(struct page *page)
493 {
494 	if (unlikely(PageHeadHuge(page)))
495 		return page->index << compound_order(page);
496 
497 	return page_to_index(page);
498 }
499 
500 /*
501  * Return byte-offset into filesystem object for page.
502  */
503 static inline loff_t page_offset(struct page *page)
504 {
505 	return ((loff_t)page->index) << PAGE_SHIFT;
506 }
507 
508 static inline loff_t page_file_offset(struct page *page)
509 {
510 	return ((loff_t)page_index(page)) << PAGE_SHIFT;
511 }
512 
513 extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
514 				     unsigned long address);
515 
516 static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
517 					unsigned long address)
518 {
519 	pgoff_t pgoff;
520 	if (unlikely(is_vm_hugetlb_page(vma)))
521 		return linear_hugepage_index(vma, address);
522 	pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
523 	pgoff += vma->vm_pgoff;
524 	return pgoff;
525 }
526 
527 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
528 struct wait_page_key {
529 	struct page *page;
530 	int bit_nr;
531 	int page_match;
532 };
533 
534 struct wait_page_queue {
535 	struct page *page;
536 	int bit_nr;
537 	wait_queue_entry_t wait;
538 };
539 
540 static inline bool wake_page_match(struct wait_page_queue *wait_page,
541 				  struct wait_page_key *key)
542 {
543 	if (wait_page->page != key->page)
544 	       return false;
545 	key->page_match = 1;
546 
547 	if (wait_page->bit_nr != key->bit_nr)
548 		return false;
549 
550 	return true;
551 }
552 
553 extern void __lock_page(struct page *page);
554 extern int __lock_page_killable(struct page *page);
555 extern int __lock_page_async(struct page *page, struct wait_page_queue *wait);
556 extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
557 				unsigned int flags);
558 extern void unlock_page(struct page *page);
559 
560 /*
561  * Return true if the page was successfully locked
562  */
563 static inline int trylock_page(struct page *page)
564 {
565 	page = compound_head(page);
566 	return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
567 }
568 
569 /*
570  * lock_page may only be called if we have the page's inode pinned.
571  */
572 static inline void lock_page(struct page *page)
573 {
574 	might_sleep();
575 	if (!trylock_page(page))
576 		__lock_page(page);
577 }
578 
579 /*
580  * lock_page_killable is like lock_page but can be interrupted by fatal
581  * signals.  It returns 0 if it locked the page and -EINTR if it was
582  * killed while waiting.
583  */
584 static inline int lock_page_killable(struct page *page)
585 {
586 	might_sleep();
587 	if (!trylock_page(page))
588 		return __lock_page_killable(page);
589 	return 0;
590 }
591 
592 /*
593  * lock_page_async - Lock the page, unless this would block. If the page
594  * is already locked, then queue a callback when the page becomes unlocked.
595  * This callback can then retry the operation.
596  *
597  * Returns 0 if the page is locked successfully, or -EIOCBQUEUED if the page
598  * was already locked and the callback defined in 'wait' was queued.
599  */
600 static inline int lock_page_async(struct page *page,
601 				  struct wait_page_queue *wait)
602 {
603 	if (!trylock_page(page))
604 		return __lock_page_async(page, wait);
605 	return 0;
606 }
607 
608 /*
609  * lock_page_or_retry - Lock the page, unless this would block and the
610  * caller indicated that it can handle a retry.
611  *
612  * Return value and mmap_lock implications depend on flags; see
613  * __lock_page_or_retry().
614  */
615 static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm,
616 				     unsigned int flags)
617 {
618 	might_sleep();
619 	return trylock_page(page) || __lock_page_or_retry(page, mm, flags);
620 }
621 
622 /*
623  * This is exported only for wait_on_page_locked/wait_on_page_writeback, etc.,
624  * and should not be used directly.
625  */
626 extern void wait_on_page_bit(struct page *page, int bit_nr);
627 extern int wait_on_page_bit_killable(struct page *page, int bit_nr);
628 
629 /*
630  * Wait for a page to be unlocked.
631  *
632  * This must be called with the caller "holding" the page,
633  * ie with increased "page->count" so that the page won't
634  * go away during the wait..
635  */
636 static inline void wait_on_page_locked(struct page *page)
637 {
638 	if (PageLocked(page))
639 		wait_on_page_bit(compound_head(page), PG_locked);
640 }
641 
642 static inline int wait_on_page_locked_killable(struct page *page)
643 {
644 	if (!PageLocked(page))
645 		return 0;
646 	return wait_on_page_bit_killable(compound_head(page), PG_locked);
647 }
648 
649 extern void put_and_wait_on_page_locked(struct page *page);
650 
651 void wait_on_page_writeback(struct page *page);
652 extern void end_page_writeback(struct page *page);
653 void wait_for_stable_page(struct page *page);
654 
655 void page_endio(struct page *page, bool is_write, int err);
656 
657 /*
658  * Add an arbitrary waiter to a page's wait queue
659  */
660 extern void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter);
661 
662 /*
663  * Fault everything in given userspace address range in.
664  */
665 static inline int fault_in_pages_writeable(char __user *uaddr, int size)
666 {
667 	char __user *end = uaddr + size - 1;
668 
669 	if (unlikely(size == 0))
670 		return 0;
671 
672 	if (unlikely(uaddr > end))
673 		return -EFAULT;
674 	/*
675 	 * Writing zeroes into userspace here is OK, because we know that if
676 	 * the zero gets there, we'll be overwriting it.
677 	 */
678 	do {
679 		if (unlikely(__put_user(0, uaddr) != 0))
680 			return -EFAULT;
681 		uaddr += PAGE_SIZE;
682 	} while (uaddr <= end);
683 
684 	/* Check whether the range spilled into the next page. */
685 	if (((unsigned long)uaddr & PAGE_MASK) ==
686 			((unsigned long)end & PAGE_MASK))
687 		return __put_user(0, end);
688 
689 	return 0;
690 }
691 
692 static inline int fault_in_pages_readable(const char __user *uaddr, int size)
693 {
694 	volatile char c;
695 	const char __user *end = uaddr + size - 1;
696 
697 	if (unlikely(size == 0))
698 		return 0;
699 
700 	if (unlikely(uaddr > end))
701 		return -EFAULT;
702 
703 	do {
704 		if (unlikely(__get_user(c, uaddr) != 0))
705 			return -EFAULT;
706 		uaddr += PAGE_SIZE;
707 	} while (uaddr <= end);
708 
709 	/* Check whether the range spilled into the next page. */
710 	if (((unsigned long)uaddr & PAGE_MASK) ==
711 			((unsigned long)end & PAGE_MASK)) {
712 		return __get_user(c, end);
713 	}
714 
715 	(void)c;
716 	return 0;
717 }
718 
719 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
720 				pgoff_t index, gfp_t gfp_mask);
721 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
722 				pgoff_t index, gfp_t gfp_mask);
723 extern void delete_from_page_cache(struct page *page);
724 extern void __delete_from_page_cache(struct page *page, void *shadow);
725 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask);
726 void delete_from_page_cache_batch(struct address_space *mapping,
727 				  struct pagevec *pvec);
728 
729 #define VM_READAHEAD_PAGES	(SZ_128K / PAGE_SIZE)
730 
731 void page_cache_sync_readahead(struct address_space *, struct file_ra_state *,
732 		struct file *, pgoff_t index, unsigned long req_count);
733 void page_cache_async_readahead(struct address_space *, struct file_ra_state *,
734 		struct file *, struct page *, pgoff_t index,
735 		unsigned long req_count);
736 void page_cache_readahead_unbounded(struct address_space *, struct file *,
737 		pgoff_t index, unsigned long nr_to_read,
738 		unsigned long lookahead_count);
739 
740 /*
741  * Like add_to_page_cache_locked, but used to add newly allocated pages:
742  * the page is new, so we can just run __SetPageLocked() against it.
743  */
744 static inline int add_to_page_cache(struct page *page,
745 		struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
746 {
747 	int error;
748 
749 	__SetPageLocked(page);
750 	error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
751 	if (unlikely(error))
752 		__ClearPageLocked(page);
753 	return error;
754 }
755 
756 /**
757  * struct readahead_control - Describes a readahead request.
758  *
759  * A readahead request is for consecutive pages.  Filesystems which
760  * implement the ->readahead method should call readahead_page() or
761  * readahead_page_batch() in a loop and attempt to start I/O against
762  * each page in the request.
763  *
764  * Most of the fields in this struct are private and should be accessed
765  * by the functions below.
766  *
767  * @file: The file, used primarily by network filesystems for authentication.
768  *	  May be NULL if invoked internally by the filesystem.
769  * @mapping: Readahead this filesystem object.
770  */
771 struct readahead_control {
772 	struct file *file;
773 	struct address_space *mapping;
774 /* private: use the readahead_* accessors instead */
775 	pgoff_t _index;
776 	unsigned int _nr_pages;
777 	unsigned int _batch_count;
778 };
779 
780 /**
781  * readahead_page - Get the next page to read.
782  * @rac: The current readahead request.
783  *
784  * Context: The page is locked and has an elevated refcount.  The caller
785  * should decreases the refcount once the page has been submitted for I/O
786  * and unlock the page once all I/O to that page has completed.
787  * Return: A pointer to the next page, or %NULL if we are done.
788  */
789 static inline struct page *readahead_page(struct readahead_control *rac)
790 {
791 	struct page *page;
792 
793 	BUG_ON(rac->_batch_count > rac->_nr_pages);
794 	rac->_nr_pages -= rac->_batch_count;
795 	rac->_index += rac->_batch_count;
796 
797 	if (!rac->_nr_pages) {
798 		rac->_batch_count = 0;
799 		return NULL;
800 	}
801 
802 	page = xa_load(&rac->mapping->i_pages, rac->_index);
803 	VM_BUG_ON_PAGE(!PageLocked(page), page);
804 	rac->_batch_count = thp_nr_pages(page);
805 
806 	return page;
807 }
808 
809 static inline unsigned int __readahead_batch(struct readahead_control *rac,
810 		struct page **array, unsigned int array_sz)
811 {
812 	unsigned int i = 0;
813 	XA_STATE(xas, &rac->mapping->i_pages, 0);
814 	struct page *page;
815 
816 	BUG_ON(rac->_batch_count > rac->_nr_pages);
817 	rac->_nr_pages -= rac->_batch_count;
818 	rac->_index += rac->_batch_count;
819 	rac->_batch_count = 0;
820 
821 	xas_set(&xas, rac->_index);
822 	rcu_read_lock();
823 	xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) {
824 		VM_BUG_ON_PAGE(!PageLocked(page), page);
825 		VM_BUG_ON_PAGE(PageTail(page), page);
826 		array[i++] = page;
827 		rac->_batch_count += thp_nr_pages(page);
828 
829 		/*
830 		 * The page cache isn't using multi-index entries yet,
831 		 * so the xas cursor needs to be manually moved to the
832 		 * next index.  This can be removed once the page cache
833 		 * is converted.
834 		 */
835 		if (PageHead(page))
836 			xas_set(&xas, rac->_index + rac->_batch_count);
837 
838 		if (i == array_sz)
839 			break;
840 	}
841 	rcu_read_unlock();
842 
843 	return i;
844 }
845 
846 /**
847  * readahead_page_batch - Get a batch of pages to read.
848  * @rac: The current readahead request.
849  * @array: An array of pointers to struct page.
850  *
851  * Context: The pages are locked and have an elevated refcount.  The caller
852  * should decreases the refcount once the page has been submitted for I/O
853  * and unlock the page once all I/O to that page has completed.
854  * Return: The number of pages placed in the array.  0 indicates the request
855  * is complete.
856  */
857 #define readahead_page_batch(rac, array)				\
858 	__readahead_batch(rac, array, ARRAY_SIZE(array))
859 
860 /**
861  * readahead_pos - The byte offset into the file of this readahead request.
862  * @rac: The readahead request.
863  */
864 static inline loff_t readahead_pos(struct readahead_control *rac)
865 {
866 	return (loff_t)rac->_index * PAGE_SIZE;
867 }
868 
869 /**
870  * readahead_length - The number of bytes in this readahead request.
871  * @rac: The readahead request.
872  */
873 static inline loff_t readahead_length(struct readahead_control *rac)
874 {
875 	return (loff_t)rac->_nr_pages * PAGE_SIZE;
876 }
877 
878 /**
879  * readahead_index - The index of the first page in this readahead request.
880  * @rac: The readahead request.
881  */
882 static inline pgoff_t readahead_index(struct readahead_control *rac)
883 {
884 	return rac->_index;
885 }
886 
887 /**
888  * readahead_count - The number of pages in this readahead request.
889  * @rac: The readahead request.
890  */
891 static inline unsigned int readahead_count(struct readahead_control *rac)
892 {
893 	return rac->_nr_pages;
894 }
895 
896 static inline unsigned long dir_pages(struct inode *inode)
897 {
898 	return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
899 			       PAGE_SHIFT;
900 }
901 
902 /**
903  * page_mkwrite_check_truncate - check if page was truncated
904  * @page: the page to check
905  * @inode: the inode to check the page against
906  *
907  * Returns the number of bytes in the page up to EOF,
908  * or -EFAULT if the page was truncated.
909  */
910 static inline int page_mkwrite_check_truncate(struct page *page,
911 					      struct inode *inode)
912 {
913 	loff_t size = i_size_read(inode);
914 	pgoff_t index = size >> PAGE_SHIFT;
915 	int offset = offset_in_page(size);
916 
917 	if (page->mapping != inode->i_mapping)
918 		return -EFAULT;
919 
920 	/* page is wholly inside EOF */
921 	if (page->index < index)
922 		return PAGE_SIZE;
923 	/* page is wholly past EOF */
924 	if (page->index > index || !offset)
925 		return -EFAULT;
926 	/* page is partially inside EOF */
927 	return offset;
928 }
929 
930 /**
931  * i_blocks_per_page - How many blocks fit in this page.
932  * @inode: The inode which contains the blocks.
933  * @page: The page (head page if the page is a THP).
934  *
935  * If the block size is larger than the size of this page, return zero.
936  *
937  * Context: The caller should hold a refcount on the page to prevent it
938  * from being split.
939  * Return: The number of filesystem blocks covered by this page.
940  */
941 static inline
942 unsigned int i_blocks_per_page(struct inode *inode, struct page *page)
943 {
944 	return thp_size(page) >> inode->i_blkbits;
945 }
946 #endif /* _LINUX_PAGEMAP_H */
947