1 #ifndef _LINUX_PAGEMAP_H 2 #define _LINUX_PAGEMAP_H 3 4 /* 5 * Copyright 1995 Linus Torvalds 6 */ 7 #include <linux/mm.h> 8 #include <linux/fs.h> 9 #include <linux/list.h> 10 #include <linux/highmem.h> 11 #include <linux/compiler.h> 12 #include <linux/uaccess.h> 13 #include <linux/gfp.h> 14 #include <linux/bitops.h> 15 #include <linux/hardirq.h> /* for in_interrupt() */ 16 #include <linux/hugetlb_inline.h> 17 18 /* 19 * Bits in mapping->flags. 20 */ 21 enum mapping_flags { 22 AS_EIO = 0, /* IO error on async write */ 23 AS_ENOSPC = 1, /* ENOSPC on async write */ 24 AS_MM_ALL_LOCKS = 2, /* under mm_take_all_locks() */ 25 AS_UNEVICTABLE = 3, /* e.g., ramdisk, SHM_LOCK */ 26 AS_EXITING = 4, /* final truncate in progress */ 27 /* writeback related tags are not used */ 28 AS_NO_WRITEBACK_TAGS = 5, 29 }; 30 31 /** 32 * mapping_set_error - record a writeback error in the address_space 33 * @mapping - the mapping in which an error should be set 34 * @error - the error to set in the mapping 35 * 36 * When writeback fails in some way, we must record that error so that 37 * userspace can be informed when fsync and the like are called. We endeavor 38 * to report errors on any file that was open at the time of the error. Some 39 * internal callers also need to know when writeback errors have occurred. 40 * 41 * When a writeback error occurs, most filesystems will want to call 42 * mapping_set_error to record the error in the mapping so that it can be 43 * reported when the application calls fsync(2). 44 */ 45 static inline void mapping_set_error(struct address_space *mapping, int error) 46 { 47 if (likely(!error)) 48 return; 49 50 /* Record in wb_err for checkers using errseq_t based tracking */ 51 filemap_set_wb_err(mapping, error); 52 53 /* Record it in flags for now, for legacy callers */ 54 if (error == -ENOSPC) 55 set_bit(AS_ENOSPC, &mapping->flags); 56 else 57 set_bit(AS_EIO, &mapping->flags); 58 } 59 60 static inline void mapping_set_unevictable(struct address_space *mapping) 61 { 62 set_bit(AS_UNEVICTABLE, &mapping->flags); 63 } 64 65 static inline void mapping_clear_unevictable(struct address_space *mapping) 66 { 67 clear_bit(AS_UNEVICTABLE, &mapping->flags); 68 } 69 70 static inline int mapping_unevictable(struct address_space *mapping) 71 { 72 if (mapping) 73 return test_bit(AS_UNEVICTABLE, &mapping->flags); 74 return !!mapping; 75 } 76 77 static inline void mapping_set_exiting(struct address_space *mapping) 78 { 79 set_bit(AS_EXITING, &mapping->flags); 80 } 81 82 static inline int mapping_exiting(struct address_space *mapping) 83 { 84 return test_bit(AS_EXITING, &mapping->flags); 85 } 86 87 static inline void mapping_set_no_writeback_tags(struct address_space *mapping) 88 { 89 set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); 90 } 91 92 static inline int mapping_use_writeback_tags(struct address_space *mapping) 93 { 94 return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); 95 } 96 97 static inline gfp_t mapping_gfp_mask(struct address_space * mapping) 98 { 99 return mapping->gfp_mask; 100 } 101 102 /* Restricts the given gfp_mask to what the mapping allows. */ 103 static inline gfp_t mapping_gfp_constraint(struct address_space *mapping, 104 gfp_t gfp_mask) 105 { 106 return mapping_gfp_mask(mapping) & gfp_mask; 107 } 108 109 /* 110 * This is non-atomic. Only to be used before the mapping is activated. 111 * Probably needs a barrier... 112 */ 113 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask) 114 { 115 m->gfp_mask = mask; 116 } 117 118 void release_pages(struct page **pages, int nr, bool cold); 119 120 /* 121 * speculatively take a reference to a page. 122 * If the page is free (_refcount == 0), then _refcount is untouched, and 0 123 * is returned. Otherwise, _refcount is incremented by 1 and 1 is returned. 124 * 125 * This function must be called inside the same rcu_read_lock() section as has 126 * been used to lookup the page in the pagecache radix-tree (or page table): 127 * this allows allocators to use a synchronize_rcu() to stabilize _refcount. 128 * 129 * Unless an RCU grace period has passed, the count of all pages coming out 130 * of the allocator must be considered unstable. page_count may return higher 131 * than expected, and put_page must be able to do the right thing when the 132 * page has been finished with, no matter what it is subsequently allocated 133 * for (because put_page is what is used here to drop an invalid speculative 134 * reference). 135 * 136 * This is the interesting part of the lockless pagecache (and lockless 137 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page) 138 * has the following pattern: 139 * 1. find page in radix tree 140 * 2. conditionally increment refcount 141 * 3. check the page is still in pagecache (if no, goto 1) 142 * 143 * Remove-side that cares about stability of _refcount (eg. reclaim) has the 144 * following (with tree_lock held for write): 145 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg) 146 * B. remove page from pagecache 147 * C. free the page 148 * 149 * There are 2 critical interleavings that matter: 150 * - 2 runs before A: in this case, A sees elevated refcount and bails out 151 * - A runs before 2: in this case, 2 sees zero refcount and retries; 152 * subsequently, B will complete and 1 will find no page, causing the 153 * lookup to return NULL. 154 * 155 * It is possible that between 1 and 2, the page is removed then the exact same 156 * page is inserted into the same position in pagecache. That's OK: the 157 * old find_get_page using tree_lock could equally have run before or after 158 * such a re-insertion, depending on order that locks are granted. 159 * 160 * Lookups racing against pagecache insertion isn't a big problem: either 1 161 * will find the page or it will not. Likewise, the old find_get_page could run 162 * either before the insertion or afterwards, depending on timing. 163 */ 164 static inline int page_cache_get_speculative(struct page *page) 165 { 166 VM_BUG_ON(in_interrupt()); 167 168 #ifdef CONFIG_TINY_RCU 169 # ifdef CONFIG_PREEMPT_COUNT 170 VM_BUG_ON(!in_atomic() && !irqs_disabled()); 171 # endif 172 /* 173 * Preempt must be disabled here - we rely on rcu_read_lock doing 174 * this for us. 175 * 176 * Pagecache won't be truncated from interrupt context, so if we have 177 * found a page in the radix tree here, we have pinned its refcount by 178 * disabling preempt, and hence no need for the "speculative get" that 179 * SMP requires. 180 */ 181 VM_BUG_ON_PAGE(page_count(page) == 0, page); 182 page_ref_inc(page); 183 184 #else 185 if (unlikely(!get_page_unless_zero(page))) { 186 /* 187 * Either the page has been freed, or will be freed. 188 * In either case, retry here and the caller should 189 * do the right thing (see comments above). 190 */ 191 return 0; 192 } 193 #endif 194 VM_BUG_ON_PAGE(PageTail(page), page); 195 196 return 1; 197 } 198 199 /* 200 * Same as above, but add instead of inc (could just be merged) 201 */ 202 static inline int page_cache_add_speculative(struct page *page, int count) 203 { 204 VM_BUG_ON(in_interrupt()); 205 206 #if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU) 207 # ifdef CONFIG_PREEMPT_COUNT 208 VM_BUG_ON(!in_atomic() && !irqs_disabled()); 209 # endif 210 VM_BUG_ON_PAGE(page_count(page) == 0, page); 211 page_ref_add(page, count); 212 213 #else 214 if (unlikely(!page_ref_add_unless(page, count, 0))) 215 return 0; 216 #endif 217 VM_BUG_ON_PAGE(PageCompound(page) && page != compound_head(page), page); 218 219 return 1; 220 } 221 222 #ifdef CONFIG_NUMA 223 extern struct page *__page_cache_alloc(gfp_t gfp); 224 #else 225 static inline struct page *__page_cache_alloc(gfp_t gfp) 226 { 227 return alloc_pages(gfp, 0); 228 } 229 #endif 230 231 static inline struct page *page_cache_alloc(struct address_space *x) 232 { 233 return __page_cache_alloc(mapping_gfp_mask(x)); 234 } 235 236 static inline struct page *page_cache_alloc_cold(struct address_space *x) 237 { 238 return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD); 239 } 240 241 static inline gfp_t readahead_gfp_mask(struct address_space *x) 242 { 243 return mapping_gfp_mask(x) | 244 __GFP_COLD | __GFP_NORETRY | __GFP_NOWARN; 245 } 246 247 typedef int filler_t(void *, struct page *); 248 249 pgoff_t page_cache_next_hole(struct address_space *mapping, 250 pgoff_t index, unsigned long max_scan); 251 pgoff_t page_cache_prev_hole(struct address_space *mapping, 252 pgoff_t index, unsigned long max_scan); 253 254 #define FGP_ACCESSED 0x00000001 255 #define FGP_LOCK 0x00000002 256 #define FGP_CREAT 0x00000004 257 #define FGP_WRITE 0x00000008 258 #define FGP_NOFS 0x00000010 259 #define FGP_NOWAIT 0x00000020 260 261 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, 262 int fgp_flags, gfp_t cache_gfp_mask); 263 264 /** 265 * find_get_page - find and get a page reference 266 * @mapping: the address_space to search 267 * @offset: the page index 268 * 269 * Looks up the page cache slot at @mapping & @offset. If there is a 270 * page cache page, it is returned with an increased refcount. 271 * 272 * Otherwise, %NULL is returned. 273 */ 274 static inline struct page *find_get_page(struct address_space *mapping, 275 pgoff_t offset) 276 { 277 return pagecache_get_page(mapping, offset, 0, 0); 278 } 279 280 static inline struct page *find_get_page_flags(struct address_space *mapping, 281 pgoff_t offset, int fgp_flags) 282 { 283 return pagecache_get_page(mapping, offset, fgp_flags, 0); 284 } 285 286 /** 287 * find_lock_page - locate, pin and lock a pagecache page 288 * @mapping: the address_space to search 289 * @offset: the page index 290 * 291 * Looks up the page cache slot at @mapping & @offset. If there is a 292 * page cache page, it is returned locked and with an increased 293 * refcount. 294 * 295 * Otherwise, %NULL is returned. 296 * 297 * find_lock_page() may sleep. 298 */ 299 static inline struct page *find_lock_page(struct address_space *mapping, 300 pgoff_t offset) 301 { 302 return pagecache_get_page(mapping, offset, FGP_LOCK, 0); 303 } 304 305 /** 306 * find_or_create_page - locate or add a pagecache page 307 * @mapping: the page's address_space 308 * @index: the page's index into the mapping 309 * @gfp_mask: page allocation mode 310 * 311 * Looks up the page cache slot at @mapping & @offset. If there is a 312 * page cache page, it is returned locked and with an increased 313 * refcount. 314 * 315 * If the page is not present, a new page is allocated using @gfp_mask 316 * and added to the page cache and the VM's LRU list. The page is 317 * returned locked and with an increased refcount. 318 * 319 * On memory exhaustion, %NULL is returned. 320 * 321 * find_or_create_page() may sleep, even if @gfp_flags specifies an 322 * atomic allocation! 323 */ 324 static inline struct page *find_or_create_page(struct address_space *mapping, 325 pgoff_t offset, gfp_t gfp_mask) 326 { 327 return pagecache_get_page(mapping, offset, 328 FGP_LOCK|FGP_ACCESSED|FGP_CREAT, 329 gfp_mask); 330 } 331 332 /** 333 * grab_cache_page_nowait - returns locked page at given index in given cache 334 * @mapping: target address_space 335 * @index: the page index 336 * 337 * Same as grab_cache_page(), but do not wait if the page is unavailable. 338 * This is intended for speculative data generators, where the data can 339 * be regenerated if the page couldn't be grabbed. This routine should 340 * be safe to call while holding the lock for another page. 341 * 342 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 343 * and deadlock against the caller's locked page. 344 */ 345 static inline struct page *grab_cache_page_nowait(struct address_space *mapping, 346 pgoff_t index) 347 { 348 return pagecache_get_page(mapping, index, 349 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT, 350 mapping_gfp_mask(mapping)); 351 } 352 353 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset); 354 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset); 355 unsigned find_get_entries(struct address_space *mapping, pgoff_t start, 356 unsigned int nr_entries, struct page **entries, 357 pgoff_t *indices); 358 unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 359 unsigned int nr_pages, struct page **pages); 360 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start, 361 unsigned int nr_pages, struct page **pages); 362 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 363 int tag, unsigned int nr_pages, struct page **pages); 364 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start, 365 int tag, unsigned int nr_entries, 366 struct page **entries, pgoff_t *indices); 367 368 struct page *grab_cache_page_write_begin(struct address_space *mapping, 369 pgoff_t index, unsigned flags); 370 371 /* 372 * Returns locked page at given index in given cache, creating it if needed. 373 */ 374 static inline struct page *grab_cache_page(struct address_space *mapping, 375 pgoff_t index) 376 { 377 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping)); 378 } 379 380 extern struct page * read_cache_page(struct address_space *mapping, 381 pgoff_t index, filler_t *filler, void *data); 382 extern struct page * read_cache_page_gfp(struct address_space *mapping, 383 pgoff_t index, gfp_t gfp_mask); 384 extern int read_cache_pages(struct address_space *mapping, 385 struct list_head *pages, filler_t *filler, void *data); 386 387 static inline struct page *read_mapping_page(struct address_space *mapping, 388 pgoff_t index, void *data) 389 { 390 filler_t *filler = (filler_t *)mapping->a_ops->readpage; 391 return read_cache_page(mapping, index, filler, data); 392 } 393 394 /* 395 * Get index of the page with in radix-tree 396 * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE) 397 */ 398 static inline pgoff_t page_to_index(struct page *page) 399 { 400 pgoff_t pgoff; 401 402 if (likely(!PageTransTail(page))) 403 return page->index; 404 405 /* 406 * We don't initialize ->index for tail pages: calculate based on 407 * head page 408 */ 409 pgoff = compound_head(page)->index; 410 pgoff += page - compound_head(page); 411 return pgoff; 412 } 413 414 /* 415 * Get the offset in PAGE_SIZE. 416 * (TODO: hugepage should have ->index in PAGE_SIZE) 417 */ 418 static inline pgoff_t page_to_pgoff(struct page *page) 419 { 420 if (unlikely(PageHeadHuge(page))) 421 return page->index << compound_order(page); 422 423 return page_to_index(page); 424 } 425 426 /* 427 * Return byte-offset into filesystem object for page. 428 */ 429 static inline loff_t page_offset(struct page *page) 430 { 431 return ((loff_t)page->index) << PAGE_SHIFT; 432 } 433 434 static inline loff_t page_file_offset(struct page *page) 435 { 436 return ((loff_t)page_index(page)) << PAGE_SHIFT; 437 } 438 439 extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 440 unsigned long address); 441 442 static inline pgoff_t linear_page_index(struct vm_area_struct *vma, 443 unsigned long address) 444 { 445 pgoff_t pgoff; 446 if (unlikely(is_vm_hugetlb_page(vma))) 447 return linear_hugepage_index(vma, address); 448 pgoff = (address - vma->vm_start) >> PAGE_SHIFT; 449 pgoff += vma->vm_pgoff; 450 return pgoff; 451 } 452 453 extern void __lock_page(struct page *page); 454 extern int __lock_page_killable(struct page *page); 455 extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 456 unsigned int flags); 457 extern void unlock_page(struct page *page); 458 459 static inline int trylock_page(struct page *page) 460 { 461 page = compound_head(page); 462 return (likely(!test_and_set_bit_lock(PG_locked, &page->flags))); 463 } 464 465 /* 466 * lock_page may only be called if we have the page's inode pinned. 467 */ 468 static inline void lock_page(struct page *page) 469 { 470 might_sleep(); 471 if (!trylock_page(page)) 472 __lock_page(page); 473 } 474 475 /* 476 * lock_page_killable is like lock_page but can be interrupted by fatal 477 * signals. It returns 0 if it locked the page and -EINTR if it was 478 * killed while waiting. 479 */ 480 static inline int lock_page_killable(struct page *page) 481 { 482 might_sleep(); 483 if (!trylock_page(page)) 484 return __lock_page_killable(page); 485 return 0; 486 } 487 488 /* 489 * lock_page_or_retry - Lock the page, unless this would block and the 490 * caller indicated that it can handle a retry. 491 * 492 * Return value and mmap_sem implications depend on flags; see 493 * __lock_page_or_retry(). 494 */ 495 static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm, 496 unsigned int flags) 497 { 498 might_sleep(); 499 return trylock_page(page) || __lock_page_or_retry(page, mm, flags); 500 } 501 502 /* 503 * This is exported only for wait_on_page_locked/wait_on_page_writeback, etc., 504 * and should not be used directly. 505 */ 506 extern void wait_on_page_bit(struct page *page, int bit_nr); 507 extern int wait_on_page_bit_killable(struct page *page, int bit_nr); 508 509 /* 510 * Wait for a page to be unlocked. 511 * 512 * This must be called with the caller "holding" the page, 513 * ie with increased "page->count" so that the page won't 514 * go away during the wait.. 515 */ 516 static inline void wait_on_page_locked(struct page *page) 517 { 518 if (PageLocked(page)) 519 wait_on_page_bit(compound_head(page), PG_locked); 520 } 521 522 static inline int wait_on_page_locked_killable(struct page *page) 523 { 524 if (!PageLocked(page)) 525 return 0; 526 return wait_on_page_bit_killable(compound_head(page), PG_locked); 527 } 528 529 /* 530 * Wait for a page to complete writeback 531 */ 532 static inline void wait_on_page_writeback(struct page *page) 533 { 534 if (PageWriteback(page)) 535 wait_on_page_bit(page, PG_writeback); 536 } 537 538 extern void end_page_writeback(struct page *page); 539 void wait_for_stable_page(struct page *page); 540 541 void page_endio(struct page *page, bool is_write, int err); 542 543 /* 544 * Add an arbitrary waiter to a page's wait queue 545 */ 546 extern void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter); 547 548 /* 549 * Fault everything in given userspace address range in. 550 */ 551 static inline int fault_in_pages_writeable(char __user *uaddr, int size) 552 { 553 char __user *end = uaddr + size - 1; 554 555 if (unlikely(size == 0)) 556 return 0; 557 558 if (unlikely(uaddr > end)) 559 return -EFAULT; 560 /* 561 * Writing zeroes into userspace here is OK, because we know that if 562 * the zero gets there, we'll be overwriting it. 563 */ 564 do { 565 if (unlikely(__put_user(0, uaddr) != 0)) 566 return -EFAULT; 567 uaddr += PAGE_SIZE; 568 } while (uaddr <= end); 569 570 /* Check whether the range spilled into the next page. */ 571 if (((unsigned long)uaddr & PAGE_MASK) == 572 ((unsigned long)end & PAGE_MASK)) 573 return __put_user(0, end); 574 575 return 0; 576 } 577 578 static inline int fault_in_pages_readable(const char __user *uaddr, int size) 579 { 580 volatile char c; 581 const char __user *end = uaddr + size - 1; 582 583 if (unlikely(size == 0)) 584 return 0; 585 586 if (unlikely(uaddr > end)) 587 return -EFAULT; 588 589 do { 590 if (unlikely(__get_user(c, uaddr) != 0)) 591 return -EFAULT; 592 uaddr += PAGE_SIZE; 593 } while (uaddr <= end); 594 595 /* Check whether the range spilled into the next page. */ 596 if (((unsigned long)uaddr & PAGE_MASK) == 597 ((unsigned long)end & PAGE_MASK)) { 598 return __get_user(c, end); 599 } 600 601 (void)c; 602 return 0; 603 } 604 605 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 606 pgoff_t index, gfp_t gfp_mask); 607 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 608 pgoff_t index, gfp_t gfp_mask); 609 extern void delete_from_page_cache(struct page *page); 610 extern void __delete_from_page_cache(struct page *page, void *shadow); 611 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask); 612 613 /* 614 * Like add_to_page_cache_locked, but used to add newly allocated pages: 615 * the page is new, so we can just run __SetPageLocked() against it. 616 */ 617 static inline int add_to_page_cache(struct page *page, 618 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask) 619 { 620 int error; 621 622 __SetPageLocked(page); 623 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask); 624 if (unlikely(error)) 625 __ClearPageLocked(page); 626 return error; 627 } 628 629 static inline unsigned long dir_pages(struct inode *inode) 630 { 631 return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >> 632 PAGE_SHIFT; 633 } 634 635 #endif /* _LINUX_PAGEMAP_H */ 636