1 #ifndef _LINUX_PAGEMAP_H 2 #define _LINUX_PAGEMAP_H 3 4 /* 5 * Copyright 1995 Linus Torvalds 6 */ 7 #include <linux/mm.h> 8 #include <linux/fs.h> 9 #include <linux/list.h> 10 #include <linux/highmem.h> 11 #include <linux/compiler.h> 12 #include <linux/uaccess.h> 13 #include <linux/gfp.h> 14 #include <linux/bitops.h> 15 #include <linux/hardirq.h> /* for in_interrupt() */ 16 #include <linux/hugetlb_inline.h> 17 18 /* 19 * Bits in mapping->flags. 20 */ 21 enum mapping_flags { 22 AS_EIO = 0, /* IO error on async write */ 23 AS_ENOSPC = 1, /* ENOSPC on async write */ 24 AS_MM_ALL_LOCKS = 2, /* under mm_take_all_locks() */ 25 AS_UNEVICTABLE = 3, /* e.g., ramdisk, SHM_LOCK */ 26 AS_EXITING = 4, /* final truncate in progress */ 27 /* writeback related tags are not used */ 28 AS_NO_WRITEBACK_TAGS = 5, 29 }; 30 31 static inline void mapping_set_error(struct address_space *mapping, int error) 32 { 33 if (unlikely(error)) { 34 if (error == -ENOSPC) 35 set_bit(AS_ENOSPC, &mapping->flags); 36 else 37 set_bit(AS_EIO, &mapping->flags); 38 } 39 } 40 41 static inline void mapping_set_unevictable(struct address_space *mapping) 42 { 43 set_bit(AS_UNEVICTABLE, &mapping->flags); 44 } 45 46 static inline void mapping_clear_unevictable(struct address_space *mapping) 47 { 48 clear_bit(AS_UNEVICTABLE, &mapping->flags); 49 } 50 51 static inline int mapping_unevictable(struct address_space *mapping) 52 { 53 if (mapping) 54 return test_bit(AS_UNEVICTABLE, &mapping->flags); 55 return !!mapping; 56 } 57 58 static inline void mapping_set_exiting(struct address_space *mapping) 59 { 60 set_bit(AS_EXITING, &mapping->flags); 61 } 62 63 static inline int mapping_exiting(struct address_space *mapping) 64 { 65 return test_bit(AS_EXITING, &mapping->flags); 66 } 67 68 static inline void mapping_set_no_writeback_tags(struct address_space *mapping) 69 { 70 set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); 71 } 72 73 static inline int mapping_use_writeback_tags(struct address_space *mapping) 74 { 75 return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); 76 } 77 78 static inline gfp_t mapping_gfp_mask(struct address_space * mapping) 79 { 80 return mapping->gfp_mask; 81 } 82 83 /* Restricts the given gfp_mask to what the mapping allows. */ 84 static inline gfp_t mapping_gfp_constraint(struct address_space *mapping, 85 gfp_t gfp_mask) 86 { 87 return mapping_gfp_mask(mapping) & gfp_mask; 88 } 89 90 /* 91 * This is non-atomic. Only to be used before the mapping is activated. 92 * Probably needs a barrier... 93 */ 94 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask) 95 { 96 m->gfp_mask = mask; 97 } 98 99 void release_pages(struct page **pages, int nr, bool cold); 100 101 /* 102 * speculatively take a reference to a page. 103 * If the page is free (_refcount == 0), then _refcount is untouched, and 0 104 * is returned. Otherwise, _refcount is incremented by 1 and 1 is returned. 105 * 106 * This function must be called inside the same rcu_read_lock() section as has 107 * been used to lookup the page in the pagecache radix-tree (or page table): 108 * this allows allocators to use a synchronize_rcu() to stabilize _refcount. 109 * 110 * Unless an RCU grace period has passed, the count of all pages coming out 111 * of the allocator must be considered unstable. page_count may return higher 112 * than expected, and put_page must be able to do the right thing when the 113 * page has been finished with, no matter what it is subsequently allocated 114 * for (because put_page is what is used here to drop an invalid speculative 115 * reference). 116 * 117 * This is the interesting part of the lockless pagecache (and lockless 118 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page) 119 * has the following pattern: 120 * 1. find page in radix tree 121 * 2. conditionally increment refcount 122 * 3. check the page is still in pagecache (if no, goto 1) 123 * 124 * Remove-side that cares about stability of _refcount (eg. reclaim) has the 125 * following (with tree_lock held for write): 126 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg) 127 * B. remove page from pagecache 128 * C. free the page 129 * 130 * There are 2 critical interleavings that matter: 131 * - 2 runs before A: in this case, A sees elevated refcount and bails out 132 * - A runs before 2: in this case, 2 sees zero refcount and retries; 133 * subsequently, B will complete and 1 will find no page, causing the 134 * lookup to return NULL. 135 * 136 * It is possible that between 1 and 2, the page is removed then the exact same 137 * page is inserted into the same position in pagecache. That's OK: the 138 * old find_get_page using tree_lock could equally have run before or after 139 * such a re-insertion, depending on order that locks are granted. 140 * 141 * Lookups racing against pagecache insertion isn't a big problem: either 1 142 * will find the page or it will not. Likewise, the old find_get_page could run 143 * either before the insertion or afterwards, depending on timing. 144 */ 145 static inline int page_cache_get_speculative(struct page *page) 146 { 147 VM_BUG_ON(in_interrupt()); 148 149 #ifdef CONFIG_TINY_RCU 150 # ifdef CONFIG_PREEMPT_COUNT 151 VM_BUG_ON(!in_atomic() && !irqs_disabled()); 152 # endif 153 /* 154 * Preempt must be disabled here - we rely on rcu_read_lock doing 155 * this for us. 156 * 157 * Pagecache won't be truncated from interrupt context, so if we have 158 * found a page in the radix tree here, we have pinned its refcount by 159 * disabling preempt, and hence no need for the "speculative get" that 160 * SMP requires. 161 */ 162 VM_BUG_ON_PAGE(page_count(page) == 0, page); 163 page_ref_inc(page); 164 165 #else 166 if (unlikely(!get_page_unless_zero(page))) { 167 /* 168 * Either the page has been freed, or will be freed. 169 * In either case, retry here and the caller should 170 * do the right thing (see comments above). 171 */ 172 return 0; 173 } 174 #endif 175 VM_BUG_ON_PAGE(PageTail(page), page); 176 177 return 1; 178 } 179 180 /* 181 * Same as above, but add instead of inc (could just be merged) 182 */ 183 static inline int page_cache_add_speculative(struct page *page, int count) 184 { 185 VM_BUG_ON(in_interrupt()); 186 187 #if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU) 188 # ifdef CONFIG_PREEMPT_COUNT 189 VM_BUG_ON(!in_atomic() && !irqs_disabled()); 190 # endif 191 VM_BUG_ON_PAGE(page_count(page) == 0, page); 192 page_ref_add(page, count); 193 194 #else 195 if (unlikely(!page_ref_add_unless(page, count, 0))) 196 return 0; 197 #endif 198 VM_BUG_ON_PAGE(PageCompound(page) && page != compound_head(page), page); 199 200 return 1; 201 } 202 203 #ifdef CONFIG_NUMA 204 extern struct page *__page_cache_alloc(gfp_t gfp); 205 #else 206 static inline struct page *__page_cache_alloc(gfp_t gfp) 207 { 208 return alloc_pages(gfp, 0); 209 } 210 #endif 211 212 static inline struct page *page_cache_alloc(struct address_space *x) 213 { 214 return __page_cache_alloc(mapping_gfp_mask(x)); 215 } 216 217 static inline struct page *page_cache_alloc_cold(struct address_space *x) 218 { 219 return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD); 220 } 221 222 static inline gfp_t readahead_gfp_mask(struct address_space *x) 223 { 224 return mapping_gfp_mask(x) | 225 __GFP_COLD | __GFP_NORETRY | __GFP_NOWARN; 226 } 227 228 typedef int filler_t(void *, struct page *); 229 230 pgoff_t page_cache_next_hole(struct address_space *mapping, 231 pgoff_t index, unsigned long max_scan); 232 pgoff_t page_cache_prev_hole(struct address_space *mapping, 233 pgoff_t index, unsigned long max_scan); 234 235 #define FGP_ACCESSED 0x00000001 236 #define FGP_LOCK 0x00000002 237 #define FGP_CREAT 0x00000004 238 #define FGP_WRITE 0x00000008 239 #define FGP_NOFS 0x00000010 240 #define FGP_NOWAIT 0x00000020 241 242 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, 243 int fgp_flags, gfp_t cache_gfp_mask); 244 245 /** 246 * find_get_page - find and get a page reference 247 * @mapping: the address_space to search 248 * @offset: the page index 249 * 250 * Looks up the page cache slot at @mapping & @offset. If there is a 251 * page cache page, it is returned with an increased refcount. 252 * 253 * Otherwise, %NULL is returned. 254 */ 255 static inline struct page *find_get_page(struct address_space *mapping, 256 pgoff_t offset) 257 { 258 return pagecache_get_page(mapping, offset, 0, 0); 259 } 260 261 static inline struct page *find_get_page_flags(struct address_space *mapping, 262 pgoff_t offset, int fgp_flags) 263 { 264 return pagecache_get_page(mapping, offset, fgp_flags, 0); 265 } 266 267 /** 268 * find_lock_page - locate, pin and lock a pagecache page 269 * @mapping: the address_space to search 270 * @offset: the page index 271 * 272 * Looks up the page cache slot at @mapping & @offset. If there is a 273 * page cache page, it is returned locked and with an increased 274 * refcount. 275 * 276 * Otherwise, %NULL is returned. 277 * 278 * find_lock_page() may sleep. 279 */ 280 static inline struct page *find_lock_page(struct address_space *mapping, 281 pgoff_t offset) 282 { 283 return pagecache_get_page(mapping, offset, FGP_LOCK, 0); 284 } 285 286 /** 287 * find_or_create_page - locate or add a pagecache page 288 * @mapping: the page's address_space 289 * @index: the page's index into the mapping 290 * @gfp_mask: page allocation mode 291 * 292 * Looks up the page cache slot at @mapping & @offset. If there is a 293 * page cache page, it is returned locked and with an increased 294 * refcount. 295 * 296 * If the page is not present, a new page is allocated using @gfp_mask 297 * and added to the page cache and the VM's LRU list. The page is 298 * returned locked and with an increased refcount. 299 * 300 * On memory exhaustion, %NULL is returned. 301 * 302 * find_or_create_page() may sleep, even if @gfp_flags specifies an 303 * atomic allocation! 304 */ 305 static inline struct page *find_or_create_page(struct address_space *mapping, 306 pgoff_t offset, gfp_t gfp_mask) 307 { 308 return pagecache_get_page(mapping, offset, 309 FGP_LOCK|FGP_ACCESSED|FGP_CREAT, 310 gfp_mask); 311 } 312 313 /** 314 * grab_cache_page_nowait - returns locked page at given index in given cache 315 * @mapping: target address_space 316 * @index: the page index 317 * 318 * Same as grab_cache_page(), but do not wait if the page is unavailable. 319 * This is intended for speculative data generators, where the data can 320 * be regenerated if the page couldn't be grabbed. This routine should 321 * be safe to call while holding the lock for another page. 322 * 323 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 324 * and deadlock against the caller's locked page. 325 */ 326 static inline struct page *grab_cache_page_nowait(struct address_space *mapping, 327 pgoff_t index) 328 { 329 return pagecache_get_page(mapping, index, 330 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT, 331 mapping_gfp_mask(mapping)); 332 } 333 334 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset); 335 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset); 336 unsigned find_get_entries(struct address_space *mapping, pgoff_t start, 337 unsigned int nr_entries, struct page **entries, 338 pgoff_t *indices); 339 unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 340 unsigned int nr_pages, struct page **pages); 341 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start, 342 unsigned int nr_pages, struct page **pages); 343 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 344 int tag, unsigned int nr_pages, struct page **pages); 345 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start, 346 int tag, unsigned int nr_entries, 347 struct page **entries, pgoff_t *indices); 348 349 struct page *grab_cache_page_write_begin(struct address_space *mapping, 350 pgoff_t index, unsigned flags); 351 352 /* 353 * Returns locked page at given index in given cache, creating it if needed. 354 */ 355 static inline struct page *grab_cache_page(struct address_space *mapping, 356 pgoff_t index) 357 { 358 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping)); 359 } 360 361 extern struct page * read_cache_page(struct address_space *mapping, 362 pgoff_t index, filler_t *filler, void *data); 363 extern struct page * read_cache_page_gfp(struct address_space *mapping, 364 pgoff_t index, gfp_t gfp_mask); 365 extern int read_cache_pages(struct address_space *mapping, 366 struct list_head *pages, filler_t *filler, void *data); 367 368 static inline struct page *read_mapping_page(struct address_space *mapping, 369 pgoff_t index, void *data) 370 { 371 filler_t *filler = (filler_t *)mapping->a_ops->readpage; 372 return read_cache_page(mapping, index, filler, data); 373 } 374 375 /* 376 * Get index of the page with in radix-tree 377 * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE) 378 */ 379 static inline pgoff_t page_to_index(struct page *page) 380 { 381 pgoff_t pgoff; 382 383 if (likely(!PageTransTail(page))) 384 return page->index; 385 386 /* 387 * We don't initialize ->index for tail pages: calculate based on 388 * head page 389 */ 390 pgoff = compound_head(page)->index; 391 pgoff += page - compound_head(page); 392 return pgoff; 393 } 394 395 /* 396 * Get the offset in PAGE_SIZE. 397 * (TODO: hugepage should have ->index in PAGE_SIZE) 398 */ 399 static inline pgoff_t page_to_pgoff(struct page *page) 400 { 401 if (unlikely(PageHeadHuge(page))) 402 return page->index << compound_order(page); 403 404 return page_to_index(page); 405 } 406 407 /* 408 * Return byte-offset into filesystem object for page. 409 */ 410 static inline loff_t page_offset(struct page *page) 411 { 412 return ((loff_t)page->index) << PAGE_SHIFT; 413 } 414 415 static inline loff_t page_file_offset(struct page *page) 416 { 417 return ((loff_t)page_index(page)) << PAGE_SHIFT; 418 } 419 420 extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 421 unsigned long address); 422 423 static inline pgoff_t linear_page_index(struct vm_area_struct *vma, 424 unsigned long address) 425 { 426 pgoff_t pgoff; 427 if (unlikely(is_vm_hugetlb_page(vma))) 428 return linear_hugepage_index(vma, address); 429 pgoff = (address - vma->vm_start) >> PAGE_SHIFT; 430 pgoff += vma->vm_pgoff; 431 return pgoff; 432 } 433 434 extern void __lock_page(struct page *page); 435 extern int __lock_page_killable(struct page *page); 436 extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 437 unsigned int flags); 438 extern void unlock_page(struct page *page); 439 440 static inline int trylock_page(struct page *page) 441 { 442 page = compound_head(page); 443 return (likely(!test_and_set_bit_lock(PG_locked, &page->flags))); 444 } 445 446 /* 447 * lock_page may only be called if we have the page's inode pinned. 448 */ 449 static inline void lock_page(struct page *page) 450 { 451 might_sleep(); 452 if (!trylock_page(page)) 453 __lock_page(page); 454 } 455 456 /* 457 * lock_page_killable is like lock_page but can be interrupted by fatal 458 * signals. It returns 0 if it locked the page and -EINTR if it was 459 * killed while waiting. 460 */ 461 static inline int lock_page_killable(struct page *page) 462 { 463 might_sleep(); 464 if (!trylock_page(page)) 465 return __lock_page_killable(page); 466 return 0; 467 } 468 469 /* 470 * lock_page_or_retry - Lock the page, unless this would block and the 471 * caller indicated that it can handle a retry. 472 * 473 * Return value and mmap_sem implications depend on flags; see 474 * __lock_page_or_retry(). 475 */ 476 static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm, 477 unsigned int flags) 478 { 479 might_sleep(); 480 return trylock_page(page) || __lock_page_or_retry(page, mm, flags); 481 } 482 483 /* 484 * This is exported only for wait_on_page_locked/wait_on_page_writeback, etc., 485 * and should not be used directly. 486 */ 487 extern void wait_on_page_bit(struct page *page, int bit_nr); 488 extern int wait_on_page_bit_killable(struct page *page, int bit_nr); 489 490 /* 491 * Wait for a page to be unlocked. 492 * 493 * This must be called with the caller "holding" the page, 494 * ie with increased "page->count" so that the page won't 495 * go away during the wait.. 496 */ 497 static inline void wait_on_page_locked(struct page *page) 498 { 499 if (PageLocked(page)) 500 wait_on_page_bit(compound_head(page), PG_locked); 501 } 502 503 static inline int wait_on_page_locked_killable(struct page *page) 504 { 505 if (!PageLocked(page)) 506 return 0; 507 return wait_on_page_bit_killable(compound_head(page), PG_locked); 508 } 509 510 /* 511 * Wait for a page to complete writeback 512 */ 513 static inline void wait_on_page_writeback(struct page *page) 514 { 515 if (PageWriteback(page)) 516 wait_on_page_bit(page, PG_writeback); 517 } 518 519 extern void end_page_writeback(struct page *page); 520 void wait_for_stable_page(struct page *page); 521 522 void page_endio(struct page *page, bool is_write, int err); 523 524 /* 525 * Add an arbitrary waiter to a page's wait queue 526 */ 527 extern void add_page_wait_queue(struct page *page, wait_queue_t *waiter); 528 529 /* 530 * Fault everything in given userspace address range in. 531 */ 532 static inline int fault_in_pages_writeable(char __user *uaddr, int size) 533 { 534 char __user *end = uaddr + size - 1; 535 536 if (unlikely(size == 0)) 537 return 0; 538 539 if (unlikely(uaddr > end)) 540 return -EFAULT; 541 /* 542 * Writing zeroes into userspace here is OK, because we know that if 543 * the zero gets there, we'll be overwriting it. 544 */ 545 do { 546 if (unlikely(__put_user(0, uaddr) != 0)) 547 return -EFAULT; 548 uaddr += PAGE_SIZE; 549 } while (uaddr <= end); 550 551 /* Check whether the range spilled into the next page. */ 552 if (((unsigned long)uaddr & PAGE_MASK) == 553 ((unsigned long)end & PAGE_MASK)) 554 return __put_user(0, end); 555 556 return 0; 557 } 558 559 static inline int fault_in_pages_readable(const char __user *uaddr, int size) 560 { 561 volatile char c; 562 const char __user *end = uaddr + size - 1; 563 564 if (unlikely(size == 0)) 565 return 0; 566 567 if (unlikely(uaddr > end)) 568 return -EFAULT; 569 570 do { 571 if (unlikely(__get_user(c, uaddr) != 0)) 572 return -EFAULT; 573 uaddr += PAGE_SIZE; 574 } while (uaddr <= end); 575 576 /* Check whether the range spilled into the next page. */ 577 if (((unsigned long)uaddr & PAGE_MASK) == 578 ((unsigned long)end & PAGE_MASK)) { 579 return __get_user(c, end); 580 } 581 582 (void)c; 583 return 0; 584 } 585 586 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 587 pgoff_t index, gfp_t gfp_mask); 588 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 589 pgoff_t index, gfp_t gfp_mask); 590 extern void delete_from_page_cache(struct page *page); 591 extern void __delete_from_page_cache(struct page *page, void *shadow); 592 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask); 593 594 /* 595 * Like add_to_page_cache_locked, but used to add newly allocated pages: 596 * the page is new, so we can just run __SetPageLocked() against it. 597 */ 598 static inline int add_to_page_cache(struct page *page, 599 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask) 600 { 601 int error; 602 603 __SetPageLocked(page); 604 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask); 605 if (unlikely(error)) 606 __ClearPageLocked(page); 607 return error; 608 } 609 610 static inline unsigned long dir_pages(struct inode *inode) 611 { 612 return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >> 613 PAGE_SHIFT; 614 } 615 616 #endif /* _LINUX_PAGEMAP_H */ 617