1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_PAGEMAP_H 3 #define _LINUX_PAGEMAP_H 4 5 /* 6 * Copyright 1995 Linus Torvalds 7 */ 8 #include <linux/mm.h> 9 #include <linux/fs.h> 10 #include <linux/list.h> 11 #include <linux/highmem.h> 12 #include <linux/compiler.h> 13 #include <linux/uaccess.h> 14 #include <linux/gfp.h> 15 #include <linux/bitops.h> 16 #include <linux/hardirq.h> /* for in_interrupt() */ 17 #include <linux/hugetlb_inline.h> 18 19 struct pagevec; 20 21 /* 22 * Bits in mapping->flags. 23 */ 24 enum mapping_flags { 25 AS_EIO = 0, /* IO error on async write */ 26 AS_ENOSPC = 1, /* ENOSPC on async write */ 27 AS_MM_ALL_LOCKS = 2, /* under mm_take_all_locks() */ 28 AS_UNEVICTABLE = 3, /* e.g., ramdisk, SHM_LOCK */ 29 AS_EXITING = 4, /* final truncate in progress */ 30 /* writeback related tags are not used */ 31 AS_NO_WRITEBACK_TAGS = 5, 32 AS_THP_SUPPORT = 6, /* THPs supported */ 33 }; 34 35 /** 36 * mapping_set_error - record a writeback error in the address_space 37 * @mapping: the mapping in which an error should be set 38 * @error: the error to set in the mapping 39 * 40 * When writeback fails in some way, we must record that error so that 41 * userspace can be informed when fsync and the like are called. We endeavor 42 * to report errors on any file that was open at the time of the error. Some 43 * internal callers also need to know when writeback errors have occurred. 44 * 45 * When a writeback error occurs, most filesystems will want to call 46 * mapping_set_error to record the error in the mapping so that it can be 47 * reported when the application calls fsync(2). 48 */ 49 static inline void mapping_set_error(struct address_space *mapping, int error) 50 { 51 if (likely(!error)) 52 return; 53 54 /* Record in wb_err for checkers using errseq_t based tracking */ 55 __filemap_set_wb_err(mapping, error); 56 57 /* Record it in superblock */ 58 if (mapping->host) 59 errseq_set(&mapping->host->i_sb->s_wb_err, error); 60 61 /* Record it in flags for now, for legacy callers */ 62 if (error == -ENOSPC) 63 set_bit(AS_ENOSPC, &mapping->flags); 64 else 65 set_bit(AS_EIO, &mapping->flags); 66 } 67 68 static inline void mapping_set_unevictable(struct address_space *mapping) 69 { 70 set_bit(AS_UNEVICTABLE, &mapping->flags); 71 } 72 73 static inline void mapping_clear_unevictable(struct address_space *mapping) 74 { 75 clear_bit(AS_UNEVICTABLE, &mapping->flags); 76 } 77 78 static inline bool mapping_unevictable(struct address_space *mapping) 79 { 80 return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags); 81 } 82 83 static inline void mapping_set_exiting(struct address_space *mapping) 84 { 85 set_bit(AS_EXITING, &mapping->flags); 86 } 87 88 static inline int mapping_exiting(struct address_space *mapping) 89 { 90 return test_bit(AS_EXITING, &mapping->flags); 91 } 92 93 static inline void mapping_set_no_writeback_tags(struct address_space *mapping) 94 { 95 set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); 96 } 97 98 static inline int mapping_use_writeback_tags(struct address_space *mapping) 99 { 100 return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); 101 } 102 103 static inline gfp_t mapping_gfp_mask(struct address_space * mapping) 104 { 105 return mapping->gfp_mask; 106 } 107 108 /* Restricts the given gfp_mask to what the mapping allows. */ 109 static inline gfp_t mapping_gfp_constraint(struct address_space *mapping, 110 gfp_t gfp_mask) 111 { 112 return mapping_gfp_mask(mapping) & gfp_mask; 113 } 114 115 /* 116 * This is non-atomic. Only to be used before the mapping is activated. 117 * Probably needs a barrier... 118 */ 119 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask) 120 { 121 m->gfp_mask = mask; 122 } 123 124 static inline bool mapping_thp_support(struct address_space *mapping) 125 { 126 return test_bit(AS_THP_SUPPORT, &mapping->flags); 127 } 128 129 static inline int filemap_nr_thps(struct address_space *mapping) 130 { 131 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 132 return atomic_read(&mapping->nr_thps); 133 #else 134 return 0; 135 #endif 136 } 137 138 static inline void filemap_nr_thps_inc(struct address_space *mapping) 139 { 140 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 141 if (!mapping_thp_support(mapping)) 142 atomic_inc(&mapping->nr_thps); 143 #else 144 WARN_ON_ONCE(1); 145 #endif 146 } 147 148 static inline void filemap_nr_thps_dec(struct address_space *mapping) 149 { 150 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 151 if (!mapping_thp_support(mapping)) 152 atomic_dec(&mapping->nr_thps); 153 #else 154 WARN_ON_ONCE(1); 155 #endif 156 } 157 158 void release_pages(struct page **pages, int nr); 159 160 /* 161 * speculatively take a reference to a page. 162 * If the page is free (_refcount == 0), then _refcount is untouched, and 0 163 * is returned. Otherwise, _refcount is incremented by 1 and 1 is returned. 164 * 165 * This function must be called inside the same rcu_read_lock() section as has 166 * been used to lookup the page in the pagecache radix-tree (or page table): 167 * this allows allocators to use a synchronize_rcu() to stabilize _refcount. 168 * 169 * Unless an RCU grace period has passed, the count of all pages coming out 170 * of the allocator must be considered unstable. page_count may return higher 171 * than expected, and put_page must be able to do the right thing when the 172 * page has been finished with, no matter what it is subsequently allocated 173 * for (because put_page is what is used here to drop an invalid speculative 174 * reference). 175 * 176 * This is the interesting part of the lockless pagecache (and lockless 177 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page) 178 * has the following pattern: 179 * 1. find page in radix tree 180 * 2. conditionally increment refcount 181 * 3. check the page is still in pagecache (if no, goto 1) 182 * 183 * Remove-side that cares about stability of _refcount (eg. reclaim) has the 184 * following (with the i_pages lock held): 185 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg) 186 * B. remove page from pagecache 187 * C. free the page 188 * 189 * There are 2 critical interleavings that matter: 190 * - 2 runs before A: in this case, A sees elevated refcount and bails out 191 * - A runs before 2: in this case, 2 sees zero refcount and retries; 192 * subsequently, B will complete and 1 will find no page, causing the 193 * lookup to return NULL. 194 * 195 * It is possible that between 1 and 2, the page is removed then the exact same 196 * page is inserted into the same position in pagecache. That's OK: the 197 * old find_get_page using a lock could equally have run before or after 198 * such a re-insertion, depending on order that locks are granted. 199 * 200 * Lookups racing against pagecache insertion isn't a big problem: either 1 201 * will find the page or it will not. Likewise, the old find_get_page could run 202 * either before the insertion or afterwards, depending on timing. 203 */ 204 static inline int __page_cache_add_speculative(struct page *page, int count) 205 { 206 #ifdef CONFIG_TINY_RCU 207 # ifdef CONFIG_PREEMPT_COUNT 208 VM_BUG_ON(!in_atomic() && !irqs_disabled()); 209 # endif 210 /* 211 * Preempt must be disabled here - we rely on rcu_read_lock doing 212 * this for us. 213 * 214 * Pagecache won't be truncated from interrupt context, so if we have 215 * found a page in the radix tree here, we have pinned its refcount by 216 * disabling preempt, and hence no need for the "speculative get" that 217 * SMP requires. 218 */ 219 VM_BUG_ON_PAGE(page_count(page) == 0, page); 220 page_ref_add(page, count); 221 222 #else 223 if (unlikely(!page_ref_add_unless(page, count, 0))) { 224 /* 225 * Either the page has been freed, or will be freed. 226 * In either case, retry here and the caller should 227 * do the right thing (see comments above). 228 */ 229 return 0; 230 } 231 #endif 232 VM_BUG_ON_PAGE(PageTail(page), page); 233 234 return 1; 235 } 236 237 static inline int page_cache_get_speculative(struct page *page) 238 { 239 return __page_cache_add_speculative(page, 1); 240 } 241 242 static inline int page_cache_add_speculative(struct page *page, int count) 243 { 244 return __page_cache_add_speculative(page, count); 245 } 246 247 /** 248 * attach_page_private - Attach private data to a page. 249 * @page: Page to attach data to. 250 * @data: Data to attach to page. 251 * 252 * Attaching private data to a page increments the page's reference count. 253 * The data must be detached before the page will be freed. 254 */ 255 static inline void attach_page_private(struct page *page, void *data) 256 { 257 get_page(page); 258 set_page_private(page, (unsigned long)data); 259 SetPagePrivate(page); 260 } 261 262 /** 263 * detach_page_private - Detach private data from a page. 264 * @page: Page to detach data from. 265 * 266 * Removes the data that was previously attached to the page and decrements 267 * the refcount on the page. 268 * 269 * Return: Data that was attached to the page. 270 */ 271 static inline void *detach_page_private(struct page *page) 272 { 273 void *data = (void *)page_private(page); 274 275 if (!PagePrivate(page)) 276 return NULL; 277 ClearPagePrivate(page); 278 set_page_private(page, 0); 279 put_page(page); 280 281 return data; 282 } 283 284 #ifdef CONFIG_NUMA 285 extern struct page *__page_cache_alloc(gfp_t gfp); 286 #else 287 static inline struct page *__page_cache_alloc(gfp_t gfp) 288 { 289 return alloc_pages(gfp, 0); 290 } 291 #endif 292 293 static inline struct page *page_cache_alloc(struct address_space *x) 294 { 295 return __page_cache_alloc(mapping_gfp_mask(x)); 296 } 297 298 static inline gfp_t readahead_gfp_mask(struct address_space *x) 299 { 300 return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN; 301 } 302 303 typedef int filler_t(void *, struct page *); 304 305 pgoff_t page_cache_next_miss(struct address_space *mapping, 306 pgoff_t index, unsigned long max_scan); 307 pgoff_t page_cache_prev_miss(struct address_space *mapping, 308 pgoff_t index, unsigned long max_scan); 309 310 #define FGP_ACCESSED 0x00000001 311 #define FGP_LOCK 0x00000002 312 #define FGP_CREAT 0x00000004 313 #define FGP_WRITE 0x00000008 314 #define FGP_NOFS 0x00000010 315 #define FGP_NOWAIT 0x00000020 316 #define FGP_FOR_MMAP 0x00000040 317 #define FGP_HEAD 0x00000080 318 319 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, 320 int fgp_flags, gfp_t cache_gfp_mask); 321 322 /** 323 * find_get_page - find and get a page reference 324 * @mapping: the address_space to search 325 * @offset: the page index 326 * 327 * Looks up the page cache slot at @mapping & @offset. If there is a 328 * page cache page, it is returned with an increased refcount. 329 * 330 * Otherwise, %NULL is returned. 331 */ 332 static inline struct page *find_get_page(struct address_space *mapping, 333 pgoff_t offset) 334 { 335 return pagecache_get_page(mapping, offset, 0, 0); 336 } 337 338 static inline struct page *find_get_page_flags(struct address_space *mapping, 339 pgoff_t offset, int fgp_flags) 340 { 341 return pagecache_get_page(mapping, offset, fgp_flags, 0); 342 } 343 344 /** 345 * find_lock_page - locate, pin and lock a pagecache page 346 * @mapping: the address_space to search 347 * @index: the page index 348 * 349 * Looks up the page cache entry at @mapping & @index. If there is a 350 * page cache page, it is returned locked and with an increased 351 * refcount. 352 * 353 * Context: May sleep. 354 * Return: A struct page or %NULL if there is no page in the cache for this 355 * index. 356 */ 357 static inline struct page *find_lock_page(struct address_space *mapping, 358 pgoff_t index) 359 { 360 return pagecache_get_page(mapping, index, FGP_LOCK, 0); 361 } 362 363 /** 364 * find_lock_head - Locate, pin and lock a pagecache page. 365 * @mapping: The address_space to search. 366 * @index: The page index. 367 * 368 * Looks up the page cache entry at @mapping & @index. If there is a 369 * page cache page, its head page is returned locked and with an increased 370 * refcount. 371 * 372 * Context: May sleep. 373 * Return: A struct page which is !PageTail, or %NULL if there is no page 374 * in the cache for this index. 375 */ 376 static inline struct page *find_lock_head(struct address_space *mapping, 377 pgoff_t index) 378 { 379 return pagecache_get_page(mapping, index, FGP_LOCK | FGP_HEAD, 0); 380 } 381 382 /** 383 * find_or_create_page - locate or add a pagecache page 384 * @mapping: the page's address_space 385 * @index: the page's index into the mapping 386 * @gfp_mask: page allocation mode 387 * 388 * Looks up the page cache slot at @mapping & @offset. If there is a 389 * page cache page, it is returned locked and with an increased 390 * refcount. 391 * 392 * If the page is not present, a new page is allocated using @gfp_mask 393 * and added to the page cache and the VM's LRU list. The page is 394 * returned locked and with an increased refcount. 395 * 396 * On memory exhaustion, %NULL is returned. 397 * 398 * find_or_create_page() may sleep, even if @gfp_flags specifies an 399 * atomic allocation! 400 */ 401 static inline struct page *find_or_create_page(struct address_space *mapping, 402 pgoff_t index, gfp_t gfp_mask) 403 { 404 return pagecache_get_page(mapping, index, 405 FGP_LOCK|FGP_ACCESSED|FGP_CREAT, 406 gfp_mask); 407 } 408 409 /** 410 * grab_cache_page_nowait - returns locked page at given index in given cache 411 * @mapping: target address_space 412 * @index: the page index 413 * 414 * Same as grab_cache_page(), but do not wait if the page is unavailable. 415 * This is intended for speculative data generators, where the data can 416 * be regenerated if the page couldn't be grabbed. This routine should 417 * be safe to call while holding the lock for another page. 418 * 419 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 420 * and deadlock against the caller's locked page. 421 */ 422 static inline struct page *grab_cache_page_nowait(struct address_space *mapping, 423 pgoff_t index) 424 { 425 return pagecache_get_page(mapping, index, 426 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT, 427 mapping_gfp_mask(mapping)); 428 } 429 430 /* Does this page contain this index? */ 431 static inline bool thp_contains(struct page *head, pgoff_t index) 432 { 433 /* HugeTLBfs indexes the page cache in units of hpage_size */ 434 if (PageHuge(head)) 435 return head->index == index; 436 return page_index(head) == (index & ~(thp_nr_pages(head) - 1UL)); 437 } 438 439 /* 440 * Given the page we found in the page cache, return the page corresponding 441 * to this index in the file 442 */ 443 static inline struct page *find_subpage(struct page *head, pgoff_t index) 444 { 445 /* HugeTLBfs wants the head page regardless */ 446 if (PageHuge(head)) 447 return head; 448 449 return head + (index & (thp_nr_pages(head) - 1)); 450 } 451 452 unsigned find_get_entries(struct address_space *mapping, pgoff_t start, 453 unsigned int nr_entries, struct page **entries, 454 pgoff_t *indices); 455 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, 456 pgoff_t end, unsigned int nr_pages, 457 struct page **pages); 458 static inline unsigned find_get_pages(struct address_space *mapping, 459 pgoff_t *start, unsigned int nr_pages, 460 struct page **pages) 461 { 462 return find_get_pages_range(mapping, start, (pgoff_t)-1, nr_pages, 463 pages); 464 } 465 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start, 466 unsigned int nr_pages, struct page **pages); 467 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, 468 pgoff_t end, xa_mark_t tag, unsigned int nr_pages, 469 struct page **pages); 470 static inline unsigned find_get_pages_tag(struct address_space *mapping, 471 pgoff_t *index, xa_mark_t tag, unsigned int nr_pages, 472 struct page **pages) 473 { 474 return find_get_pages_range_tag(mapping, index, (pgoff_t)-1, tag, 475 nr_pages, pages); 476 } 477 478 struct page *grab_cache_page_write_begin(struct address_space *mapping, 479 pgoff_t index, unsigned flags); 480 481 /* 482 * Returns locked page at given index in given cache, creating it if needed. 483 */ 484 static inline struct page *grab_cache_page(struct address_space *mapping, 485 pgoff_t index) 486 { 487 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping)); 488 } 489 490 extern struct page * read_cache_page(struct address_space *mapping, 491 pgoff_t index, filler_t *filler, void *data); 492 extern struct page * read_cache_page_gfp(struct address_space *mapping, 493 pgoff_t index, gfp_t gfp_mask); 494 extern int read_cache_pages(struct address_space *mapping, 495 struct list_head *pages, filler_t *filler, void *data); 496 497 static inline struct page *read_mapping_page(struct address_space *mapping, 498 pgoff_t index, void *data) 499 { 500 return read_cache_page(mapping, index, NULL, data); 501 } 502 503 /* 504 * Get index of the page with in radix-tree 505 * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE) 506 */ 507 static inline pgoff_t page_to_index(struct page *page) 508 { 509 pgoff_t pgoff; 510 511 if (likely(!PageTransTail(page))) 512 return page->index; 513 514 /* 515 * We don't initialize ->index for tail pages: calculate based on 516 * head page 517 */ 518 pgoff = compound_head(page)->index; 519 pgoff += page - compound_head(page); 520 return pgoff; 521 } 522 523 /* 524 * Get the offset in PAGE_SIZE. 525 * (TODO: hugepage should have ->index in PAGE_SIZE) 526 */ 527 static inline pgoff_t page_to_pgoff(struct page *page) 528 { 529 if (unlikely(PageHeadHuge(page))) 530 return page->index << compound_order(page); 531 532 return page_to_index(page); 533 } 534 535 /* 536 * Return byte-offset into filesystem object for page. 537 */ 538 static inline loff_t page_offset(struct page *page) 539 { 540 return ((loff_t)page->index) << PAGE_SHIFT; 541 } 542 543 static inline loff_t page_file_offset(struct page *page) 544 { 545 return ((loff_t)page_index(page)) << PAGE_SHIFT; 546 } 547 548 extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 549 unsigned long address); 550 551 static inline pgoff_t linear_page_index(struct vm_area_struct *vma, 552 unsigned long address) 553 { 554 pgoff_t pgoff; 555 if (unlikely(is_vm_hugetlb_page(vma))) 556 return linear_hugepage_index(vma, address); 557 pgoff = (address - vma->vm_start) >> PAGE_SHIFT; 558 pgoff += vma->vm_pgoff; 559 return pgoff; 560 } 561 562 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */ 563 struct wait_page_key { 564 struct page *page; 565 int bit_nr; 566 int page_match; 567 }; 568 569 struct wait_page_queue { 570 struct page *page; 571 int bit_nr; 572 wait_queue_entry_t wait; 573 }; 574 575 static inline bool wake_page_match(struct wait_page_queue *wait_page, 576 struct wait_page_key *key) 577 { 578 if (wait_page->page != key->page) 579 return false; 580 key->page_match = 1; 581 582 if (wait_page->bit_nr != key->bit_nr) 583 return false; 584 585 return true; 586 } 587 588 extern void __lock_page(struct page *page); 589 extern int __lock_page_killable(struct page *page); 590 extern int __lock_page_async(struct page *page, struct wait_page_queue *wait); 591 extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 592 unsigned int flags); 593 extern void unlock_page(struct page *page); 594 595 /* 596 * Return true if the page was successfully locked 597 */ 598 static inline int trylock_page(struct page *page) 599 { 600 page = compound_head(page); 601 return (likely(!test_and_set_bit_lock(PG_locked, &page->flags))); 602 } 603 604 /* 605 * lock_page may only be called if we have the page's inode pinned. 606 */ 607 static inline void lock_page(struct page *page) 608 { 609 might_sleep(); 610 if (!trylock_page(page)) 611 __lock_page(page); 612 } 613 614 /* 615 * lock_page_killable is like lock_page but can be interrupted by fatal 616 * signals. It returns 0 if it locked the page and -EINTR if it was 617 * killed while waiting. 618 */ 619 static inline int lock_page_killable(struct page *page) 620 { 621 might_sleep(); 622 if (!trylock_page(page)) 623 return __lock_page_killable(page); 624 return 0; 625 } 626 627 /* 628 * lock_page_async - Lock the page, unless this would block. If the page 629 * is already locked, then queue a callback when the page becomes unlocked. 630 * This callback can then retry the operation. 631 * 632 * Returns 0 if the page is locked successfully, or -EIOCBQUEUED if the page 633 * was already locked and the callback defined in 'wait' was queued. 634 */ 635 static inline int lock_page_async(struct page *page, 636 struct wait_page_queue *wait) 637 { 638 if (!trylock_page(page)) 639 return __lock_page_async(page, wait); 640 return 0; 641 } 642 643 /* 644 * lock_page_or_retry - Lock the page, unless this would block and the 645 * caller indicated that it can handle a retry. 646 * 647 * Return value and mmap_lock implications depend on flags; see 648 * __lock_page_or_retry(). 649 */ 650 static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm, 651 unsigned int flags) 652 { 653 might_sleep(); 654 return trylock_page(page) || __lock_page_or_retry(page, mm, flags); 655 } 656 657 /* 658 * This is exported only for wait_on_page_locked/wait_on_page_writeback, etc., 659 * and should not be used directly. 660 */ 661 extern void wait_on_page_bit(struct page *page, int bit_nr); 662 extern int wait_on_page_bit_killable(struct page *page, int bit_nr); 663 664 /* 665 * Wait for a page to be unlocked. 666 * 667 * This must be called with the caller "holding" the page, 668 * ie with increased "page->count" so that the page won't 669 * go away during the wait.. 670 */ 671 static inline void wait_on_page_locked(struct page *page) 672 { 673 if (PageLocked(page)) 674 wait_on_page_bit(compound_head(page), PG_locked); 675 } 676 677 static inline int wait_on_page_locked_killable(struct page *page) 678 { 679 if (!PageLocked(page)) 680 return 0; 681 return wait_on_page_bit_killable(compound_head(page), PG_locked); 682 } 683 684 extern void put_and_wait_on_page_locked(struct page *page); 685 686 void wait_on_page_writeback(struct page *page); 687 extern void end_page_writeback(struct page *page); 688 void wait_for_stable_page(struct page *page); 689 690 void page_endio(struct page *page, bool is_write, int err); 691 692 /* 693 * Add an arbitrary waiter to a page's wait queue 694 */ 695 extern void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter); 696 697 /* 698 * Fault everything in given userspace address range in. 699 */ 700 static inline int fault_in_pages_writeable(char __user *uaddr, int size) 701 { 702 char __user *end = uaddr + size - 1; 703 704 if (unlikely(size == 0)) 705 return 0; 706 707 if (unlikely(uaddr > end)) 708 return -EFAULT; 709 /* 710 * Writing zeroes into userspace here is OK, because we know that if 711 * the zero gets there, we'll be overwriting it. 712 */ 713 do { 714 if (unlikely(__put_user(0, uaddr) != 0)) 715 return -EFAULT; 716 uaddr += PAGE_SIZE; 717 } while (uaddr <= end); 718 719 /* Check whether the range spilled into the next page. */ 720 if (((unsigned long)uaddr & PAGE_MASK) == 721 ((unsigned long)end & PAGE_MASK)) 722 return __put_user(0, end); 723 724 return 0; 725 } 726 727 static inline int fault_in_pages_readable(const char __user *uaddr, int size) 728 { 729 volatile char c; 730 const char __user *end = uaddr + size - 1; 731 732 if (unlikely(size == 0)) 733 return 0; 734 735 if (unlikely(uaddr > end)) 736 return -EFAULT; 737 738 do { 739 if (unlikely(__get_user(c, uaddr) != 0)) 740 return -EFAULT; 741 uaddr += PAGE_SIZE; 742 } while (uaddr <= end); 743 744 /* Check whether the range spilled into the next page. */ 745 if (((unsigned long)uaddr & PAGE_MASK) == 746 ((unsigned long)end & PAGE_MASK)) { 747 return __get_user(c, end); 748 } 749 750 (void)c; 751 return 0; 752 } 753 754 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 755 pgoff_t index, gfp_t gfp_mask); 756 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 757 pgoff_t index, gfp_t gfp_mask); 758 extern void delete_from_page_cache(struct page *page); 759 extern void __delete_from_page_cache(struct page *page, void *shadow); 760 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask); 761 void delete_from_page_cache_batch(struct address_space *mapping, 762 struct pagevec *pvec); 763 764 /* 765 * Like add_to_page_cache_locked, but used to add newly allocated pages: 766 * the page is new, so we can just run __SetPageLocked() against it. 767 */ 768 static inline int add_to_page_cache(struct page *page, 769 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask) 770 { 771 int error; 772 773 __SetPageLocked(page); 774 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask); 775 if (unlikely(error)) 776 __ClearPageLocked(page); 777 return error; 778 } 779 780 /** 781 * struct readahead_control - Describes a readahead request. 782 * 783 * A readahead request is for consecutive pages. Filesystems which 784 * implement the ->readahead method should call readahead_page() or 785 * readahead_page_batch() in a loop and attempt to start I/O against 786 * each page in the request. 787 * 788 * Most of the fields in this struct are private and should be accessed 789 * by the functions below. 790 * 791 * @file: The file, used primarily by network filesystems for authentication. 792 * May be NULL if invoked internally by the filesystem. 793 * @mapping: Readahead this filesystem object. 794 */ 795 struct readahead_control { 796 struct file *file; 797 struct address_space *mapping; 798 /* private: use the readahead_* accessors instead */ 799 pgoff_t _index; 800 unsigned int _nr_pages; 801 unsigned int _batch_count; 802 }; 803 804 #define DEFINE_READAHEAD(rac, f, m, i) \ 805 struct readahead_control rac = { \ 806 .file = f, \ 807 .mapping = m, \ 808 ._index = i, \ 809 } 810 811 #define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE) 812 813 void page_cache_ra_unbounded(struct readahead_control *, 814 unsigned long nr_to_read, unsigned long lookahead_count); 815 void page_cache_sync_ra(struct readahead_control *, struct file_ra_state *, 816 unsigned long req_count); 817 void page_cache_async_ra(struct readahead_control *, struct file_ra_state *, 818 struct page *, unsigned long req_count); 819 820 /** 821 * page_cache_sync_readahead - generic file readahead 822 * @mapping: address_space which holds the pagecache and I/O vectors 823 * @ra: file_ra_state which holds the readahead state 824 * @file: Used by the filesystem for authentication. 825 * @index: Index of first page to be read. 826 * @req_count: Total number of pages being read by the caller. 827 * 828 * page_cache_sync_readahead() should be called when a cache miss happened: 829 * it will submit the read. The readahead logic may decide to piggyback more 830 * pages onto the read request if access patterns suggest it will improve 831 * performance. 832 */ 833 static inline 834 void page_cache_sync_readahead(struct address_space *mapping, 835 struct file_ra_state *ra, struct file *file, pgoff_t index, 836 unsigned long req_count) 837 { 838 DEFINE_READAHEAD(ractl, file, mapping, index); 839 page_cache_sync_ra(&ractl, ra, req_count); 840 } 841 842 /** 843 * page_cache_async_readahead - file readahead for marked pages 844 * @mapping: address_space which holds the pagecache and I/O vectors 845 * @ra: file_ra_state which holds the readahead state 846 * @file: Used by the filesystem for authentication. 847 * @page: The page at @index which triggered the readahead call. 848 * @index: Index of first page to be read. 849 * @req_count: Total number of pages being read by the caller. 850 * 851 * page_cache_async_readahead() should be called when a page is used which 852 * is marked as PageReadahead; this is a marker to suggest that the application 853 * has used up enough of the readahead window that we should start pulling in 854 * more pages. 855 */ 856 static inline 857 void page_cache_async_readahead(struct address_space *mapping, 858 struct file_ra_state *ra, struct file *file, 859 struct page *page, pgoff_t index, unsigned long req_count) 860 { 861 DEFINE_READAHEAD(ractl, file, mapping, index); 862 page_cache_async_ra(&ractl, ra, page, req_count); 863 } 864 865 /** 866 * readahead_page - Get the next page to read. 867 * @rac: The current readahead request. 868 * 869 * Context: The page is locked and has an elevated refcount. The caller 870 * should decreases the refcount once the page has been submitted for I/O 871 * and unlock the page once all I/O to that page has completed. 872 * Return: A pointer to the next page, or %NULL if we are done. 873 */ 874 static inline struct page *readahead_page(struct readahead_control *rac) 875 { 876 struct page *page; 877 878 BUG_ON(rac->_batch_count > rac->_nr_pages); 879 rac->_nr_pages -= rac->_batch_count; 880 rac->_index += rac->_batch_count; 881 882 if (!rac->_nr_pages) { 883 rac->_batch_count = 0; 884 return NULL; 885 } 886 887 page = xa_load(&rac->mapping->i_pages, rac->_index); 888 VM_BUG_ON_PAGE(!PageLocked(page), page); 889 rac->_batch_count = thp_nr_pages(page); 890 891 return page; 892 } 893 894 static inline unsigned int __readahead_batch(struct readahead_control *rac, 895 struct page **array, unsigned int array_sz) 896 { 897 unsigned int i = 0; 898 XA_STATE(xas, &rac->mapping->i_pages, 0); 899 struct page *page; 900 901 BUG_ON(rac->_batch_count > rac->_nr_pages); 902 rac->_nr_pages -= rac->_batch_count; 903 rac->_index += rac->_batch_count; 904 rac->_batch_count = 0; 905 906 xas_set(&xas, rac->_index); 907 rcu_read_lock(); 908 xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) { 909 if (xas_retry(&xas, page)) 910 continue; 911 VM_BUG_ON_PAGE(!PageLocked(page), page); 912 VM_BUG_ON_PAGE(PageTail(page), page); 913 array[i++] = page; 914 rac->_batch_count += thp_nr_pages(page); 915 916 /* 917 * The page cache isn't using multi-index entries yet, 918 * so the xas cursor needs to be manually moved to the 919 * next index. This can be removed once the page cache 920 * is converted. 921 */ 922 if (PageHead(page)) 923 xas_set(&xas, rac->_index + rac->_batch_count); 924 925 if (i == array_sz) 926 break; 927 } 928 rcu_read_unlock(); 929 930 return i; 931 } 932 933 /** 934 * readahead_page_batch - Get a batch of pages to read. 935 * @rac: The current readahead request. 936 * @array: An array of pointers to struct page. 937 * 938 * Context: The pages are locked and have an elevated refcount. The caller 939 * should decreases the refcount once the page has been submitted for I/O 940 * and unlock the page once all I/O to that page has completed. 941 * Return: The number of pages placed in the array. 0 indicates the request 942 * is complete. 943 */ 944 #define readahead_page_batch(rac, array) \ 945 __readahead_batch(rac, array, ARRAY_SIZE(array)) 946 947 /** 948 * readahead_pos - The byte offset into the file of this readahead request. 949 * @rac: The readahead request. 950 */ 951 static inline loff_t readahead_pos(struct readahead_control *rac) 952 { 953 return (loff_t)rac->_index * PAGE_SIZE; 954 } 955 956 /** 957 * readahead_length - The number of bytes in this readahead request. 958 * @rac: The readahead request. 959 */ 960 static inline loff_t readahead_length(struct readahead_control *rac) 961 { 962 return (loff_t)rac->_nr_pages * PAGE_SIZE; 963 } 964 965 /** 966 * readahead_index - The index of the first page in this readahead request. 967 * @rac: The readahead request. 968 */ 969 static inline pgoff_t readahead_index(struct readahead_control *rac) 970 { 971 return rac->_index; 972 } 973 974 /** 975 * readahead_count - The number of pages in this readahead request. 976 * @rac: The readahead request. 977 */ 978 static inline unsigned int readahead_count(struct readahead_control *rac) 979 { 980 return rac->_nr_pages; 981 } 982 983 static inline unsigned long dir_pages(struct inode *inode) 984 { 985 return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >> 986 PAGE_SHIFT; 987 } 988 989 /** 990 * page_mkwrite_check_truncate - check if page was truncated 991 * @page: the page to check 992 * @inode: the inode to check the page against 993 * 994 * Returns the number of bytes in the page up to EOF, 995 * or -EFAULT if the page was truncated. 996 */ 997 static inline int page_mkwrite_check_truncate(struct page *page, 998 struct inode *inode) 999 { 1000 loff_t size = i_size_read(inode); 1001 pgoff_t index = size >> PAGE_SHIFT; 1002 int offset = offset_in_page(size); 1003 1004 if (page->mapping != inode->i_mapping) 1005 return -EFAULT; 1006 1007 /* page is wholly inside EOF */ 1008 if (page->index < index) 1009 return PAGE_SIZE; 1010 /* page is wholly past EOF */ 1011 if (page->index > index || !offset) 1012 return -EFAULT; 1013 /* page is partially inside EOF */ 1014 return offset; 1015 } 1016 1017 /** 1018 * i_blocks_per_page - How many blocks fit in this page. 1019 * @inode: The inode which contains the blocks. 1020 * @page: The page (head page if the page is a THP). 1021 * 1022 * If the block size is larger than the size of this page, return zero. 1023 * 1024 * Context: The caller should hold a refcount on the page to prevent it 1025 * from being split. 1026 * Return: The number of filesystem blocks covered by this page. 1027 */ 1028 static inline 1029 unsigned int i_blocks_per_page(struct inode *inode, struct page *page) 1030 { 1031 return thp_size(page) >> inode->i_blkbits; 1032 } 1033 #endif /* _LINUX_PAGEMAP_H */ 1034