xref: /linux-6.15/include/linux/pagemap.h (revision 8fdff1dc)
1 #ifndef _LINUX_PAGEMAP_H
2 #define _LINUX_PAGEMAP_H
3 
4 /*
5  * Copyright 1995 Linus Torvalds
6  */
7 #include <linux/mm.h>
8 #include <linux/fs.h>
9 #include <linux/list.h>
10 #include <linux/highmem.h>
11 #include <linux/compiler.h>
12 #include <asm/uaccess.h>
13 #include <linux/gfp.h>
14 #include <linux/bitops.h>
15 #include <linux/hardirq.h> /* for in_interrupt() */
16 #include <linux/hugetlb_inline.h>
17 
18 /*
19  * Bits in mapping->flags.  The lower __GFP_BITS_SHIFT bits are the page
20  * allocation mode flags.
21  */
22 enum mapping_flags {
23 	AS_EIO		= __GFP_BITS_SHIFT + 0,	/* IO error on async write */
24 	AS_ENOSPC	= __GFP_BITS_SHIFT + 1,	/* ENOSPC on async write */
25 	AS_MM_ALL_LOCKS	= __GFP_BITS_SHIFT + 2,	/* under mm_take_all_locks() */
26 	AS_UNEVICTABLE	= __GFP_BITS_SHIFT + 3,	/* e.g., ramdisk, SHM_LOCK */
27 	AS_BALLOON_MAP  = __GFP_BITS_SHIFT + 4, /* balloon page special map */
28 };
29 
30 static inline void mapping_set_error(struct address_space *mapping, int error)
31 {
32 	if (unlikely(error)) {
33 		if (error == -ENOSPC)
34 			set_bit(AS_ENOSPC, &mapping->flags);
35 		else
36 			set_bit(AS_EIO, &mapping->flags);
37 	}
38 }
39 
40 static inline void mapping_set_unevictable(struct address_space *mapping)
41 {
42 	set_bit(AS_UNEVICTABLE, &mapping->flags);
43 }
44 
45 static inline void mapping_clear_unevictable(struct address_space *mapping)
46 {
47 	clear_bit(AS_UNEVICTABLE, &mapping->flags);
48 }
49 
50 static inline int mapping_unevictable(struct address_space *mapping)
51 {
52 	if (mapping)
53 		return test_bit(AS_UNEVICTABLE, &mapping->flags);
54 	return !!mapping;
55 }
56 
57 static inline void mapping_set_balloon(struct address_space *mapping)
58 {
59 	set_bit(AS_BALLOON_MAP, &mapping->flags);
60 }
61 
62 static inline void mapping_clear_balloon(struct address_space *mapping)
63 {
64 	clear_bit(AS_BALLOON_MAP, &mapping->flags);
65 }
66 
67 static inline int mapping_balloon(struct address_space *mapping)
68 {
69 	return mapping && test_bit(AS_BALLOON_MAP, &mapping->flags);
70 }
71 
72 static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
73 {
74 	return (__force gfp_t)mapping->flags & __GFP_BITS_MASK;
75 }
76 
77 /*
78  * This is non-atomic.  Only to be used before the mapping is activated.
79  * Probably needs a barrier...
80  */
81 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
82 {
83 	m->flags = (m->flags & ~(__force unsigned long)__GFP_BITS_MASK) |
84 				(__force unsigned long)mask;
85 }
86 
87 /*
88  * The page cache can done in larger chunks than
89  * one page, because it allows for more efficient
90  * throughput (it can then be mapped into user
91  * space in smaller chunks for same flexibility).
92  *
93  * Or rather, it _will_ be done in larger chunks.
94  */
95 #define PAGE_CACHE_SHIFT	PAGE_SHIFT
96 #define PAGE_CACHE_SIZE		PAGE_SIZE
97 #define PAGE_CACHE_MASK		PAGE_MASK
98 #define PAGE_CACHE_ALIGN(addr)	(((addr)+PAGE_CACHE_SIZE-1)&PAGE_CACHE_MASK)
99 
100 #define page_cache_get(page)		get_page(page)
101 #define page_cache_release(page)	put_page(page)
102 void release_pages(struct page **pages, int nr, int cold);
103 
104 /*
105  * speculatively take a reference to a page.
106  * If the page is free (_count == 0), then _count is untouched, and 0
107  * is returned. Otherwise, _count is incremented by 1 and 1 is returned.
108  *
109  * This function must be called inside the same rcu_read_lock() section as has
110  * been used to lookup the page in the pagecache radix-tree (or page table):
111  * this allows allocators to use a synchronize_rcu() to stabilize _count.
112  *
113  * Unless an RCU grace period has passed, the count of all pages coming out
114  * of the allocator must be considered unstable. page_count may return higher
115  * than expected, and put_page must be able to do the right thing when the
116  * page has been finished with, no matter what it is subsequently allocated
117  * for (because put_page is what is used here to drop an invalid speculative
118  * reference).
119  *
120  * This is the interesting part of the lockless pagecache (and lockless
121  * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
122  * has the following pattern:
123  * 1. find page in radix tree
124  * 2. conditionally increment refcount
125  * 3. check the page is still in pagecache (if no, goto 1)
126  *
127  * Remove-side that cares about stability of _count (eg. reclaim) has the
128  * following (with tree_lock held for write):
129  * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
130  * B. remove page from pagecache
131  * C. free the page
132  *
133  * There are 2 critical interleavings that matter:
134  * - 2 runs before A: in this case, A sees elevated refcount and bails out
135  * - A runs before 2: in this case, 2 sees zero refcount and retries;
136  *   subsequently, B will complete and 1 will find no page, causing the
137  *   lookup to return NULL.
138  *
139  * It is possible that between 1 and 2, the page is removed then the exact same
140  * page is inserted into the same position in pagecache. That's OK: the
141  * old find_get_page using tree_lock could equally have run before or after
142  * such a re-insertion, depending on order that locks are granted.
143  *
144  * Lookups racing against pagecache insertion isn't a big problem: either 1
145  * will find the page or it will not. Likewise, the old find_get_page could run
146  * either before the insertion or afterwards, depending on timing.
147  */
148 static inline int page_cache_get_speculative(struct page *page)
149 {
150 	VM_BUG_ON(in_interrupt());
151 
152 #if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU)
153 # ifdef CONFIG_PREEMPT_COUNT
154 	VM_BUG_ON(!in_atomic());
155 # endif
156 	/*
157 	 * Preempt must be disabled here - we rely on rcu_read_lock doing
158 	 * this for us.
159 	 *
160 	 * Pagecache won't be truncated from interrupt context, so if we have
161 	 * found a page in the radix tree here, we have pinned its refcount by
162 	 * disabling preempt, and hence no need for the "speculative get" that
163 	 * SMP requires.
164 	 */
165 	VM_BUG_ON(page_count(page) == 0);
166 	atomic_inc(&page->_count);
167 
168 #else
169 	if (unlikely(!get_page_unless_zero(page))) {
170 		/*
171 		 * Either the page has been freed, or will be freed.
172 		 * In either case, retry here and the caller should
173 		 * do the right thing (see comments above).
174 		 */
175 		return 0;
176 	}
177 #endif
178 	VM_BUG_ON(PageTail(page));
179 
180 	return 1;
181 }
182 
183 /*
184  * Same as above, but add instead of inc (could just be merged)
185  */
186 static inline int page_cache_add_speculative(struct page *page, int count)
187 {
188 	VM_BUG_ON(in_interrupt());
189 
190 #if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU)
191 # ifdef CONFIG_PREEMPT_COUNT
192 	VM_BUG_ON(!in_atomic());
193 # endif
194 	VM_BUG_ON(page_count(page) == 0);
195 	atomic_add(count, &page->_count);
196 
197 #else
198 	if (unlikely(!atomic_add_unless(&page->_count, count, 0)))
199 		return 0;
200 #endif
201 	VM_BUG_ON(PageCompound(page) && page != compound_head(page));
202 
203 	return 1;
204 }
205 
206 static inline int page_freeze_refs(struct page *page, int count)
207 {
208 	return likely(atomic_cmpxchg(&page->_count, count, 0) == count);
209 }
210 
211 static inline void page_unfreeze_refs(struct page *page, int count)
212 {
213 	VM_BUG_ON(page_count(page) != 0);
214 	VM_BUG_ON(count == 0);
215 
216 	atomic_set(&page->_count, count);
217 }
218 
219 #ifdef CONFIG_NUMA
220 extern struct page *__page_cache_alloc(gfp_t gfp);
221 #else
222 static inline struct page *__page_cache_alloc(gfp_t gfp)
223 {
224 	return alloc_pages(gfp, 0);
225 }
226 #endif
227 
228 static inline struct page *page_cache_alloc(struct address_space *x)
229 {
230 	return __page_cache_alloc(mapping_gfp_mask(x));
231 }
232 
233 static inline struct page *page_cache_alloc_cold(struct address_space *x)
234 {
235 	return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD);
236 }
237 
238 static inline struct page *page_cache_alloc_readahead(struct address_space *x)
239 {
240 	return __page_cache_alloc(mapping_gfp_mask(x) |
241 				  __GFP_COLD | __GFP_NORETRY | __GFP_NOWARN);
242 }
243 
244 typedef int filler_t(void *, struct page *);
245 
246 extern struct page * find_get_page(struct address_space *mapping,
247 				pgoff_t index);
248 extern struct page * find_lock_page(struct address_space *mapping,
249 				pgoff_t index);
250 extern struct page * find_or_create_page(struct address_space *mapping,
251 				pgoff_t index, gfp_t gfp_mask);
252 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
253 			unsigned int nr_pages, struct page **pages);
254 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
255 			       unsigned int nr_pages, struct page **pages);
256 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
257 			int tag, unsigned int nr_pages, struct page **pages);
258 
259 struct page *grab_cache_page_write_begin(struct address_space *mapping,
260 			pgoff_t index, unsigned flags);
261 
262 /*
263  * Returns locked page at given index in given cache, creating it if needed.
264  */
265 static inline struct page *grab_cache_page(struct address_space *mapping,
266 								pgoff_t index)
267 {
268 	return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
269 }
270 
271 extern struct page * grab_cache_page_nowait(struct address_space *mapping,
272 				pgoff_t index);
273 extern struct page * read_cache_page_async(struct address_space *mapping,
274 				pgoff_t index, filler_t *filler, void *data);
275 extern struct page * read_cache_page(struct address_space *mapping,
276 				pgoff_t index, filler_t *filler, void *data);
277 extern struct page * read_cache_page_gfp(struct address_space *mapping,
278 				pgoff_t index, gfp_t gfp_mask);
279 extern int read_cache_pages(struct address_space *mapping,
280 		struct list_head *pages, filler_t *filler, void *data);
281 
282 static inline struct page *read_mapping_page_async(
283 				struct address_space *mapping,
284 				pgoff_t index, void *data)
285 {
286 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
287 	return read_cache_page_async(mapping, index, filler, data);
288 }
289 
290 static inline struct page *read_mapping_page(struct address_space *mapping,
291 				pgoff_t index, void *data)
292 {
293 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
294 	return read_cache_page(mapping, index, filler, data);
295 }
296 
297 /*
298  * Return byte-offset into filesystem object for page.
299  */
300 static inline loff_t page_offset(struct page *page)
301 {
302 	return ((loff_t)page->index) << PAGE_CACHE_SHIFT;
303 }
304 
305 static inline loff_t page_file_offset(struct page *page)
306 {
307 	return ((loff_t)page_file_index(page)) << PAGE_CACHE_SHIFT;
308 }
309 
310 extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
311 				     unsigned long address);
312 
313 static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
314 					unsigned long address)
315 {
316 	pgoff_t pgoff;
317 	if (unlikely(is_vm_hugetlb_page(vma)))
318 		return linear_hugepage_index(vma, address);
319 	pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
320 	pgoff += vma->vm_pgoff;
321 	return pgoff >> (PAGE_CACHE_SHIFT - PAGE_SHIFT);
322 }
323 
324 extern void __lock_page(struct page *page);
325 extern int __lock_page_killable(struct page *page);
326 extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
327 				unsigned int flags);
328 extern void unlock_page(struct page *page);
329 
330 static inline void __set_page_locked(struct page *page)
331 {
332 	__set_bit(PG_locked, &page->flags);
333 }
334 
335 static inline void __clear_page_locked(struct page *page)
336 {
337 	__clear_bit(PG_locked, &page->flags);
338 }
339 
340 static inline int trylock_page(struct page *page)
341 {
342 	return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
343 }
344 
345 /*
346  * lock_page may only be called if we have the page's inode pinned.
347  */
348 static inline void lock_page(struct page *page)
349 {
350 	might_sleep();
351 	if (!trylock_page(page))
352 		__lock_page(page);
353 }
354 
355 /*
356  * lock_page_killable is like lock_page but can be interrupted by fatal
357  * signals.  It returns 0 if it locked the page and -EINTR if it was
358  * killed while waiting.
359  */
360 static inline int lock_page_killable(struct page *page)
361 {
362 	might_sleep();
363 	if (!trylock_page(page))
364 		return __lock_page_killable(page);
365 	return 0;
366 }
367 
368 /*
369  * lock_page_or_retry - Lock the page, unless this would block and the
370  * caller indicated that it can handle a retry.
371  */
372 static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm,
373 				     unsigned int flags)
374 {
375 	might_sleep();
376 	return trylock_page(page) || __lock_page_or_retry(page, mm, flags);
377 }
378 
379 /*
380  * This is exported only for wait_on_page_locked/wait_on_page_writeback.
381  * Never use this directly!
382  */
383 extern void wait_on_page_bit(struct page *page, int bit_nr);
384 
385 extern int wait_on_page_bit_killable(struct page *page, int bit_nr);
386 
387 static inline int wait_on_page_locked_killable(struct page *page)
388 {
389 	if (PageLocked(page))
390 		return wait_on_page_bit_killable(page, PG_locked);
391 	return 0;
392 }
393 
394 /*
395  * Wait for a page to be unlocked.
396  *
397  * This must be called with the caller "holding" the page,
398  * ie with increased "page->count" so that the page won't
399  * go away during the wait..
400  */
401 static inline void wait_on_page_locked(struct page *page)
402 {
403 	if (PageLocked(page))
404 		wait_on_page_bit(page, PG_locked);
405 }
406 
407 /*
408  * Wait for a page to complete writeback
409  */
410 static inline void wait_on_page_writeback(struct page *page)
411 {
412 	if (PageWriteback(page))
413 		wait_on_page_bit(page, PG_writeback);
414 }
415 
416 extern void end_page_writeback(struct page *page);
417 
418 /*
419  * Add an arbitrary waiter to a page's wait queue
420  */
421 extern void add_page_wait_queue(struct page *page, wait_queue_t *waiter);
422 
423 /*
424  * Fault a userspace page into pagetables.  Return non-zero on a fault.
425  *
426  * This assumes that two userspace pages are always sufficient.  That's
427  * not true if PAGE_CACHE_SIZE > PAGE_SIZE.
428  */
429 static inline int fault_in_pages_writeable(char __user *uaddr, int size)
430 {
431 	int ret;
432 
433 	if (unlikely(size == 0))
434 		return 0;
435 
436 	/*
437 	 * Writing zeroes into userspace here is OK, because we know that if
438 	 * the zero gets there, we'll be overwriting it.
439 	 */
440 	ret = __put_user(0, uaddr);
441 	if (ret == 0) {
442 		char __user *end = uaddr + size - 1;
443 
444 		/*
445 		 * If the page was already mapped, this will get a cache miss
446 		 * for sure, so try to avoid doing it.
447 		 */
448 		if (((unsigned long)uaddr & PAGE_MASK) !=
449 				((unsigned long)end & PAGE_MASK))
450 			ret = __put_user(0, end);
451 	}
452 	return ret;
453 }
454 
455 static inline int fault_in_pages_readable(const char __user *uaddr, int size)
456 {
457 	volatile char c;
458 	int ret;
459 
460 	if (unlikely(size == 0))
461 		return 0;
462 
463 	ret = __get_user(c, uaddr);
464 	if (ret == 0) {
465 		const char __user *end = uaddr + size - 1;
466 
467 		if (((unsigned long)uaddr & PAGE_MASK) !=
468 				((unsigned long)end & PAGE_MASK)) {
469 			ret = __get_user(c, end);
470 			(void)c;
471 		}
472 	}
473 	return ret;
474 }
475 
476 /*
477  * Multipage variants of the above prefault helpers, useful if more than
478  * PAGE_SIZE of data needs to be prefaulted. These are separate from the above
479  * functions (which only handle up to PAGE_SIZE) to avoid clobbering the
480  * filemap.c hotpaths.
481  */
482 static inline int fault_in_multipages_writeable(char __user *uaddr, int size)
483 {
484 	int ret = 0;
485 	char __user *end = uaddr + size - 1;
486 
487 	if (unlikely(size == 0))
488 		return ret;
489 
490 	/*
491 	 * Writing zeroes into userspace here is OK, because we know that if
492 	 * the zero gets there, we'll be overwriting it.
493 	 */
494 	while (uaddr <= end) {
495 		ret = __put_user(0, uaddr);
496 		if (ret != 0)
497 			return ret;
498 		uaddr += PAGE_SIZE;
499 	}
500 
501 	/* Check whether the range spilled into the next page. */
502 	if (((unsigned long)uaddr & PAGE_MASK) ==
503 			((unsigned long)end & PAGE_MASK))
504 		ret = __put_user(0, end);
505 
506 	return ret;
507 }
508 
509 static inline int fault_in_multipages_readable(const char __user *uaddr,
510 					       int size)
511 {
512 	volatile char c;
513 	int ret = 0;
514 	const char __user *end = uaddr + size - 1;
515 
516 	if (unlikely(size == 0))
517 		return ret;
518 
519 	while (uaddr <= end) {
520 		ret = __get_user(c, uaddr);
521 		if (ret != 0)
522 			return ret;
523 		uaddr += PAGE_SIZE;
524 	}
525 
526 	/* Check whether the range spilled into the next page. */
527 	if (((unsigned long)uaddr & PAGE_MASK) ==
528 			((unsigned long)end & PAGE_MASK)) {
529 		ret = __get_user(c, end);
530 		(void)c;
531 	}
532 
533 	return ret;
534 }
535 
536 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
537 				pgoff_t index, gfp_t gfp_mask);
538 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
539 				pgoff_t index, gfp_t gfp_mask);
540 extern void delete_from_page_cache(struct page *page);
541 extern void __delete_from_page_cache(struct page *page);
542 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask);
543 
544 /*
545  * Like add_to_page_cache_locked, but used to add newly allocated pages:
546  * the page is new, so we can just run __set_page_locked() against it.
547  */
548 static inline int add_to_page_cache(struct page *page,
549 		struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
550 {
551 	int error;
552 
553 	__set_page_locked(page);
554 	error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
555 	if (unlikely(error))
556 		__clear_page_locked(page);
557 	return error;
558 }
559 
560 #endif /* _LINUX_PAGEMAP_H */
561