1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_PAGEMAP_H 3 #define _LINUX_PAGEMAP_H 4 5 /* 6 * Copyright 1995 Linus Torvalds 7 */ 8 #include <linux/mm.h> 9 #include <linux/fs.h> 10 #include <linux/list.h> 11 #include <linux/highmem.h> 12 #include <linux/compiler.h> 13 #include <linux/uaccess.h> 14 #include <linux/gfp.h> 15 #include <linux/bitops.h> 16 #include <linux/hardirq.h> /* for in_interrupt() */ 17 #include <linux/hugetlb_inline.h> 18 19 struct folio_batch; 20 21 unsigned long invalidate_mapping_pages(struct address_space *mapping, 22 pgoff_t start, pgoff_t end); 23 24 static inline void invalidate_remote_inode(struct inode *inode) 25 { 26 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 27 S_ISLNK(inode->i_mode)) 28 invalidate_mapping_pages(inode->i_mapping, 0, -1); 29 } 30 int invalidate_inode_pages2(struct address_space *mapping); 31 int invalidate_inode_pages2_range(struct address_space *mapping, 32 pgoff_t start, pgoff_t end); 33 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count); 34 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count); 35 36 int write_inode_now(struct inode *, int sync); 37 int filemap_fdatawrite(struct address_space *); 38 int filemap_flush(struct address_space *); 39 int filemap_fdatawait_keep_errors(struct address_space *mapping); 40 int filemap_fdatawait_range(struct address_space *, loff_t lstart, loff_t lend); 41 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 42 loff_t start_byte, loff_t end_byte); 43 int filemap_invalidate_inode(struct inode *inode, bool flush, 44 loff_t start, loff_t end); 45 46 static inline int filemap_fdatawait(struct address_space *mapping) 47 { 48 return filemap_fdatawait_range(mapping, 0, LLONG_MAX); 49 } 50 51 bool filemap_range_has_page(struct address_space *, loff_t lstart, loff_t lend); 52 int filemap_write_and_wait_range(struct address_space *mapping, 53 loff_t lstart, loff_t lend); 54 int __filemap_fdatawrite_range(struct address_space *mapping, 55 loff_t start, loff_t end, int sync_mode); 56 int filemap_fdatawrite_range(struct address_space *mapping, 57 loff_t start, loff_t end); 58 int filemap_check_errors(struct address_space *mapping); 59 void __filemap_set_wb_err(struct address_space *mapping, int err); 60 int filemap_fdatawrite_wbc(struct address_space *mapping, 61 struct writeback_control *wbc); 62 int kiocb_write_and_wait(struct kiocb *iocb, size_t count); 63 64 static inline int filemap_write_and_wait(struct address_space *mapping) 65 { 66 return filemap_write_and_wait_range(mapping, 0, LLONG_MAX); 67 } 68 69 /** 70 * filemap_set_wb_err - set a writeback error on an address_space 71 * @mapping: mapping in which to set writeback error 72 * @err: error to be set in mapping 73 * 74 * When writeback fails in some way, we must record that error so that 75 * userspace can be informed when fsync and the like are called. We endeavor 76 * to report errors on any file that was open at the time of the error. Some 77 * internal callers also need to know when writeback errors have occurred. 78 * 79 * When a writeback error occurs, most filesystems will want to call 80 * filemap_set_wb_err to record the error in the mapping so that it will be 81 * automatically reported whenever fsync is called on the file. 82 */ 83 static inline void filemap_set_wb_err(struct address_space *mapping, int err) 84 { 85 /* Fastpath for common case of no error */ 86 if (unlikely(err)) 87 __filemap_set_wb_err(mapping, err); 88 } 89 90 /** 91 * filemap_check_wb_err - has an error occurred since the mark was sampled? 92 * @mapping: mapping to check for writeback errors 93 * @since: previously-sampled errseq_t 94 * 95 * Grab the errseq_t value from the mapping, and see if it has changed "since" 96 * the given value was sampled. 97 * 98 * If it has then report the latest error set, otherwise return 0. 99 */ 100 static inline int filemap_check_wb_err(struct address_space *mapping, 101 errseq_t since) 102 { 103 return errseq_check(&mapping->wb_err, since); 104 } 105 106 /** 107 * filemap_sample_wb_err - sample the current errseq_t to test for later errors 108 * @mapping: mapping to be sampled 109 * 110 * Writeback errors are always reported relative to a particular sample point 111 * in the past. This function provides those sample points. 112 */ 113 static inline errseq_t filemap_sample_wb_err(struct address_space *mapping) 114 { 115 return errseq_sample(&mapping->wb_err); 116 } 117 118 /** 119 * file_sample_sb_err - sample the current errseq_t to test for later errors 120 * @file: file pointer to be sampled 121 * 122 * Grab the most current superblock-level errseq_t value for the given 123 * struct file. 124 */ 125 static inline errseq_t file_sample_sb_err(struct file *file) 126 { 127 return errseq_sample(&file->f_path.dentry->d_sb->s_wb_err); 128 } 129 130 /* 131 * Flush file data before changing attributes. Caller must hold any locks 132 * required to prevent further writes to this file until we're done setting 133 * flags. 134 */ 135 static inline int inode_drain_writes(struct inode *inode) 136 { 137 inode_dio_wait(inode); 138 return filemap_write_and_wait(inode->i_mapping); 139 } 140 141 static inline bool mapping_empty(struct address_space *mapping) 142 { 143 return xa_empty(&mapping->i_pages); 144 } 145 146 /* 147 * mapping_shrinkable - test if page cache state allows inode reclaim 148 * @mapping: the page cache mapping 149 * 150 * This checks the mapping's cache state for the pupose of inode 151 * reclaim and LRU management. 152 * 153 * The caller is expected to hold the i_lock, but is not required to 154 * hold the i_pages lock, which usually protects cache state. That's 155 * because the i_lock and the list_lru lock that protect the inode and 156 * its LRU state don't nest inside the irq-safe i_pages lock. 157 * 158 * Cache deletions are performed under the i_lock, which ensures that 159 * when an inode goes empty, it will reliably get queued on the LRU. 160 * 161 * Cache additions do not acquire the i_lock and may race with this 162 * check, in which case we'll report the inode as shrinkable when it 163 * has cache pages. This is okay: the shrinker also checks the 164 * refcount and the referenced bit, which will be elevated or set in 165 * the process of adding new cache pages to an inode. 166 */ 167 static inline bool mapping_shrinkable(struct address_space *mapping) 168 { 169 void *head; 170 171 /* 172 * On highmem systems, there could be lowmem pressure from the 173 * inodes before there is highmem pressure from the page 174 * cache. Make inodes shrinkable regardless of cache state. 175 */ 176 if (IS_ENABLED(CONFIG_HIGHMEM)) 177 return true; 178 179 /* Cache completely empty? Shrink away. */ 180 head = rcu_access_pointer(mapping->i_pages.xa_head); 181 if (!head) 182 return true; 183 184 /* 185 * The xarray stores single offset-0 entries directly in the 186 * head pointer, which allows non-resident page cache entries 187 * to escape the shadow shrinker's list of xarray nodes. The 188 * inode shrinker needs to pick them up under memory pressure. 189 */ 190 if (!xa_is_node(head) && xa_is_value(head)) 191 return true; 192 193 return false; 194 } 195 196 /* 197 * Bits in mapping->flags. 198 */ 199 enum mapping_flags { 200 AS_EIO = 0, /* IO error on async write */ 201 AS_ENOSPC = 1, /* ENOSPC on async write */ 202 AS_MM_ALL_LOCKS = 2, /* under mm_take_all_locks() */ 203 AS_UNEVICTABLE = 3, /* e.g., ramdisk, SHM_LOCK */ 204 AS_EXITING = 4, /* final truncate in progress */ 205 /* writeback related tags are not used */ 206 AS_NO_WRITEBACK_TAGS = 5, 207 AS_LARGE_FOLIO_SUPPORT = 6, 208 AS_RELEASE_ALWAYS, /* Call ->release_folio(), even if no private data */ 209 AS_STABLE_WRITES, /* must wait for writeback before modifying 210 folio contents */ 211 AS_INACCESSIBLE, /* Do not attempt direct R/W access to the mapping, 212 including to move the mapping */ 213 }; 214 215 /** 216 * mapping_set_error - record a writeback error in the address_space 217 * @mapping: the mapping in which an error should be set 218 * @error: the error to set in the mapping 219 * 220 * When writeback fails in some way, we must record that error so that 221 * userspace can be informed when fsync and the like are called. We endeavor 222 * to report errors on any file that was open at the time of the error. Some 223 * internal callers also need to know when writeback errors have occurred. 224 * 225 * When a writeback error occurs, most filesystems will want to call 226 * mapping_set_error to record the error in the mapping so that it can be 227 * reported when the application calls fsync(2). 228 */ 229 static inline void mapping_set_error(struct address_space *mapping, int error) 230 { 231 if (likely(!error)) 232 return; 233 234 /* Record in wb_err for checkers using errseq_t based tracking */ 235 __filemap_set_wb_err(mapping, error); 236 237 /* Record it in superblock */ 238 if (mapping->host) 239 errseq_set(&mapping->host->i_sb->s_wb_err, error); 240 241 /* Record it in flags for now, for legacy callers */ 242 if (error == -ENOSPC) 243 set_bit(AS_ENOSPC, &mapping->flags); 244 else 245 set_bit(AS_EIO, &mapping->flags); 246 } 247 248 static inline void mapping_set_unevictable(struct address_space *mapping) 249 { 250 set_bit(AS_UNEVICTABLE, &mapping->flags); 251 } 252 253 static inline void mapping_clear_unevictable(struct address_space *mapping) 254 { 255 clear_bit(AS_UNEVICTABLE, &mapping->flags); 256 } 257 258 static inline bool mapping_unevictable(struct address_space *mapping) 259 { 260 return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags); 261 } 262 263 static inline void mapping_set_exiting(struct address_space *mapping) 264 { 265 set_bit(AS_EXITING, &mapping->flags); 266 } 267 268 static inline int mapping_exiting(struct address_space *mapping) 269 { 270 return test_bit(AS_EXITING, &mapping->flags); 271 } 272 273 static inline void mapping_set_no_writeback_tags(struct address_space *mapping) 274 { 275 set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); 276 } 277 278 static inline int mapping_use_writeback_tags(struct address_space *mapping) 279 { 280 return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); 281 } 282 283 static inline bool mapping_release_always(const struct address_space *mapping) 284 { 285 return test_bit(AS_RELEASE_ALWAYS, &mapping->flags); 286 } 287 288 static inline void mapping_set_release_always(struct address_space *mapping) 289 { 290 set_bit(AS_RELEASE_ALWAYS, &mapping->flags); 291 } 292 293 static inline void mapping_clear_release_always(struct address_space *mapping) 294 { 295 clear_bit(AS_RELEASE_ALWAYS, &mapping->flags); 296 } 297 298 static inline bool mapping_stable_writes(const struct address_space *mapping) 299 { 300 return test_bit(AS_STABLE_WRITES, &mapping->flags); 301 } 302 303 static inline void mapping_set_stable_writes(struct address_space *mapping) 304 { 305 set_bit(AS_STABLE_WRITES, &mapping->flags); 306 } 307 308 static inline void mapping_clear_stable_writes(struct address_space *mapping) 309 { 310 clear_bit(AS_STABLE_WRITES, &mapping->flags); 311 } 312 313 static inline void mapping_set_inaccessible(struct address_space *mapping) 314 { 315 /* 316 * It's expected inaccessible mappings are also unevictable. Compaction 317 * migrate scanner (isolate_migratepages_block()) relies on this to 318 * reduce page locking. 319 */ 320 set_bit(AS_UNEVICTABLE, &mapping->flags); 321 set_bit(AS_INACCESSIBLE, &mapping->flags); 322 } 323 324 static inline bool mapping_inaccessible(struct address_space *mapping) 325 { 326 return test_bit(AS_INACCESSIBLE, &mapping->flags); 327 } 328 329 static inline gfp_t mapping_gfp_mask(struct address_space * mapping) 330 { 331 return mapping->gfp_mask; 332 } 333 334 /* Restricts the given gfp_mask to what the mapping allows. */ 335 static inline gfp_t mapping_gfp_constraint(struct address_space *mapping, 336 gfp_t gfp_mask) 337 { 338 return mapping_gfp_mask(mapping) & gfp_mask; 339 } 340 341 /* 342 * This is non-atomic. Only to be used before the mapping is activated. 343 * Probably needs a barrier... 344 */ 345 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask) 346 { 347 m->gfp_mask = mask; 348 } 349 350 /* 351 * There are some parts of the kernel which assume that PMD entries 352 * are exactly HPAGE_PMD_ORDER. Those should be fixed, but until then, 353 * limit the maximum allocation order to PMD size. I'm not aware of any 354 * assumptions about maximum order if THP are disabled, but 8 seems like 355 * a good order (that's 1MB if you're using 4kB pages) 356 */ 357 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 358 #define PREFERRED_MAX_PAGECACHE_ORDER HPAGE_PMD_ORDER 359 #else 360 #define PREFERRED_MAX_PAGECACHE_ORDER 8 361 #endif 362 363 /* 364 * xas_split_alloc() does not support arbitrary orders. This implies no 365 * 512MB THP on ARM64 with 64KB base page size. 366 */ 367 #define MAX_XAS_ORDER (XA_CHUNK_SHIFT * 2 - 1) 368 #define MAX_PAGECACHE_ORDER min(MAX_XAS_ORDER, PREFERRED_MAX_PAGECACHE_ORDER) 369 370 /** 371 * mapping_set_large_folios() - Indicate the file supports large folios. 372 * @mapping: The file. 373 * 374 * The filesystem should call this function in its inode constructor to 375 * indicate that the VFS can use large folios to cache the contents of 376 * the file. 377 * 378 * Context: This should not be called while the inode is active as it 379 * is non-atomic. 380 */ 381 static inline void mapping_set_large_folios(struct address_space *mapping) 382 { 383 __set_bit(AS_LARGE_FOLIO_SUPPORT, &mapping->flags); 384 } 385 386 /* 387 * Large folio support currently depends on THP. These dependencies are 388 * being worked on but are not yet fixed. 389 */ 390 static inline bool mapping_large_folio_support(struct address_space *mapping) 391 { 392 /* AS_LARGE_FOLIO_SUPPORT is only reasonable for pagecache folios */ 393 VM_WARN_ONCE((unsigned long)mapping & PAGE_MAPPING_ANON, 394 "Anonymous mapping always supports large folio"); 395 396 return IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 397 test_bit(AS_LARGE_FOLIO_SUPPORT, &mapping->flags); 398 } 399 400 /* Return the maximum folio size for this pagecache mapping, in bytes. */ 401 static inline size_t mapping_max_folio_size(struct address_space *mapping) 402 { 403 if (mapping_large_folio_support(mapping)) 404 return PAGE_SIZE << MAX_PAGECACHE_ORDER; 405 return PAGE_SIZE; 406 } 407 408 static inline int filemap_nr_thps(struct address_space *mapping) 409 { 410 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 411 return atomic_read(&mapping->nr_thps); 412 #else 413 return 0; 414 #endif 415 } 416 417 static inline void filemap_nr_thps_inc(struct address_space *mapping) 418 { 419 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 420 if (!mapping_large_folio_support(mapping)) 421 atomic_inc(&mapping->nr_thps); 422 #else 423 WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0); 424 #endif 425 } 426 427 static inline void filemap_nr_thps_dec(struct address_space *mapping) 428 { 429 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 430 if (!mapping_large_folio_support(mapping)) 431 atomic_dec(&mapping->nr_thps); 432 #else 433 WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0); 434 #endif 435 } 436 437 struct address_space *folio_mapping(struct folio *); 438 struct address_space *swapcache_mapping(struct folio *); 439 440 /** 441 * folio_file_mapping - Find the mapping this folio belongs to. 442 * @folio: The folio. 443 * 444 * For folios which are in the page cache, return the mapping that this 445 * page belongs to. Folios in the swap cache return the mapping of the 446 * swap file or swap device where the data is stored. This is different 447 * from the mapping returned by folio_mapping(). The only reason to 448 * use it is if, like NFS, you return 0 from ->activate_swapfile. 449 * 450 * Do not call this for folios which aren't in the page cache or swap cache. 451 */ 452 static inline struct address_space *folio_file_mapping(struct folio *folio) 453 { 454 if (unlikely(folio_test_swapcache(folio))) 455 return swapcache_mapping(folio); 456 457 return folio->mapping; 458 } 459 460 /** 461 * folio_flush_mapping - Find the file mapping this folio belongs to. 462 * @folio: The folio. 463 * 464 * For folios which are in the page cache, return the mapping that this 465 * page belongs to. Anonymous folios return NULL, even if they're in 466 * the swap cache. Other kinds of folio also return NULL. 467 * 468 * This is ONLY used by architecture cache flushing code. If you aren't 469 * writing cache flushing code, you want either folio_mapping() or 470 * folio_file_mapping(). 471 */ 472 static inline struct address_space *folio_flush_mapping(struct folio *folio) 473 { 474 if (unlikely(folio_test_swapcache(folio))) 475 return NULL; 476 477 return folio_mapping(folio); 478 } 479 480 static inline struct address_space *page_file_mapping(struct page *page) 481 { 482 return folio_file_mapping(page_folio(page)); 483 } 484 485 /** 486 * folio_inode - Get the host inode for this folio. 487 * @folio: The folio. 488 * 489 * For folios which are in the page cache, return the inode that this folio 490 * belongs to. 491 * 492 * Do not call this for folios which aren't in the page cache. 493 */ 494 static inline struct inode *folio_inode(struct folio *folio) 495 { 496 return folio->mapping->host; 497 } 498 499 /** 500 * folio_attach_private - Attach private data to a folio. 501 * @folio: Folio to attach data to. 502 * @data: Data to attach to folio. 503 * 504 * Attaching private data to a folio increments the page's reference count. 505 * The data must be detached before the folio will be freed. 506 */ 507 static inline void folio_attach_private(struct folio *folio, void *data) 508 { 509 folio_get(folio); 510 folio->private = data; 511 folio_set_private(folio); 512 } 513 514 /** 515 * folio_change_private - Change private data on a folio. 516 * @folio: Folio to change the data on. 517 * @data: Data to set on the folio. 518 * 519 * Change the private data attached to a folio and return the old 520 * data. The page must previously have had data attached and the data 521 * must be detached before the folio will be freed. 522 * 523 * Return: Data that was previously attached to the folio. 524 */ 525 static inline void *folio_change_private(struct folio *folio, void *data) 526 { 527 void *old = folio_get_private(folio); 528 529 folio->private = data; 530 return old; 531 } 532 533 /** 534 * folio_detach_private - Detach private data from a folio. 535 * @folio: Folio to detach data from. 536 * 537 * Removes the data that was previously attached to the folio and decrements 538 * the refcount on the page. 539 * 540 * Return: Data that was attached to the folio. 541 */ 542 static inline void *folio_detach_private(struct folio *folio) 543 { 544 void *data = folio_get_private(folio); 545 546 if (!folio_test_private(folio)) 547 return NULL; 548 folio_clear_private(folio); 549 folio->private = NULL; 550 folio_put(folio); 551 552 return data; 553 } 554 555 static inline void attach_page_private(struct page *page, void *data) 556 { 557 folio_attach_private(page_folio(page), data); 558 } 559 560 static inline void *detach_page_private(struct page *page) 561 { 562 return folio_detach_private(page_folio(page)); 563 } 564 565 #ifdef CONFIG_NUMA 566 struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order); 567 #else 568 static inline struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order) 569 { 570 return folio_alloc_noprof(gfp, order); 571 } 572 #endif 573 574 #define filemap_alloc_folio(...) \ 575 alloc_hooks(filemap_alloc_folio_noprof(__VA_ARGS__)) 576 577 static inline struct page *__page_cache_alloc(gfp_t gfp) 578 { 579 return &filemap_alloc_folio(gfp, 0)->page; 580 } 581 582 static inline gfp_t readahead_gfp_mask(struct address_space *x) 583 { 584 return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN; 585 } 586 587 typedef int filler_t(struct file *, struct folio *); 588 589 pgoff_t page_cache_next_miss(struct address_space *mapping, 590 pgoff_t index, unsigned long max_scan); 591 pgoff_t page_cache_prev_miss(struct address_space *mapping, 592 pgoff_t index, unsigned long max_scan); 593 594 /** 595 * typedef fgf_t - Flags for getting folios from the page cache. 596 * 597 * Most users of the page cache will not need to use these flags; 598 * there are convenience functions such as filemap_get_folio() and 599 * filemap_lock_folio(). For users which need more control over exactly 600 * what is done with the folios, these flags to __filemap_get_folio() 601 * are available. 602 * 603 * * %FGP_ACCESSED - The folio will be marked accessed. 604 * * %FGP_LOCK - The folio is returned locked. 605 * * %FGP_CREAT - If no folio is present then a new folio is allocated, 606 * added to the page cache and the VM's LRU list. The folio is 607 * returned locked. 608 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the 609 * folio is already in cache. If the folio was allocated, unlock it 610 * before returning so the caller can do the same dance. 611 * * %FGP_WRITE - The folio will be written to by the caller. 612 * * %FGP_NOFS - __GFP_FS will get cleared in gfp. 613 * * %FGP_NOWAIT - Don't block on the folio lock. 614 * * %FGP_STABLE - Wait for the folio to be stable (finished writeback) 615 * * %FGP_WRITEBEGIN - The flags to use in a filesystem write_begin() 616 * implementation. 617 */ 618 typedef unsigned int __bitwise fgf_t; 619 620 #define FGP_ACCESSED ((__force fgf_t)0x00000001) 621 #define FGP_LOCK ((__force fgf_t)0x00000002) 622 #define FGP_CREAT ((__force fgf_t)0x00000004) 623 #define FGP_WRITE ((__force fgf_t)0x00000008) 624 #define FGP_NOFS ((__force fgf_t)0x00000010) 625 #define FGP_NOWAIT ((__force fgf_t)0x00000020) 626 #define FGP_FOR_MMAP ((__force fgf_t)0x00000040) 627 #define FGP_STABLE ((__force fgf_t)0x00000080) 628 #define FGF_GET_ORDER(fgf) (((__force unsigned)fgf) >> 26) /* top 6 bits */ 629 630 #define FGP_WRITEBEGIN (FGP_LOCK | FGP_WRITE | FGP_CREAT | FGP_STABLE) 631 632 /** 633 * fgf_set_order - Encode a length in the fgf_t flags. 634 * @size: The suggested size of the folio to create. 635 * 636 * The caller of __filemap_get_folio() can use this to suggest a preferred 637 * size for the folio that is created. If there is already a folio at 638 * the index, it will be returned, no matter what its size. If a folio 639 * is freshly created, it may be of a different size than requested 640 * due to alignment constraints, memory pressure, or the presence of 641 * other folios at nearby indices. 642 */ 643 static inline fgf_t fgf_set_order(size_t size) 644 { 645 unsigned int shift = ilog2(size); 646 647 if (shift <= PAGE_SHIFT) 648 return 0; 649 return (__force fgf_t)((shift - PAGE_SHIFT) << 26); 650 } 651 652 void *filemap_get_entry(struct address_space *mapping, pgoff_t index); 653 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index, 654 fgf_t fgp_flags, gfp_t gfp); 655 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index, 656 fgf_t fgp_flags, gfp_t gfp); 657 658 /** 659 * filemap_get_folio - Find and get a folio. 660 * @mapping: The address_space to search. 661 * @index: The page index. 662 * 663 * Looks up the page cache entry at @mapping & @index. If a folio is 664 * present, it is returned with an increased refcount. 665 * 666 * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for 667 * this index. Will not return a shadow, swap or DAX entry. 668 */ 669 static inline struct folio *filemap_get_folio(struct address_space *mapping, 670 pgoff_t index) 671 { 672 return __filemap_get_folio(mapping, index, 0, 0); 673 } 674 675 /** 676 * filemap_lock_folio - Find and lock a folio. 677 * @mapping: The address_space to search. 678 * @index: The page index. 679 * 680 * Looks up the page cache entry at @mapping & @index. If a folio is 681 * present, it is returned locked with an increased refcount. 682 * 683 * Context: May sleep. 684 * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for 685 * this index. Will not return a shadow, swap or DAX entry. 686 */ 687 static inline struct folio *filemap_lock_folio(struct address_space *mapping, 688 pgoff_t index) 689 { 690 return __filemap_get_folio(mapping, index, FGP_LOCK, 0); 691 } 692 693 /** 694 * filemap_grab_folio - grab a folio from the page cache 695 * @mapping: The address space to search 696 * @index: The page index 697 * 698 * Looks up the page cache entry at @mapping & @index. If no folio is found, 699 * a new folio is created. The folio is locked, marked as accessed, and 700 * returned. 701 * 702 * Return: A found or created folio. ERR_PTR(-ENOMEM) if no folio is found 703 * and failed to create a folio. 704 */ 705 static inline struct folio *filemap_grab_folio(struct address_space *mapping, 706 pgoff_t index) 707 { 708 return __filemap_get_folio(mapping, index, 709 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, 710 mapping_gfp_mask(mapping)); 711 } 712 713 /** 714 * find_get_page - find and get a page reference 715 * @mapping: the address_space to search 716 * @offset: the page index 717 * 718 * Looks up the page cache slot at @mapping & @offset. If there is a 719 * page cache page, it is returned with an increased refcount. 720 * 721 * Otherwise, %NULL is returned. 722 */ 723 static inline struct page *find_get_page(struct address_space *mapping, 724 pgoff_t offset) 725 { 726 return pagecache_get_page(mapping, offset, 0, 0); 727 } 728 729 static inline struct page *find_get_page_flags(struct address_space *mapping, 730 pgoff_t offset, fgf_t fgp_flags) 731 { 732 return pagecache_get_page(mapping, offset, fgp_flags, 0); 733 } 734 735 /** 736 * find_lock_page - locate, pin and lock a pagecache page 737 * @mapping: the address_space to search 738 * @index: the page index 739 * 740 * Looks up the page cache entry at @mapping & @index. If there is a 741 * page cache page, it is returned locked and with an increased 742 * refcount. 743 * 744 * Context: May sleep. 745 * Return: A struct page or %NULL if there is no page in the cache for this 746 * index. 747 */ 748 static inline struct page *find_lock_page(struct address_space *mapping, 749 pgoff_t index) 750 { 751 return pagecache_get_page(mapping, index, FGP_LOCK, 0); 752 } 753 754 /** 755 * find_or_create_page - locate or add a pagecache page 756 * @mapping: the page's address_space 757 * @index: the page's index into the mapping 758 * @gfp_mask: page allocation mode 759 * 760 * Looks up the page cache slot at @mapping & @offset. If there is a 761 * page cache page, it is returned locked and with an increased 762 * refcount. 763 * 764 * If the page is not present, a new page is allocated using @gfp_mask 765 * and added to the page cache and the VM's LRU list. The page is 766 * returned locked and with an increased refcount. 767 * 768 * On memory exhaustion, %NULL is returned. 769 * 770 * find_or_create_page() may sleep, even if @gfp_flags specifies an 771 * atomic allocation! 772 */ 773 static inline struct page *find_or_create_page(struct address_space *mapping, 774 pgoff_t index, gfp_t gfp_mask) 775 { 776 return pagecache_get_page(mapping, index, 777 FGP_LOCK|FGP_ACCESSED|FGP_CREAT, 778 gfp_mask); 779 } 780 781 /** 782 * grab_cache_page_nowait - returns locked page at given index in given cache 783 * @mapping: target address_space 784 * @index: the page index 785 * 786 * Same as grab_cache_page(), but do not wait if the page is unavailable. 787 * This is intended for speculative data generators, where the data can 788 * be regenerated if the page couldn't be grabbed. This routine should 789 * be safe to call while holding the lock for another page. 790 * 791 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 792 * and deadlock against the caller's locked page. 793 */ 794 static inline struct page *grab_cache_page_nowait(struct address_space *mapping, 795 pgoff_t index) 796 { 797 return pagecache_get_page(mapping, index, 798 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT, 799 mapping_gfp_mask(mapping)); 800 } 801 802 extern pgoff_t __folio_swap_cache_index(struct folio *folio); 803 804 /** 805 * folio_index - File index of a folio. 806 * @folio: The folio. 807 * 808 * For a folio which is either in the page cache or the swap cache, 809 * return its index within the address_space it belongs to. If you know 810 * the page is definitely in the page cache, you can look at the folio's 811 * index directly. 812 * 813 * Return: The index (offset in units of pages) of a folio in its file. 814 */ 815 static inline pgoff_t folio_index(struct folio *folio) 816 { 817 if (unlikely(folio_test_swapcache(folio))) 818 return __folio_swap_cache_index(folio); 819 return folio->index; 820 } 821 822 /** 823 * folio_next_index - Get the index of the next folio. 824 * @folio: The current folio. 825 * 826 * Return: The index of the folio which follows this folio in the file. 827 */ 828 static inline pgoff_t folio_next_index(struct folio *folio) 829 { 830 return folio->index + folio_nr_pages(folio); 831 } 832 833 /** 834 * folio_file_page - The page for a particular index. 835 * @folio: The folio which contains this index. 836 * @index: The index we want to look up. 837 * 838 * Sometimes after looking up a folio in the page cache, we need to 839 * obtain the specific page for an index (eg a page fault). 840 * 841 * Return: The page containing the file data for this index. 842 */ 843 static inline struct page *folio_file_page(struct folio *folio, pgoff_t index) 844 { 845 return folio_page(folio, index & (folio_nr_pages(folio) - 1)); 846 } 847 848 /** 849 * folio_contains - Does this folio contain this index? 850 * @folio: The folio. 851 * @index: The page index within the file. 852 * 853 * Context: The caller should have the page locked in order to prevent 854 * (eg) shmem from moving the page between the page cache and swap cache 855 * and changing its index in the middle of the operation. 856 * Return: true or false. 857 */ 858 static inline bool folio_contains(struct folio *folio, pgoff_t index) 859 { 860 return index - folio_index(folio) < folio_nr_pages(folio); 861 } 862 863 /* 864 * Given the page we found in the page cache, return the page corresponding 865 * to this index in the file 866 */ 867 static inline struct page *find_subpage(struct page *head, pgoff_t index) 868 { 869 /* HugeTLBfs wants the head page regardless */ 870 if (PageHuge(head)) 871 return head; 872 873 return head + (index & (thp_nr_pages(head) - 1)); 874 } 875 876 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start, 877 pgoff_t end, struct folio_batch *fbatch); 878 unsigned filemap_get_folios_contig(struct address_space *mapping, 879 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch); 880 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start, 881 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch); 882 883 struct page *grab_cache_page_write_begin(struct address_space *mapping, 884 pgoff_t index); 885 886 /* 887 * Returns locked page at given index in given cache, creating it if needed. 888 */ 889 static inline struct page *grab_cache_page(struct address_space *mapping, 890 pgoff_t index) 891 { 892 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping)); 893 } 894 895 struct folio *read_cache_folio(struct address_space *, pgoff_t index, 896 filler_t *filler, struct file *file); 897 struct folio *mapping_read_folio_gfp(struct address_space *, pgoff_t index, 898 gfp_t flags); 899 struct page *read_cache_page(struct address_space *, pgoff_t index, 900 filler_t *filler, struct file *file); 901 extern struct page * read_cache_page_gfp(struct address_space *mapping, 902 pgoff_t index, gfp_t gfp_mask); 903 904 static inline struct page *read_mapping_page(struct address_space *mapping, 905 pgoff_t index, struct file *file) 906 { 907 return read_cache_page(mapping, index, NULL, file); 908 } 909 910 static inline struct folio *read_mapping_folio(struct address_space *mapping, 911 pgoff_t index, struct file *file) 912 { 913 return read_cache_folio(mapping, index, NULL, file); 914 } 915 916 /* 917 * Get the offset in PAGE_SIZE (even for hugetlb pages). 918 */ 919 static inline pgoff_t page_to_pgoff(struct page *page) 920 { 921 struct page *head; 922 923 if (likely(!PageTransTail(page))) 924 return page->index; 925 926 head = compound_head(page); 927 /* 928 * We don't initialize ->index for tail pages: calculate based on 929 * head page 930 */ 931 return head->index + page - head; 932 } 933 934 /* 935 * Return byte-offset into filesystem object for page. 936 */ 937 static inline loff_t page_offset(struct page *page) 938 { 939 return ((loff_t)page->index) << PAGE_SHIFT; 940 } 941 942 /** 943 * folio_pos - Returns the byte position of this folio in its file. 944 * @folio: The folio. 945 */ 946 static inline loff_t folio_pos(struct folio *folio) 947 { 948 return page_offset(&folio->page); 949 } 950 951 /* 952 * Get the offset in PAGE_SIZE (even for hugetlb folios). 953 */ 954 static inline pgoff_t folio_pgoff(struct folio *folio) 955 { 956 return folio->index; 957 } 958 959 static inline pgoff_t linear_page_index(struct vm_area_struct *vma, 960 unsigned long address) 961 { 962 pgoff_t pgoff; 963 pgoff = (address - vma->vm_start) >> PAGE_SHIFT; 964 pgoff += vma->vm_pgoff; 965 return pgoff; 966 } 967 968 struct wait_page_key { 969 struct folio *folio; 970 int bit_nr; 971 int page_match; 972 }; 973 974 struct wait_page_queue { 975 struct folio *folio; 976 int bit_nr; 977 wait_queue_entry_t wait; 978 }; 979 980 static inline bool wake_page_match(struct wait_page_queue *wait_page, 981 struct wait_page_key *key) 982 { 983 if (wait_page->folio != key->folio) 984 return false; 985 key->page_match = 1; 986 987 if (wait_page->bit_nr != key->bit_nr) 988 return false; 989 990 return true; 991 } 992 993 void __folio_lock(struct folio *folio); 994 int __folio_lock_killable(struct folio *folio); 995 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf); 996 void unlock_page(struct page *page); 997 void folio_unlock(struct folio *folio); 998 999 /** 1000 * folio_trylock() - Attempt to lock a folio. 1001 * @folio: The folio to attempt to lock. 1002 * 1003 * Sometimes it is undesirable to wait for a folio to be unlocked (eg 1004 * when the locks are being taken in the wrong order, or if making 1005 * progress through a batch of folios is more important than processing 1006 * them in order). Usually folio_lock() is the correct function to call. 1007 * 1008 * Context: Any context. 1009 * Return: Whether the lock was successfully acquired. 1010 */ 1011 static inline bool folio_trylock(struct folio *folio) 1012 { 1013 return likely(!test_and_set_bit_lock(PG_locked, folio_flags(folio, 0))); 1014 } 1015 1016 /* 1017 * Return true if the page was successfully locked 1018 */ 1019 static inline bool trylock_page(struct page *page) 1020 { 1021 return folio_trylock(page_folio(page)); 1022 } 1023 1024 /** 1025 * folio_lock() - Lock this folio. 1026 * @folio: The folio to lock. 1027 * 1028 * The folio lock protects against many things, probably more than it 1029 * should. It is primarily held while a folio is being brought uptodate, 1030 * either from its backing file or from swap. It is also held while a 1031 * folio is being truncated from its address_space, so holding the lock 1032 * is sufficient to keep folio->mapping stable. 1033 * 1034 * The folio lock is also held while write() is modifying the page to 1035 * provide POSIX atomicity guarantees (as long as the write does not 1036 * cross a page boundary). Other modifications to the data in the folio 1037 * do not hold the folio lock and can race with writes, eg DMA and stores 1038 * to mapped pages. 1039 * 1040 * Context: May sleep. If you need to acquire the locks of two or 1041 * more folios, they must be in order of ascending index, if they are 1042 * in the same address_space. If they are in different address_spaces, 1043 * acquire the lock of the folio which belongs to the address_space which 1044 * has the lowest address in memory first. 1045 */ 1046 static inline void folio_lock(struct folio *folio) 1047 { 1048 might_sleep(); 1049 if (!folio_trylock(folio)) 1050 __folio_lock(folio); 1051 } 1052 1053 /** 1054 * lock_page() - Lock the folio containing this page. 1055 * @page: The page to lock. 1056 * 1057 * See folio_lock() for a description of what the lock protects. 1058 * This is a legacy function and new code should probably use folio_lock() 1059 * instead. 1060 * 1061 * Context: May sleep. Pages in the same folio share a lock, so do not 1062 * attempt to lock two pages which share a folio. 1063 */ 1064 static inline void lock_page(struct page *page) 1065 { 1066 struct folio *folio; 1067 might_sleep(); 1068 1069 folio = page_folio(page); 1070 if (!folio_trylock(folio)) 1071 __folio_lock(folio); 1072 } 1073 1074 /** 1075 * folio_lock_killable() - Lock this folio, interruptible by a fatal signal. 1076 * @folio: The folio to lock. 1077 * 1078 * Attempts to lock the folio, like folio_lock(), except that the sleep 1079 * to acquire the lock is interruptible by a fatal signal. 1080 * 1081 * Context: May sleep; see folio_lock(). 1082 * Return: 0 if the lock was acquired; -EINTR if a fatal signal was received. 1083 */ 1084 static inline int folio_lock_killable(struct folio *folio) 1085 { 1086 might_sleep(); 1087 if (!folio_trylock(folio)) 1088 return __folio_lock_killable(folio); 1089 return 0; 1090 } 1091 1092 /* 1093 * folio_lock_or_retry - Lock the folio, unless this would block and the 1094 * caller indicated that it can handle a retry. 1095 * 1096 * Return value and mmap_lock implications depend on flags; see 1097 * __folio_lock_or_retry(). 1098 */ 1099 static inline vm_fault_t folio_lock_or_retry(struct folio *folio, 1100 struct vm_fault *vmf) 1101 { 1102 might_sleep(); 1103 if (!folio_trylock(folio)) 1104 return __folio_lock_or_retry(folio, vmf); 1105 return 0; 1106 } 1107 1108 /* 1109 * This is exported only for folio_wait_locked/folio_wait_writeback, etc., 1110 * and should not be used directly. 1111 */ 1112 void folio_wait_bit(struct folio *folio, int bit_nr); 1113 int folio_wait_bit_killable(struct folio *folio, int bit_nr); 1114 1115 /* 1116 * Wait for a folio to be unlocked. 1117 * 1118 * This must be called with the caller "holding" the folio, 1119 * ie with increased folio reference count so that the folio won't 1120 * go away during the wait. 1121 */ 1122 static inline void folio_wait_locked(struct folio *folio) 1123 { 1124 if (folio_test_locked(folio)) 1125 folio_wait_bit(folio, PG_locked); 1126 } 1127 1128 static inline int folio_wait_locked_killable(struct folio *folio) 1129 { 1130 if (!folio_test_locked(folio)) 1131 return 0; 1132 return folio_wait_bit_killable(folio, PG_locked); 1133 } 1134 1135 static inline void wait_on_page_locked(struct page *page) 1136 { 1137 folio_wait_locked(page_folio(page)); 1138 } 1139 1140 void folio_end_read(struct folio *folio, bool success); 1141 void wait_on_page_writeback(struct page *page); 1142 void folio_wait_writeback(struct folio *folio); 1143 int folio_wait_writeback_killable(struct folio *folio); 1144 void end_page_writeback(struct page *page); 1145 void folio_end_writeback(struct folio *folio); 1146 void wait_for_stable_page(struct page *page); 1147 void folio_wait_stable(struct folio *folio); 1148 void __folio_mark_dirty(struct folio *folio, struct address_space *, int warn); 1149 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb); 1150 void __folio_cancel_dirty(struct folio *folio); 1151 static inline void folio_cancel_dirty(struct folio *folio) 1152 { 1153 /* Avoid atomic ops, locking, etc. when not actually needed. */ 1154 if (folio_test_dirty(folio)) 1155 __folio_cancel_dirty(folio); 1156 } 1157 bool folio_clear_dirty_for_io(struct folio *folio); 1158 bool clear_page_dirty_for_io(struct page *page); 1159 void folio_invalidate(struct folio *folio, size_t offset, size_t length); 1160 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio); 1161 1162 #ifdef CONFIG_MIGRATION 1163 int filemap_migrate_folio(struct address_space *mapping, struct folio *dst, 1164 struct folio *src, enum migrate_mode mode); 1165 #else 1166 #define filemap_migrate_folio NULL 1167 #endif 1168 void folio_end_private_2(struct folio *folio); 1169 void folio_wait_private_2(struct folio *folio); 1170 int folio_wait_private_2_killable(struct folio *folio); 1171 1172 /* 1173 * Add an arbitrary waiter to a page's wait queue 1174 */ 1175 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter); 1176 1177 /* 1178 * Fault in userspace address range. 1179 */ 1180 size_t fault_in_writeable(char __user *uaddr, size_t size); 1181 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size); 1182 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size); 1183 size_t fault_in_readable(const char __user *uaddr, size_t size); 1184 1185 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 1186 pgoff_t index, gfp_t gfp); 1187 int filemap_add_folio(struct address_space *mapping, struct folio *folio, 1188 pgoff_t index, gfp_t gfp); 1189 void filemap_remove_folio(struct folio *folio); 1190 void __filemap_remove_folio(struct folio *folio, void *shadow); 1191 void replace_page_cache_folio(struct folio *old, struct folio *new); 1192 void delete_from_page_cache_batch(struct address_space *mapping, 1193 struct folio_batch *fbatch); 1194 bool filemap_release_folio(struct folio *folio, gfp_t gfp); 1195 loff_t mapping_seek_hole_data(struct address_space *, loff_t start, loff_t end, 1196 int whence); 1197 1198 /* Must be non-static for BPF error injection */ 1199 int __filemap_add_folio(struct address_space *mapping, struct folio *folio, 1200 pgoff_t index, gfp_t gfp, void **shadowp); 1201 1202 bool filemap_range_has_writeback(struct address_space *mapping, 1203 loff_t start_byte, loff_t end_byte); 1204 1205 /** 1206 * filemap_range_needs_writeback - check if range potentially needs writeback 1207 * @mapping: address space within which to check 1208 * @start_byte: offset in bytes where the range starts 1209 * @end_byte: offset in bytes where the range ends (inclusive) 1210 * 1211 * Find at least one page in the range supplied, usually used to check if 1212 * direct writing in this range will trigger a writeback. Used by O_DIRECT 1213 * read/write with IOCB_NOWAIT, to see if the caller needs to do 1214 * filemap_write_and_wait_range() before proceeding. 1215 * 1216 * Return: %true if the caller should do filemap_write_and_wait_range() before 1217 * doing O_DIRECT to a page in this range, %false otherwise. 1218 */ 1219 static inline bool filemap_range_needs_writeback(struct address_space *mapping, 1220 loff_t start_byte, 1221 loff_t end_byte) 1222 { 1223 if (!mapping->nrpages) 1224 return false; 1225 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 1226 !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) 1227 return false; 1228 return filemap_range_has_writeback(mapping, start_byte, end_byte); 1229 } 1230 1231 /** 1232 * struct readahead_control - Describes a readahead request. 1233 * 1234 * A readahead request is for consecutive pages. Filesystems which 1235 * implement the ->readahead method should call readahead_page() or 1236 * readahead_page_batch() in a loop and attempt to start I/O against 1237 * each page in the request. 1238 * 1239 * Most of the fields in this struct are private and should be accessed 1240 * by the functions below. 1241 * 1242 * @file: The file, used primarily by network filesystems for authentication. 1243 * May be NULL if invoked internally by the filesystem. 1244 * @mapping: Readahead this filesystem object. 1245 * @ra: File readahead state. May be NULL. 1246 */ 1247 struct readahead_control { 1248 struct file *file; 1249 struct address_space *mapping; 1250 struct file_ra_state *ra; 1251 /* private: use the readahead_* accessors instead */ 1252 pgoff_t _index; 1253 unsigned int _nr_pages; 1254 unsigned int _batch_count; 1255 bool _workingset; 1256 unsigned long _pflags; 1257 }; 1258 1259 #define DEFINE_READAHEAD(ractl, f, r, m, i) \ 1260 struct readahead_control ractl = { \ 1261 .file = f, \ 1262 .mapping = m, \ 1263 .ra = r, \ 1264 ._index = i, \ 1265 } 1266 1267 #define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE) 1268 1269 void page_cache_ra_unbounded(struct readahead_control *, 1270 unsigned long nr_to_read, unsigned long lookahead_count); 1271 void page_cache_sync_ra(struct readahead_control *, unsigned long req_count); 1272 void page_cache_async_ra(struct readahead_control *, struct folio *, 1273 unsigned long req_count); 1274 void readahead_expand(struct readahead_control *ractl, 1275 loff_t new_start, size_t new_len); 1276 1277 /** 1278 * page_cache_sync_readahead - generic file readahead 1279 * @mapping: address_space which holds the pagecache and I/O vectors 1280 * @ra: file_ra_state which holds the readahead state 1281 * @file: Used by the filesystem for authentication. 1282 * @index: Index of first page to be read. 1283 * @req_count: Total number of pages being read by the caller. 1284 * 1285 * page_cache_sync_readahead() should be called when a cache miss happened: 1286 * it will submit the read. The readahead logic may decide to piggyback more 1287 * pages onto the read request if access patterns suggest it will improve 1288 * performance. 1289 */ 1290 static inline 1291 void page_cache_sync_readahead(struct address_space *mapping, 1292 struct file_ra_state *ra, struct file *file, pgoff_t index, 1293 unsigned long req_count) 1294 { 1295 DEFINE_READAHEAD(ractl, file, ra, mapping, index); 1296 page_cache_sync_ra(&ractl, req_count); 1297 } 1298 1299 /** 1300 * page_cache_async_readahead - file readahead for marked pages 1301 * @mapping: address_space which holds the pagecache and I/O vectors 1302 * @ra: file_ra_state which holds the readahead state 1303 * @file: Used by the filesystem for authentication. 1304 * @folio: The folio which triggered the readahead call. 1305 * @req_count: Total number of pages being read by the caller. 1306 * 1307 * page_cache_async_readahead() should be called when a page is used which 1308 * is marked as PageReadahead; this is a marker to suggest that the application 1309 * has used up enough of the readahead window that we should start pulling in 1310 * more pages. 1311 */ 1312 static inline 1313 void page_cache_async_readahead(struct address_space *mapping, 1314 struct file_ra_state *ra, struct file *file, 1315 struct folio *folio, unsigned long req_count) 1316 { 1317 DEFINE_READAHEAD(ractl, file, ra, mapping, folio->index); 1318 page_cache_async_ra(&ractl, folio, req_count); 1319 } 1320 1321 static inline struct folio *__readahead_folio(struct readahead_control *ractl) 1322 { 1323 struct folio *folio; 1324 1325 BUG_ON(ractl->_batch_count > ractl->_nr_pages); 1326 ractl->_nr_pages -= ractl->_batch_count; 1327 ractl->_index += ractl->_batch_count; 1328 1329 if (!ractl->_nr_pages) { 1330 ractl->_batch_count = 0; 1331 return NULL; 1332 } 1333 1334 folio = xa_load(&ractl->mapping->i_pages, ractl->_index); 1335 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1336 ractl->_batch_count = folio_nr_pages(folio); 1337 1338 return folio; 1339 } 1340 1341 /** 1342 * readahead_page - Get the next page to read. 1343 * @ractl: The current readahead request. 1344 * 1345 * Context: The page is locked and has an elevated refcount. The caller 1346 * should decreases the refcount once the page has been submitted for I/O 1347 * and unlock the page once all I/O to that page has completed. 1348 * Return: A pointer to the next page, or %NULL if we are done. 1349 */ 1350 static inline struct page *readahead_page(struct readahead_control *ractl) 1351 { 1352 struct folio *folio = __readahead_folio(ractl); 1353 1354 return &folio->page; 1355 } 1356 1357 /** 1358 * readahead_folio - Get the next folio to read. 1359 * @ractl: The current readahead request. 1360 * 1361 * Context: The folio is locked. The caller should unlock the folio once 1362 * all I/O to that folio has completed. 1363 * Return: A pointer to the next folio, or %NULL if we are done. 1364 */ 1365 static inline struct folio *readahead_folio(struct readahead_control *ractl) 1366 { 1367 struct folio *folio = __readahead_folio(ractl); 1368 1369 if (folio) 1370 folio_put(folio); 1371 return folio; 1372 } 1373 1374 static inline unsigned int __readahead_batch(struct readahead_control *rac, 1375 struct page **array, unsigned int array_sz) 1376 { 1377 unsigned int i = 0; 1378 XA_STATE(xas, &rac->mapping->i_pages, 0); 1379 struct page *page; 1380 1381 BUG_ON(rac->_batch_count > rac->_nr_pages); 1382 rac->_nr_pages -= rac->_batch_count; 1383 rac->_index += rac->_batch_count; 1384 rac->_batch_count = 0; 1385 1386 xas_set(&xas, rac->_index); 1387 rcu_read_lock(); 1388 xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) { 1389 if (xas_retry(&xas, page)) 1390 continue; 1391 VM_BUG_ON_PAGE(!PageLocked(page), page); 1392 VM_BUG_ON_PAGE(PageTail(page), page); 1393 array[i++] = page; 1394 rac->_batch_count += thp_nr_pages(page); 1395 if (i == array_sz) 1396 break; 1397 } 1398 rcu_read_unlock(); 1399 1400 return i; 1401 } 1402 1403 /** 1404 * readahead_page_batch - Get a batch of pages to read. 1405 * @rac: The current readahead request. 1406 * @array: An array of pointers to struct page. 1407 * 1408 * Context: The pages are locked and have an elevated refcount. The caller 1409 * should decreases the refcount once the page has been submitted for I/O 1410 * and unlock the page once all I/O to that page has completed. 1411 * Return: The number of pages placed in the array. 0 indicates the request 1412 * is complete. 1413 */ 1414 #define readahead_page_batch(rac, array) \ 1415 __readahead_batch(rac, array, ARRAY_SIZE(array)) 1416 1417 /** 1418 * readahead_pos - The byte offset into the file of this readahead request. 1419 * @rac: The readahead request. 1420 */ 1421 static inline loff_t readahead_pos(struct readahead_control *rac) 1422 { 1423 return (loff_t)rac->_index * PAGE_SIZE; 1424 } 1425 1426 /** 1427 * readahead_length - The number of bytes in this readahead request. 1428 * @rac: The readahead request. 1429 */ 1430 static inline size_t readahead_length(struct readahead_control *rac) 1431 { 1432 return rac->_nr_pages * PAGE_SIZE; 1433 } 1434 1435 /** 1436 * readahead_index - The index of the first page in this readahead request. 1437 * @rac: The readahead request. 1438 */ 1439 static inline pgoff_t readahead_index(struct readahead_control *rac) 1440 { 1441 return rac->_index; 1442 } 1443 1444 /** 1445 * readahead_count - The number of pages in this readahead request. 1446 * @rac: The readahead request. 1447 */ 1448 static inline unsigned int readahead_count(struct readahead_control *rac) 1449 { 1450 return rac->_nr_pages; 1451 } 1452 1453 /** 1454 * readahead_batch_length - The number of bytes in the current batch. 1455 * @rac: The readahead request. 1456 */ 1457 static inline size_t readahead_batch_length(struct readahead_control *rac) 1458 { 1459 return rac->_batch_count * PAGE_SIZE; 1460 } 1461 1462 static inline unsigned long dir_pages(struct inode *inode) 1463 { 1464 return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >> 1465 PAGE_SHIFT; 1466 } 1467 1468 /** 1469 * folio_mkwrite_check_truncate - check if folio was truncated 1470 * @folio: the folio to check 1471 * @inode: the inode to check the folio against 1472 * 1473 * Return: the number of bytes in the folio up to EOF, 1474 * or -EFAULT if the folio was truncated. 1475 */ 1476 static inline ssize_t folio_mkwrite_check_truncate(struct folio *folio, 1477 struct inode *inode) 1478 { 1479 loff_t size = i_size_read(inode); 1480 pgoff_t index = size >> PAGE_SHIFT; 1481 size_t offset = offset_in_folio(folio, size); 1482 1483 if (!folio->mapping) 1484 return -EFAULT; 1485 1486 /* folio is wholly inside EOF */ 1487 if (folio_next_index(folio) - 1 < index) 1488 return folio_size(folio); 1489 /* folio is wholly past EOF */ 1490 if (folio->index > index || !offset) 1491 return -EFAULT; 1492 /* folio is partially inside EOF */ 1493 return offset; 1494 } 1495 1496 /** 1497 * page_mkwrite_check_truncate - check if page was truncated 1498 * @page: the page to check 1499 * @inode: the inode to check the page against 1500 * 1501 * Returns the number of bytes in the page up to EOF, 1502 * or -EFAULT if the page was truncated. 1503 */ 1504 static inline int page_mkwrite_check_truncate(struct page *page, 1505 struct inode *inode) 1506 { 1507 loff_t size = i_size_read(inode); 1508 pgoff_t index = size >> PAGE_SHIFT; 1509 int offset = offset_in_page(size); 1510 1511 if (page->mapping != inode->i_mapping) 1512 return -EFAULT; 1513 1514 /* page is wholly inside EOF */ 1515 if (page->index < index) 1516 return PAGE_SIZE; 1517 /* page is wholly past EOF */ 1518 if (page->index > index || !offset) 1519 return -EFAULT; 1520 /* page is partially inside EOF */ 1521 return offset; 1522 } 1523 1524 /** 1525 * i_blocks_per_folio - How many blocks fit in this folio. 1526 * @inode: The inode which contains the blocks. 1527 * @folio: The folio. 1528 * 1529 * If the block size is larger than the size of this folio, return zero. 1530 * 1531 * Context: The caller should hold a refcount on the folio to prevent it 1532 * from being split. 1533 * Return: The number of filesystem blocks covered by this folio. 1534 */ 1535 static inline 1536 unsigned int i_blocks_per_folio(struct inode *inode, struct folio *folio) 1537 { 1538 return folio_size(folio) >> inode->i_blkbits; 1539 } 1540 #endif /* _LINUX_PAGEMAP_H */ 1541