xref: /linux-6.15/include/linux/pagemap.h (revision 656fe3ee)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PAGEMAP_H
3 #define _LINUX_PAGEMAP_H
4 
5 /*
6  * Copyright 1995 Linus Torvalds
7  */
8 #include <linux/mm.h>
9 #include <linux/fs.h>
10 #include <linux/list.h>
11 #include <linux/highmem.h>
12 #include <linux/compiler.h>
13 #include <linux/uaccess.h>
14 #include <linux/gfp.h>
15 #include <linux/bitops.h>
16 #include <linux/hardirq.h> /* for in_interrupt() */
17 #include <linux/hugetlb_inline.h>
18 
19 struct folio_batch;
20 
21 unsigned long invalidate_mapping_pages(struct address_space *mapping,
22 					pgoff_t start, pgoff_t end);
23 
24 static inline void invalidate_remote_inode(struct inode *inode)
25 {
26 	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
27 	    S_ISLNK(inode->i_mode))
28 		invalidate_mapping_pages(inode->i_mapping, 0, -1);
29 }
30 int invalidate_inode_pages2(struct address_space *mapping);
31 int invalidate_inode_pages2_range(struct address_space *mapping,
32 		pgoff_t start, pgoff_t end);
33 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count);
34 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count);
35 
36 int write_inode_now(struct inode *, int sync);
37 int filemap_fdatawrite(struct address_space *);
38 int filemap_flush(struct address_space *);
39 int filemap_fdatawait_keep_errors(struct address_space *mapping);
40 int filemap_fdatawait_range(struct address_space *, loff_t lstart, loff_t lend);
41 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
42 		loff_t start_byte, loff_t end_byte);
43 int filemap_invalidate_inode(struct inode *inode, bool flush,
44 			     loff_t start, loff_t end);
45 
46 static inline int filemap_fdatawait(struct address_space *mapping)
47 {
48 	return filemap_fdatawait_range(mapping, 0, LLONG_MAX);
49 }
50 
51 bool filemap_range_has_page(struct address_space *, loff_t lstart, loff_t lend);
52 int filemap_write_and_wait_range(struct address_space *mapping,
53 		loff_t lstart, loff_t lend);
54 int __filemap_fdatawrite_range(struct address_space *mapping,
55 		loff_t start, loff_t end, int sync_mode);
56 int filemap_fdatawrite_range(struct address_space *mapping,
57 		loff_t start, loff_t end);
58 int filemap_check_errors(struct address_space *mapping);
59 void __filemap_set_wb_err(struct address_space *mapping, int err);
60 int filemap_fdatawrite_wbc(struct address_space *mapping,
61 			   struct writeback_control *wbc);
62 int kiocb_write_and_wait(struct kiocb *iocb, size_t count);
63 
64 static inline int filemap_write_and_wait(struct address_space *mapping)
65 {
66 	return filemap_write_and_wait_range(mapping, 0, LLONG_MAX);
67 }
68 
69 /**
70  * filemap_set_wb_err - set a writeback error on an address_space
71  * @mapping: mapping in which to set writeback error
72  * @err: error to be set in mapping
73  *
74  * When writeback fails in some way, we must record that error so that
75  * userspace can be informed when fsync and the like are called.  We endeavor
76  * to report errors on any file that was open at the time of the error.  Some
77  * internal callers also need to know when writeback errors have occurred.
78  *
79  * When a writeback error occurs, most filesystems will want to call
80  * filemap_set_wb_err to record the error in the mapping so that it will be
81  * automatically reported whenever fsync is called on the file.
82  */
83 static inline void filemap_set_wb_err(struct address_space *mapping, int err)
84 {
85 	/* Fastpath for common case of no error */
86 	if (unlikely(err))
87 		__filemap_set_wb_err(mapping, err);
88 }
89 
90 /**
91  * filemap_check_wb_err - has an error occurred since the mark was sampled?
92  * @mapping: mapping to check for writeback errors
93  * @since: previously-sampled errseq_t
94  *
95  * Grab the errseq_t value from the mapping, and see if it has changed "since"
96  * the given value was sampled.
97  *
98  * If it has then report the latest error set, otherwise return 0.
99  */
100 static inline int filemap_check_wb_err(struct address_space *mapping,
101 					errseq_t since)
102 {
103 	return errseq_check(&mapping->wb_err, since);
104 }
105 
106 /**
107  * filemap_sample_wb_err - sample the current errseq_t to test for later errors
108  * @mapping: mapping to be sampled
109  *
110  * Writeback errors are always reported relative to a particular sample point
111  * in the past. This function provides those sample points.
112  */
113 static inline errseq_t filemap_sample_wb_err(struct address_space *mapping)
114 {
115 	return errseq_sample(&mapping->wb_err);
116 }
117 
118 /**
119  * file_sample_sb_err - sample the current errseq_t to test for later errors
120  * @file: file pointer to be sampled
121  *
122  * Grab the most current superblock-level errseq_t value for the given
123  * struct file.
124  */
125 static inline errseq_t file_sample_sb_err(struct file *file)
126 {
127 	return errseq_sample(&file->f_path.dentry->d_sb->s_wb_err);
128 }
129 
130 /*
131  * Flush file data before changing attributes.  Caller must hold any locks
132  * required to prevent further writes to this file until we're done setting
133  * flags.
134  */
135 static inline int inode_drain_writes(struct inode *inode)
136 {
137 	inode_dio_wait(inode);
138 	return filemap_write_and_wait(inode->i_mapping);
139 }
140 
141 static inline bool mapping_empty(struct address_space *mapping)
142 {
143 	return xa_empty(&mapping->i_pages);
144 }
145 
146 /*
147  * mapping_shrinkable - test if page cache state allows inode reclaim
148  * @mapping: the page cache mapping
149  *
150  * This checks the mapping's cache state for the pupose of inode
151  * reclaim and LRU management.
152  *
153  * The caller is expected to hold the i_lock, but is not required to
154  * hold the i_pages lock, which usually protects cache state. That's
155  * because the i_lock and the list_lru lock that protect the inode and
156  * its LRU state don't nest inside the irq-safe i_pages lock.
157  *
158  * Cache deletions are performed under the i_lock, which ensures that
159  * when an inode goes empty, it will reliably get queued on the LRU.
160  *
161  * Cache additions do not acquire the i_lock and may race with this
162  * check, in which case we'll report the inode as shrinkable when it
163  * has cache pages. This is okay: the shrinker also checks the
164  * refcount and the referenced bit, which will be elevated or set in
165  * the process of adding new cache pages to an inode.
166  */
167 static inline bool mapping_shrinkable(struct address_space *mapping)
168 {
169 	void *head;
170 
171 	/*
172 	 * On highmem systems, there could be lowmem pressure from the
173 	 * inodes before there is highmem pressure from the page
174 	 * cache. Make inodes shrinkable regardless of cache state.
175 	 */
176 	if (IS_ENABLED(CONFIG_HIGHMEM))
177 		return true;
178 
179 	/* Cache completely empty? Shrink away. */
180 	head = rcu_access_pointer(mapping->i_pages.xa_head);
181 	if (!head)
182 		return true;
183 
184 	/*
185 	 * The xarray stores single offset-0 entries directly in the
186 	 * head pointer, which allows non-resident page cache entries
187 	 * to escape the shadow shrinker's list of xarray nodes. The
188 	 * inode shrinker needs to pick them up under memory pressure.
189 	 */
190 	if (!xa_is_node(head) && xa_is_value(head))
191 		return true;
192 
193 	return false;
194 }
195 
196 /*
197  * Bits in mapping->flags.
198  */
199 enum mapping_flags {
200 	AS_EIO		= 0,	/* IO error on async write */
201 	AS_ENOSPC	= 1,	/* ENOSPC on async write */
202 	AS_MM_ALL_LOCKS	= 2,	/* under mm_take_all_locks() */
203 	AS_UNEVICTABLE	= 3,	/* e.g., ramdisk, SHM_LOCK */
204 	AS_EXITING	= 4, 	/* final truncate in progress */
205 	/* writeback related tags are not used */
206 	AS_NO_WRITEBACK_TAGS = 5,
207 	AS_LARGE_FOLIO_SUPPORT = 6,
208 	AS_RELEASE_ALWAYS,	/* Call ->release_folio(), even if no private data */
209 	AS_STABLE_WRITES,	/* must wait for writeback before modifying
210 				   folio contents */
211 	AS_UNMOVABLE,		/* The mapping cannot be moved, ever */
212 };
213 
214 /**
215  * mapping_set_error - record a writeback error in the address_space
216  * @mapping: the mapping in which an error should be set
217  * @error: the error to set in the mapping
218  *
219  * When writeback fails in some way, we must record that error so that
220  * userspace can be informed when fsync and the like are called.  We endeavor
221  * to report errors on any file that was open at the time of the error.  Some
222  * internal callers also need to know when writeback errors have occurred.
223  *
224  * When a writeback error occurs, most filesystems will want to call
225  * mapping_set_error to record the error in the mapping so that it can be
226  * reported when the application calls fsync(2).
227  */
228 static inline void mapping_set_error(struct address_space *mapping, int error)
229 {
230 	if (likely(!error))
231 		return;
232 
233 	/* Record in wb_err for checkers using errseq_t based tracking */
234 	__filemap_set_wb_err(mapping, error);
235 
236 	/* Record it in superblock */
237 	if (mapping->host)
238 		errseq_set(&mapping->host->i_sb->s_wb_err, error);
239 
240 	/* Record it in flags for now, for legacy callers */
241 	if (error == -ENOSPC)
242 		set_bit(AS_ENOSPC, &mapping->flags);
243 	else
244 		set_bit(AS_EIO, &mapping->flags);
245 }
246 
247 static inline void mapping_set_unevictable(struct address_space *mapping)
248 {
249 	set_bit(AS_UNEVICTABLE, &mapping->flags);
250 }
251 
252 static inline void mapping_clear_unevictable(struct address_space *mapping)
253 {
254 	clear_bit(AS_UNEVICTABLE, &mapping->flags);
255 }
256 
257 static inline bool mapping_unevictable(struct address_space *mapping)
258 {
259 	return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags);
260 }
261 
262 static inline void mapping_set_exiting(struct address_space *mapping)
263 {
264 	set_bit(AS_EXITING, &mapping->flags);
265 }
266 
267 static inline int mapping_exiting(struct address_space *mapping)
268 {
269 	return test_bit(AS_EXITING, &mapping->flags);
270 }
271 
272 static inline void mapping_set_no_writeback_tags(struct address_space *mapping)
273 {
274 	set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
275 }
276 
277 static inline int mapping_use_writeback_tags(struct address_space *mapping)
278 {
279 	return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
280 }
281 
282 static inline bool mapping_release_always(const struct address_space *mapping)
283 {
284 	return test_bit(AS_RELEASE_ALWAYS, &mapping->flags);
285 }
286 
287 static inline void mapping_set_release_always(struct address_space *mapping)
288 {
289 	set_bit(AS_RELEASE_ALWAYS, &mapping->flags);
290 }
291 
292 static inline void mapping_clear_release_always(struct address_space *mapping)
293 {
294 	clear_bit(AS_RELEASE_ALWAYS, &mapping->flags);
295 }
296 
297 static inline bool mapping_stable_writes(const struct address_space *mapping)
298 {
299 	return test_bit(AS_STABLE_WRITES, &mapping->flags);
300 }
301 
302 static inline void mapping_set_stable_writes(struct address_space *mapping)
303 {
304 	set_bit(AS_STABLE_WRITES, &mapping->flags);
305 }
306 
307 static inline void mapping_clear_stable_writes(struct address_space *mapping)
308 {
309 	clear_bit(AS_STABLE_WRITES, &mapping->flags);
310 }
311 
312 static inline void mapping_set_unmovable(struct address_space *mapping)
313 {
314 	/*
315 	 * It's expected unmovable mappings are also unevictable. Compaction
316 	 * migrate scanner (isolate_migratepages_block()) relies on this to
317 	 * reduce page locking.
318 	 */
319 	set_bit(AS_UNEVICTABLE, &mapping->flags);
320 	set_bit(AS_UNMOVABLE, &mapping->flags);
321 }
322 
323 static inline bool mapping_unmovable(struct address_space *mapping)
324 {
325 	return test_bit(AS_UNMOVABLE, &mapping->flags);
326 }
327 
328 static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
329 {
330 	return mapping->gfp_mask;
331 }
332 
333 /* Restricts the given gfp_mask to what the mapping allows. */
334 static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
335 		gfp_t gfp_mask)
336 {
337 	return mapping_gfp_mask(mapping) & gfp_mask;
338 }
339 
340 /*
341  * This is non-atomic.  Only to be used before the mapping is activated.
342  * Probably needs a barrier...
343  */
344 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
345 {
346 	m->gfp_mask = mask;
347 }
348 
349 /*
350  * There are some parts of the kernel which assume that PMD entries
351  * are exactly HPAGE_PMD_ORDER.  Those should be fixed, but until then,
352  * limit the maximum allocation order to PMD size.  I'm not aware of any
353  * assumptions about maximum order if THP are disabled, but 8 seems like
354  * a good order (that's 1MB if you're using 4kB pages)
355  */
356 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
357 #define MAX_PAGECACHE_ORDER	HPAGE_PMD_ORDER
358 #else
359 #define MAX_PAGECACHE_ORDER	8
360 #endif
361 
362 /**
363  * mapping_set_large_folios() - Indicate the file supports large folios.
364  * @mapping: The file.
365  *
366  * The filesystem should call this function in its inode constructor to
367  * indicate that the VFS can use large folios to cache the contents of
368  * the file.
369  *
370  * Context: This should not be called while the inode is active as it
371  * is non-atomic.
372  */
373 static inline void mapping_set_large_folios(struct address_space *mapping)
374 {
375 	__set_bit(AS_LARGE_FOLIO_SUPPORT, &mapping->flags);
376 }
377 
378 /*
379  * Large folio support currently depends on THP.  These dependencies are
380  * being worked on but are not yet fixed.
381  */
382 static inline bool mapping_large_folio_support(struct address_space *mapping)
383 {
384 	/* AS_LARGE_FOLIO_SUPPORT is only reasonable for pagecache folios */
385 	VM_WARN_ONCE((unsigned long)mapping & PAGE_MAPPING_ANON,
386 			"Anonymous mapping always supports large folio");
387 
388 	return IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
389 		test_bit(AS_LARGE_FOLIO_SUPPORT, &mapping->flags);
390 }
391 
392 /* Return the maximum folio size for this pagecache mapping, in bytes. */
393 static inline size_t mapping_max_folio_size(struct address_space *mapping)
394 {
395 	if (mapping_large_folio_support(mapping))
396 		return PAGE_SIZE << MAX_PAGECACHE_ORDER;
397 	return PAGE_SIZE;
398 }
399 
400 static inline int filemap_nr_thps(struct address_space *mapping)
401 {
402 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
403 	return atomic_read(&mapping->nr_thps);
404 #else
405 	return 0;
406 #endif
407 }
408 
409 static inline void filemap_nr_thps_inc(struct address_space *mapping)
410 {
411 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
412 	if (!mapping_large_folio_support(mapping))
413 		atomic_inc(&mapping->nr_thps);
414 #else
415 	WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0);
416 #endif
417 }
418 
419 static inline void filemap_nr_thps_dec(struct address_space *mapping)
420 {
421 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
422 	if (!mapping_large_folio_support(mapping))
423 		atomic_dec(&mapping->nr_thps);
424 #else
425 	WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0);
426 #endif
427 }
428 
429 struct address_space *folio_mapping(struct folio *);
430 struct address_space *swapcache_mapping(struct folio *);
431 
432 /**
433  * folio_file_mapping - Find the mapping this folio belongs to.
434  * @folio: The folio.
435  *
436  * For folios which are in the page cache, return the mapping that this
437  * page belongs to.  Folios in the swap cache return the mapping of the
438  * swap file or swap device where the data is stored.  This is different
439  * from the mapping returned by folio_mapping().  The only reason to
440  * use it is if, like NFS, you return 0 from ->activate_swapfile.
441  *
442  * Do not call this for folios which aren't in the page cache or swap cache.
443  */
444 static inline struct address_space *folio_file_mapping(struct folio *folio)
445 {
446 	if (unlikely(folio_test_swapcache(folio)))
447 		return swapcache_mapping(folio);
448 
449 	return folio->mapping;
450 }
451 
452 /**
453  * folio_flush_mapping - Find the file mapping this folio belongs to.
454  * @folio: The folio.
455  *
456  * For folios which are in the page cache, return the mapping that this
457  * page belongs to.  Anonymous folios return NULL, even if they're in
458  * the swap cache.  Other kinds of folio also return NULL.
459  *
460  * This is ONLY used by architecture cache flushing code.  If you aren't
461  * writing cache flushing code, you want either folio_mapping() or
462  * folio_file_mapping().
463  */
464 static inline struct address_space *folio_flush_mapping(struct folio *folio)
465 {
466 	if (unlikely(folio_test_swapcache(folio)))
467 		return NULL;
468 
469 	return folio_mapping(folio);
470 }
471 
472 static inline struct address_space *page_file_mapping(struct page *page)
473 {
474 	return folio_file_mapping(page_folio(page));
475 }
476 
477 /**
478  * folio_inode - Get the host inode for this folio.
479  * @folio: The folio.
480  *
481  * For folios which are in the page cache, return the inode that this folio
482  * belongs to.
483  *
484  * Do not call this for folios which aren't in the page cache.
485  */
486 static inline struct inode *folio_inode(struct folio *folio)
487 {
488 	return folio->mapping->host;
489 }
490 
491 /**
492  * folio_attach_private - Attach private data to a folio.
493  * @folio: Folio to attach data to.
494  * @data: Data to attach to folio.
495  *
496  * Attaching private data to a folio increments the page's reference count.
497  * The data must be detached before the folio will be freed.
498  */
499 static inline void folio_attach_private(struct folio *folio, void *data)
500 {
501 	folio_get(folio);
502 	folio->private = data;
503 	folio_set_private(folio);
504 }
505 
506 /**
507  * folio_change_private - Change private data on a folio.
508  * @folio: Folio to change the data on.
509  * @data: Data to set on the folio.
510  *
511  * Change the private data attached to a folio and return the old
512  * data.  The page must previously have had data attached and the data
513  * must be detached before the folio will be freed.
514  *
515  * Return: Data that was previously attached to the folio.
516  */
517 static inline void *folio_change_private(struct folio *folio, void *data)
518 {
519 	void *old = folio_get_private(folio);
520 
521 	folio->private = data;
522 	return old;
523 }
524 
525 /**
526  * folio_detach_private - Detach private data from a folio.
527  * @folio: Folio to detach data from.
528  *
529  * Removes the data that was previously attached to the folio and decrements
530  * the refcount on the page.
531  *
532  * Return: Data that was attached to the folio.
533  */
534 static inline void *folio_detach_private(struct folio *folio)
535 {
536 	void *data = folio_get_private(folio);
537 
538 	if (!folio_test_private(folio))
539 		return NULL;
540 	folio_clear_private(folio);
541 	folio->private = NULL;
542 	folio_put(folio);
543 
544 	return data;
545 }
546 
547 static inline void attach_page_private(struct page *page, void *data)
548 {
549 	folio_attach_private(page_folio(page), data);
550 }
551 
552 static inline void *detach_page_private(struct page *page)
553 {
554 	return folio_detach_private(page_folio(page));
555 }
556 
557 #ifdef CONFIG_NUMA
558 struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order);
559 #else
560 static inline struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order)
561 {
562 	return folio_alloc_noprof(gfp, order);
563 }
564 #endif
565 
566 #define filemap_alloc_folio(...)				\
567 	alloc_hooks(filemap_alloc_folio_noprof(__VA_ARGS__))
568 
569 static inline struct page *__page_cache_alloc(gfp_t gfp)
570 {
571 	return &filemap_alloc_folio(gfp, 0)->page;
572 }
573 
574 static inline gfp_t readahead_gfp_mask(struct address_space *x)
575 {
576 	return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN;
577 }
578 
579 typedef int filler_t(struct file *, struct folio *);
580 
581 pgoff_t page_cache_next_miss(struct address_space *mapping,
582 			     pgoff_t index, unsigned long max_scan);
583 pgoff_t page_cache_prev_miss(struct address_space *mapping,
584 			     pgoff_t index, unsigned long max_scan);
585 
586 /**
587  * typedef fgf_t - Flags for getting folios from the page cache.
588  *
589  * Most users of the page cache will not need to use these flags;
590  * there are convenience functions such as filemap_get_folio() and
591  * filemap_lock_folio().  For users which need more control over exactly
592  * what is done with the folios, these flags to __filemap_get_folio()
593  * are available.
594  *
595  * * %FGP_ACCESSED - The folio will be marked accessed.
596  * * %FGP_LOCK - The folio is returned locked.
597  * * %FGP_CREAT - If no folio is present then a new folio is allocated,
598  *   added to the page cache and the VM's LRU list.  The folio is
599  *   returned locked.
600  * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
601  *   folio is already in cache.  If the folio was allocated, unlock it
602  *   before returning so the caller can do the same dance.
603  * * %FGP_WRITE - The folio will be written to by the caller.
604  * * %FGP_NOFS - __GFP_FS will get cleared in gfp.
605  * * %FGP_NOWAIT - Don't block on the folio lock.
606  * * %FGP_STABLE - Wait for the folio to be stable (finished writeback)
607  * * %FGP_WRITEBEGIN - The flags to use in a filesystem write_begin()
608  *   implementation.
609  */
610 typedef unsigned int __bitwise fgf_t;
611 
612 #define FGP_ACCESSED		((__force fgf_t)0x00000001)
613 #define FGP_LOCK		((__force fgf_t)0x00000002)
614 #define FGP_CREAT		((__force fgf_t)0x00000004)
615 #define FGP_WRITE		((__force fgf_t)0x00000008)
616 #define FGP_NOFS		((__force fgf_t)0x00000010)
617 #define FGP_NOWAIT		((__force fgf_t)0x00000020)
618 #define FGP_FOR_MMAP		((__force fgf_t)0x00000040)
619 #define FGP_STABLE		((__force fgf_t)0x00000080)
620 #define FGF_GET_ORDER(fgf)	(((__force unsigned)fgf) >> 26)	/* top 6 bits */
621 
622 #define FGP_WRITEBEGIN		(FGP_LOCK | FGP_WRITE | FGP_CREAT | FGP_STABLE)
623 
624 /**
625  * fgf_set_order - Encode a length in the fgf_t flags.
626  * @size: The suggested size of the folio to create.
627  *
628  * The caller of __filemap_get_folio() can use this to suggest a preferred
629  * size for the folio that is created.  If there is already a folio at
630  * the index, it will be returned, no matter what its size.  If a folio
631  * is freshly created, it may be of a different size than requested
632  * due to alignment constraints, memory pressure, or the presence of
633  * other folios at nearby indices.
634  */
635 static inline fgf_t fgf_set_order(size_t size)
636 {
637 	unsigned int shift = ilog2(size);
638 
639 	if (shift <= PAGE_SHIFT)
640 		return 0;
641 	return (__force fgf_t)((shift - PAGE_SHIFT) << 26);
642 }
643 
644 void *filemap_get_entry(struct address_space *mapping, pgoff_t index);
645 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
646 		fgf_t fgp_flags, gfp_t gfp);
647 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
648 		fgf_t fgp_flags, gfp_t gfp);
649 
650 /**
651  * filemap_get_folio - Find and get a folio.
652  * @mapping: The address_space to search.
653  * @index: The page index.
654  *
655  * Looks up the page cache entry at @mapping & @index.  If a folio is
656  * present, it is returned with an increased refcount.
657  *
658  * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for
659  * this index.  Will not return a shadow, swap or DAX entry.
660  */
661 static inline struct folio *filemap_get_folio(struct address_space *mapping,
662 					pgoff_t index)
663 {
664 	return __filemap_get_folio(mapping, index, 0, 0);
665 }
666 
667 /**
668  * filemap_lock_folio - Find and lock a folio.
669  * @mapping: The address_space to search.
670  * @index: The page index.
671  *
672  * Looks up the page cache entry at @mapping & @index.  If a folio is
673  * present, it is returned locked with an increased refcount.
674  *
675  * Context: May sleep.
676  * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for
677  * this index.  Will not return a shadow, swap or DAX entry.
678  */
679 static inline struct folio *filemap_lock_folio(struct address_space *mapping,
680 					pgoff_t index)
681 {
682 	return __filemap_get_folio(mapping, index, FGP_LOCK, 0);
683 }
684 
685 /**
686  * filemap_grab_folio - grab a folio from the page cache
687  * @mapping: The address space to search
688  * @index: The page index
689  *
690  * Looks up the page cache entry at @mapping & @index. If no folio is found,
691  * a new folio is created. The folio is locked, marked as accessed, and
692  * returned.
693  *
694  * Return: A found or created folio. ERR_PTR(-ENOMEM) if no folio is found
695  * and failed to create a folio.
696  */
697 static inline struct folio *filemap_grab_folio(struct address_space *mapping,
698 					pgoff_t index)
699 {
700 	return __filemap_get_folio(mapping, index,
701 			FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
702 			mapping_gfp_mask(mapping));
703 }
704 
705 /**
706  * find_get_page - find and get a page reference
707  * @mapping: the address_space to search
708  * @offset: the page index
709  *
710  * Looks up the page cache slot at @mapping & @offset.  If there is a
711  * page cache page, it is returned with an increased refcount.
712  *
713  * Otherwise, %NULL is returned.
714  */
715 static inline struct page *find_get_page(struct address_space *mapping,
716 					pgoff_t offset)
717 {
718 	return pagecache_get_page(mapping, offset, 0, 0);
719 }
720 
721 static inline struct page *find_get_page_flags(struct address_space *mapping,
722 					pgoff_t offset, fgf_t fgp_flags)
723 {
724 	return pagecache_get_page(mapping, offset, fgp_flags, 0);
725 }
726 
727 /**
728  * find_lock_page - locate, pin and lock a pagecache page
729  * @mapping: the address_space to search
730  * @index: the page index
731  *
732  * Looks up the page cache entry at @mapping & @index.  If there is a
733  * page cache page, it is returned locked and with an increased
734  * refcount.
735  *
736  * Context: May sleep.
737  * Return: A struct page or %NULL if there is no page in the cache for this
738  * index.
739  */
740 static inline struct page *find_lock_page(struct address_space *mapping,
741 					pgoff_t index)
742 {
743 	return pagecache_get_page(mapping, index, FGP_LOCK, 0);
744 }
745 
746 /**
747  * find_or_create_page - locate or add a pagecache page
748  * @mapping: the page's address_space
749  * @index: the page's index into the mapping
750  * @gfp_mask: page allocation mode
751  *
752  * Looks up the page cache slot at @mapping & @offset.  If there is a
753  * page cache page, it is returned locked and with an increased
754  * refcount.
755  *
756  * If the page is not present, a new page is allocated using @gfp_mask
757  * and added to the page cache and the VM's LRU list.  The page is
758  * returned locked and with an increased refcount.
759  *
760  * On memory exhaustion, %NULL is returned.
761  *
762  * find_or_create_page() may sleep, even if @gfp_flags specifies an
763  * atomic allocation!
764  */
765 static inline struct page *find_or_create_page(struct address_space *mapping,
766 					pgoff_t index, gfp_t gfp_mask)
767 {
768 	return pagecache_get_page(mapping, index,
769 					FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
770 					gfp_mask);
771 }
772 
773 /**
774  * grab_cache_page_nowait - returns locked page at given index in given cache
775  * @mapping: target address_space
776  * @index: the page index
777  *
778  * Same as grab_cache_page(), but do not wait if the page is unavailable.
779  * This is intended for speculative data generators, where the data can
780  * be regenerated if the page couldn't be grabbed.  This routine should
781  * be safe to call while holding the lock for another page.
782  *
783  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
784  * and deadlock against the caller's locked page.
785  */
786 static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
787 				pgoff_t index)
788 {
789 	return pagecache_get_page(mapping, index,
790 			FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
791 			mapping_gfp_mask(mapping));
792 }
793 
794 extern pgoff_t __folio_swap_cache_index(struct folio *folio);
795 
796 /**
797  * folio_index - File index of a folio.
798  * @folio: The folio.
799  *
800  * For a folio which is either in the page cache or the swap cache,
801  * return its index within the address_space it belongs to.  If you know
802  * the page is definitely in the page cache, you can look at the folio's
803  * index directly.
804  *
805  * Return: The index (offset in units of pages) of a folio in its file.
806  */
807 static inline pgoff_t folio_index(struct folio *folio)
808 {
809 	if (unlikely(folio_test_swapcache(folio)))
810 		return __folio_swap_cache_index(folio);
811 	return folio->index;
812 }
813 
814 /**
815  * folio_next_index - Get the index of the next folio.
816  * @folio: The current folio.
817  *
818  * Return: The index of the folio which follows this folio in the file.
819  */
820 static inline pgoff_t folio_next_index(struct folio *folio)
821 {
822 	return folio->index + folio_nr_pages(folio);
823 }
824 
825 /**
826  * folio_file_page - The page for a particular index.
827  * @folio: The folio which contains this index.
828  * @index: The index we want to look up.
829  *
830  * Sometimes after looking up a folio in the page cache, we need to
831  * obtain the specific page for an index (eg a page fault).
832  *
833  * Return: The page containing the file data for this index.
834  */
835 static inline struct page *folio_file_page(struct folio *folio, pgoff_t index)
836 {
837 	return folio_page(folio, index & (folio_nr_pages(folio) - 1));
838 }
839 
840 /**
841  * folio_contains - Does this folio contain this index?
842  * @folio: The folio.
843  * @index: The page index within the file.
844  *
845  * Context: The caller should have the page locked in order to prevent
846  * (eg) shmem from moving the page between the page cache and swap cache
847  * and changing its index in the middle of the operation.
848  * Return: true or false.
849  */
850 static inline bool folio_contains(struct folio *folio, pgoff_t index)
851 {
852 	return index - folio_index(folio) < folio_nr_pages(folio);
853 }
854 
855 /*
856  * Given the page we found in the page cache, return the page corresponding
857  * to this index in the file
858  */
859 static inline struct page *find_subpage(struct page *head, pgoff_t index)
860 {
861 	/* HugeTLBfs wants the head page regardless */
862 	if (PageHuge(head))
863 		return head;
864 
865 	return head + (index & (thp_nr_pages(head) - 1));
866 }
867 
868 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
869 		pgoff_t end, struct folio_batch *fbatch);
870 unsigned filemap_get_folios_contig(struct address_space *mapping,
871 		pgoff_t *start, pgoff_t end, struct folio_batch *fbatch);
872 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
873 		pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch);
874 
875 struct page *grab_cache_page_write_begin(struct address_space *mapping,
876 			pgoff_t index);
877 
878 /*
879  * Returns locked page at given index in given cache, creating it if needed.
880  */
881 static inline struct page *grab_cache_page(struct address_space *mapping,
882 								pgoff_t index)
883 {
884 	return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
885 }
886 
887 struct folio *read_cache_folio(struct address_space *, pgoff_t index,
888 		filler_t *filler, struct file *file);
889 struct folio *mapping_read_folio_gfp(struct address_space *, pgoff_t index,
890 		gfp_t flags);
891 struct page *read_cache_page(struct address_space *, pgoff_t index,
892 		filler_t *filler, struct file *file);
893 extern struct page * read_cache_page_gfp(struct address_space *mapping,
894 				pgoff_t index, gfp_t gfp_mask);
895 
896 static inline struct page *read_mapping_page(struct address_space *mapping,
897 				pgoff_t index, struct file *file)
898 {
899 	return read_cache_page(mapping, index, NULL, file);
900 }
901 
902 static inline struct folio *read_mapping_folio(struct address_space *mapping,
903 				pgoff_t index, struct file *file)
904 {
905 	return read_cache_folio(mapping, index, NULL, file);
906 }
907 
908 /*
909  * Get the offset in PAGE_SIZE (even for hugetlb pages).
910  */
911 static inline pgoff_t page_to_pgoff(struct page *page)
912 {
913 	struct page *head;
914 
915 	if (likely(!PageTransTail(page)))
916 		return page->index;
917 
918 	head = compound_head(page);
919 	/*
920 	 *  We don't initialize ->index for tail pages: calculate based on
921 	 *  head page
922 	 */
923 	return head->index + page - head;
924 }
925 
926 /*
927  * Return byte-offset into filesystem object for page.
928  */
929 static inline loff_t page_offset(struct page *page)
930 {
931 	return ((loff_t)page->index) << PAGE_SHIFT;
932 }
933 
934 /**
935  * folio_pos - Returns the byte position of this folio in its file.
936  * @folio: The folio.
937  */
938 static inline loff_t folio_pos(struct folio *folio)
939 {
940 	return page_offset(&folio->page);
941 }
942 
943 /*
944  * Get the offset in PAGE_SIZE (even for hugetlb folios).
945  */
946 static inline pgoff_t folio_pgoff(struct folio *folio)
947 {
948 	return folio->index;
949 }
950 
951 static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
952 					unsigned long address)
953 {
954 	pgoff_t pgoff;
955 	pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
956 	pgoff += vma->vm_pgoff;
957 	return pgoff;
958 }
959 
960 struct wait_page_key {
961 	struct folio *folio;
962 	int bit_nr;
963 	int page_match;
964 };
965 
966 struct wait_page_queue {
967 	struct folio *folio;
968 	int bit_nr;
969 	wait_queue_entry_t wait;
970 };
971 
972 static inline bool wake_page_match(struct wait_page_queue *wait_page,
973 				  struct wait_page_key *key)
974 {
975 	if (wait_page->folio != key->folio)
976 	       return false;
977 	key->page_match = 1;
978 
979 	if (wait_page->bit_nr != key->bit_nr)
980 		return false;
981 
982 	return true;
983 }
984 
985 void __folio_lock(struct folio *folio);
986 int __folio_lock_killable(struct folio *folio);
987 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf);
988 void unlock_page(struct page *page);
989 void folio_unlock(struct folio *folio);
990 
991 /**
992  * folio_trylock() - Attempt to lock a folio.
993  * @folio: The folio to attempt to lock.
994  *
995  * Sometimes it is undesirable to wait for a folio to be unlocked (eg
996  * when the locks are being taken in the wrong order, or if making
997  * progress through a batch of folios is more important than processing
998  * them in order).  Usually folio_lock() is the correct function to call.
999  *
1000  * Context: Any context.
1001  * Return: Whether the lock was successfully acquired.
1002  */
1003 static inline bool folio_trylock(struct folio *folio)
1004 {
1005 	return likely(!test_and_set_bit_lock(PG_locked, folio_flags(folio, 0)));
1006 }
1007 
1008 /*
1009  * Return true if the page was successfully locked
1010  */
1011 static inline bool trylock_page(struct page *page)
1012 {
1013 	return folio_trylock(page_folio(page));
1014 }
1015 
1016 /**
1017  * folio_lock() - Lock this folio.
1018  * @folio: The folio to lock.
1019  *
1020  * The folio lock protects against many things, probably more than it
1021  * should.  It is primarily held while a folio is being brought uptodate,
1022  * either from its backing file or from swap.  It is also held while a
1023  * folio is being truncated from its address_space, so holding the lock
1024  * is sufficient to keep folio->mapping stable.
1025  *
1026  * The folio lock is also held while write() is modifying the page to
1027  * provide POSIX atomicity guarantees (as long as the write does not
1028  * cross a page boundary).  Other modifications to the data in the folio
1029  * do not hold the folio lock and can race with writes, eg DMA and stores
1030  * to mapped pages.
1031  *
1032  * Context: May sleep.  If you need to acquire the locks of two or
1033  * more folios, they must be in order of ascending index, if they are
1034  * in the same address_space.  If they are in different address_spaces,
1035  * acquire the lock of the folio which belongs to the address_space which
1036  * has the lowest address in memory first.
1037  */
1038 static inline void folio_lock(struct folio *folio)
1039 {
1040 	might_sleep();
1041 	if (!folio_trylock(folio))
1042 		__folio_lock(folio);
1043 }
1044 
1045 /**
1046  * lock_page() - Lock the folio containing this page.
1047  * @page: The page to lock.
1048  *
1049  * See folio_lock() for a description of what the lock protects.
1050  * This is a legacy function and new code should probably use folio_lock()
1051  * instead.
1052  *
1053  * Context: May sleep.  Pages in the same folio share a lock, so do not
1054  * attempt to lock two pages which share a folio.
1055  */
1056 static inline void lock_page(struct page *page)
1057 {
1058 	struct folio *folio;
1059 	might_sleep();
1060 
1061 	folio = page_folio(page);
1062 	if (!folio_trylock(folio))
1063 		__folio_lock(folio);
1064 }
1065 
1066 /**
1067  * folio_lock_killable() - Lock this folio, interruptible by a fatal signal.
1068  * @folio: The folio to lock.
1069  *
1070  * Attempts to lock the folio, like folio_lock(), except that the sleep
1071  * to acquire the lock is interruptible by a fatal signal.
1072  *
1073  * Context: May sleep; see folio_lock().
1074  * Return: 0 if the lock was acquired; -EINTR if a fatal signal was received.
1075  */
1076 static inline int folio_lock_killable(struct folio *folio)
1077 {
1078 	might_sleep();
1079 	if (!folio_trylock(folio))
1080 		return __folio_lock_killable(folio);
1081 	return 0;
1082 }
1083 
1084 /*
1085  * folio_lock_or_retry - Lock the folio, unless this would block and the
1086  * caller indicated that it can handle a retry.
1087  *
1088  * Return value and mmap_lock implications depend on flags; see
1089  * __folio_lock_or_retry().
1090  */
1091 static inline vm_fault_t folio_lock_or_retry(struct folio *folio,
1092 					     struct vm_fault *vmf)
1093 {
1094 	might_sleep();
1095 	if (!folio_trylock(folio))
1096 		return __folio_lock_or_retry(folio, vmf);
1097 	return 0;
1098 }
1099 
1100 /*
1101  * This is exported only for folio_wait_locked/folio_wait_writeback, etc.,
1102  * and should not be used directly.
1103  */
1104 void folio_wait_bit(struct folio *folio, int bit_nr);
1105 int folio_wait_bit_killable(struct folio *folio, int bit_nr);
1106 
1107 /*
1108  * Wait for a folio to be unlocked.
1109  *
1110  * This must be called with the caller "holding" the folio,
1111  * ie with increased folio reference count so that the folio won't
1112  * go away during the wait.
1113  */
1114 static inline void folio_wait_locked(struct folio *folio)
1115 {
1116 	if (folio_test_locked(folio))
1117 		folio_wait_bit(folio, PG_locked);
1118 }
1119 
1120 static inline int folio_wait_locked_killable(struct folio *folio)
1121 {
1122 	if (!folio_test_locked(folio))
1123 		return 0;
1124 	return folio_wait_bit_killable(folio, PG_locked);
1125 }
1126 
1127 static inline void wait_on_page_locked(struct page *page)
1128 {
1129 	folio_wait_locked(page_folio(page));
1130 }
1131 
1132 void folio_end_read(struct folio *folio, bool success);
1133 void wait_on_page_writeback(struct page *page);
1134 void folio_wait_writeback(struct folio *folio);
1135 int folio_wait_writeback_killable(struct folio *folio);
1136 void end_page_writeback(struct page *page);
1137 void folio_end_writeback(struct folio *folio);
1138 void wait_for_stable_page(struct page *page);
1139 void folio_wait_stable(struct folio *folio);
1140 void __folio_mark_dirty(struct folio *folio, struct address_space *, int warn);
1141 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb);
1142 void __folio_cancel_dirty(struct folio *folio);
1143 static inline void folio_cancel_dirty(struct folio *folio)
1144 {
1145 	/* Avoid atomic ops, locking, etc. when not actually needed. */
1146 	if (folio_test_dirty(folio))
1147 		__folio_cancel_dirty(folio);
1148 }
1149 bool folio_clear_dirty_for_io(struct folio *folio);
1150 bool clear_page_dirty_for_io(struct page *page);
1151 void folio_invalidate(struct folio *folio, size_t offset, size_t length);
1152 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio);
1153 
1154 #ifdef CONFIG_MIGRATION
1155 int filemap_migrate_folio(struct address_space *mapping, struct folio *dst,
1156 		struct folio *src, enum migrate_mode mode);
1157 #else
1158 #define filemap_migrate_folio NULL
1159 #endif
1160 void folio_end_private_2(struct folio *folio);
1161 void folio_wait_private_2(struct folio *folio);
1162 int folio_wait_private_2_killable(struct folio *folio);
1163 
1164 /*
1165  * Add an arbitrary waiter to a page's wait queue
1166  */
1167 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter);
1168 
1169 /*
1170  * Fault in userspace address range.
1171  */
1172 size_t fault_in_writeable(char __user *uaddr, size_t size);
1173 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size);
1174 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size);
1175 size_t fault_in_readable(const char __user *uaddr, size_t size);
1176 
1177 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
1178 		pgoff_t index, gfp_t gfp);
1179 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
1180 		pgoff_t index, gfp_t gfp);
1181 void filemap_remove_folio(struct folio *folio);
1182 void __filemap_remove_folio(struct folio *folio, void *shadow);
1183 void replace_page_cache_folio(struct folio *old, struct folio *new);
1184 void delete_from_page_cache_batch(struct address_space *mapping,
1185 				  struct folio_batch *fbatch);
1186 bool filemap_release_folio(struct folio *folio, gfp_t gfp);
1187 loff_t mapping_seek_hole_data(struct address_space *, loff_t start, loff_t end,
1188 		int whence);
1189 
1190 /* Must be non-static for BPF error injection */
1191 int __filemap_add_folio(struct address_space *mapping, struct folio *folio,
1192 		pgoff_t index, gfp_t gfp, void **shadowp);
1193 
1194 bool filemap_range_has_writeback(struct address_space *mapping,
1195 				 loff_t start_byte, loff_t end_byte);
1196 
1197 /**
1198  * filemap_range_needs_writeback - check if range potentially needs writeback
1199  * @mapping:           address space within which to check
1200  * @start_byte:        offset in bytes where the range starts
1201  * @end_byte:          offset in bytes where the range ends (inclusive)
1202  *
1203  * Find at least one page in the range supplied, usually used to check if
1204  * direct writing in this range will trigger a writeback. Used by O_DIRECT
1205  * read/write with IOCB_NOWAIT, to see if the caller needs to do
1206  * filemap_write_and_wait_range() before proceeding.
1207  *
1208  * Return: %true if the caller should do filemap_write_and_wait_range() before
1209  * doing O_DIRECT to a page in this range, %false otherwise.
1210  */
1211 static inline bool filemap_range_needs_writeback(struct address_space *mapping,
1212 						 loff_t start_byte,
1213 						 loff_t end_byte)
1214 {
1215 	if (!mapping->nrpages)
1216 		return false;
1217 	if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
1218 	    !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
1219 		return false;
1220 	return filemap_range_has_writeback(mapping, start_byte, end_byte);
1221 }
1222 
1223 /**
1224  * struct readahead_control - Describes a readahead request.
1225  *
1226  * A readahead request is for consecutive pages.  Filesystems which
1227  * implement the ->readahead method should call readahead_page() or
1228  * readahead_page_batch() in a loop and attempt to start I/O against
1229  * each page in the request.
1230  *
1231  * Most of the fields in this struct are private and should be accessed
1232  * by the functions below.
1233  *
1234  * @file: The file, used primarily by network filesystems for authentication.
1235  *	  May be NULL if invoked internally by the filesystem.
1236  * @mapping: Readahead this filesystem object.
1237  * @ra: File readahead state.  May be NULL.
1238  */
1239 struct readahead_control {
1240 	struct file *file;
1241 	struct address_space *mapping;
1242 	struct file_ra_state *ra;
1243 /* private: use the readahead_* accessors instead */
1244 	pgoff_t _index;
1245 	unsigned int _nr_pages;
1246 	unsigned int _batch_count;
1247 	bool _workingset;
1248 	unsigned long _pflags;
1249 };
1250 
1251 #define DEFINE_READAHEAD(ractl, f, r, m, i)				\
1252 	struct readahead_control ractl = {				\
1253 		.file = f,						\
1254 		.mapping = m,						\
1255 		.ra = r,						\
1256 		._index = i,						\
1257 	}
1258 
1259 #define VM_READAHEAD_PAGES	(SZ_128K / PAGE_SIZE)
1260 
1261 void page_cache_ra_unbounded(struct readahead_control *,
1262 		unsigned long nr_to_read, unsigned long lookahead_count);
1263 void page_cache_sync_ra(struct readahead_control *, unsigned long req_count);
1264 void page_cache_async_ra(struct readahead_control *, struct folio *,
1265 		unsigned long req_count);
1266 void readahead_expand(struct readahead_control *ractl,
1267 		      loff_t new_start, size_t new_len);
1268 
1269 /**
1270  * page_cache_sync_readahead - generic file readahead
1271  * @mapping: address_space which holds the pagecache and I/O vectors
1272  * @ra: file_ra_state which holds the readahead state
1273  * @file: Used by the filesystem for authentication.
1274  * @index: Index of first page to be read.
1275  * @req_count: Total number of pages being read by the caller.
1276  *
1277  * page_cache_sync_readahead() should be called when a cache miss happened:
1278  * it will submit the read.  The readahead logic may decide to piggyback more
1279  * pages onto the read request if access patterns suggest it will improve
1280  * performance.
1281  */
1282 static inline
1283 void page_cache_sync_readahead(struct address_space *mapping,
1284 		struct file_ra_state *ra, struct file *file, pgoff_t index,
1285 		unsigned long req_count)
1286 {
1287 	DEFINE_READAHEAD(ractl, file, ra, mapping, index);
1288 	page_cache_sync_ra(&ractl, req_count);
1289 }
1290 
1291 /**
1292  * page_cache_async_readahead - file readahead for marked pages
1293  * @mapping: address_space which holds the pagecache and I/O vectors
1294  * @ra: file_ra_state which holds the readahead state
1295  * @file: Used by the filesystem for authentication.
1296  * @folio: The folio at @index which triggered the readahead call.
1297  * @index: Index of first page to be read.
1298  * @req_count: Total number of pages being read by the caller.
1299  *
1300  * page_cache_async_readahead() should be called when a page is used which
1301  * is marked as PageReadahead; this is a marker to suggest that the application
1302  * has used up enough of the readahead window that we should start pulling in
1303  * more pages.
1304  */
1305 static inline
1306 void page_cache_async_readahead(struct address_space *mapping,
1307 		struct file_ra_state *ra, struct file *file,
1308 		struct folio *folio, pgoff_t index, unsigned long req_count)
1309 {
1310 	DEFINE_READAHEAD(ractl, file, ra, mapping, index);
1311 	page_cache_async_ra(&ractl, folio, req_count);
1312 }
1313 
1314 static inline struct folio *__readahead_folio(struct readahead_control *ractl)
1315 {
1316 	struct folio *folio;
1317 
1318 	BUG_ON(ractl->_batch_count > ractl->_nr_pages);
1319 	ractl->_nr_pages -= ractl->_batch_count;
1320 	ractl->_index += ractl->_batch_count;
1321 
1322 	if (!ractl->_nr_pages) {
1323 		ractl->_batch_count = 0;
1324 		return NULL;
1325 	}
1326 
1327 	folio = xa_load(&ractl->mapping->i_pages, ractl->_index);
1328 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1329 	ractl->_batch_count = folio_nr_pages(folio);
1330 
1331 	return folio;
1332 }
1333 
1334 /**
1335  * readahead_page - Get the next page to read.
1336  * @ractl: The current readahead request.
1337  *
1338  * Context: The page is locked and has an elevated refcount.  The caller
1339  * should decreases the refcount once the page has been submitted for I/O
1340  * and unlock the page once all I/O to that page has completed.
1341  * Return: A pointer to the next page, or %NULL if we are done.
1342  */
1343 static inline struct page *readahead_page(struct readahead_control *ractl)
1344 {
1345 	struct folio *folio = __readahead_folio(ractl);
1346 
1347 	return &folio->page;
1348 }
1349 
1350 /**
1351  * readahead_folio - Get the next folio to read.
1352  * @ractl: The current readahead request.
1353  *
1354  * Context: The folio is locked.  The caller should unlock the folio once
1355  * all I/O to that folio has completed.
1356  * Return: A pointer to the next folio, or %NULL if we are done.
1357  */
1358 static inline struct folio *readahead_folio(struct readahead_control *ractl)
1359 {
1360 	struct folio *folio = __readahead_folio(ractl);
1361 
1362 	if (folio)
1363 		folio_put(folio);
1364 	return folio;
1365 }
1366 
1367 static inline unsigned int __readahead_batch(struct readahead_control *rac,
1368 		struct page **array, unsigned int array_sz)
1369 {
1370 	unsigned int i = 0;
1371 	XA_STATE(xas, &rac->mapping->i_pages, 0);
1372 	struct page *page;
1373 
1374 	BUG_ON(rac->_batch_count > rac->_nr_pages);
1375 	rac->_nr_pages -= rac->_batch_count;
1376 	rac->_index += rac->_batch_count;
1377 	rac->_batch_count = 0;
1378 
1379 	xas_set(&xas, rac->_index);
1380 	rcu_read_lock();
1381 	xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) {
1382 		if (xas_retry(&xas, page))
1383 			continue;
1384 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1385 		VM_BUG_ON_PAGE(PageTail(page), page);
1386 		array[i++] = page;
1387 		rac->_batch_count += thp_nr_pages(page);
1388 		if (i == array_sz)
1389 			break;
1390 	}
1391 	rcu_read_unlock();
1392 
1393 	return i;
1394 }
1395 
1396 /**
1397  * readahead_page_batch - Get a batch of pages to read.
1398  * @rac: The current readahead request.
1399  * @array: An array of pointers to struct page.
1400  *
1401  * Context: The pages are locked and have an elevated refcount.  The caller
1402  * should decreases the refcount once the page has been submitted for I/O
1403  * and unlock the page once all I/O to that page has completed.
1404  * Return: The number of pages placed in the array.  0 indicates the request
1405  * is complete.
1406  */
1407 #define readahead_page_batch(rac, array)				\
1408 	__readahead_batch(rac, array, ARRAY_SIZE(array))
1409 
1410 /**
1411  * readahead_pos - The byte offset into the file of this readahead request.
1412  * @rac: The readahead request.
1413  */
1414 static inline loff_t readahead_pos(struct readahead_control *rac)
1415 {
1416 	return (loff_t)rac->_index * PAGE_SIZE;
1417 }
1418 
1419 /**
1420  * readahead_length - The number of bytes in this readahead request.
1421  * @rac: The readahead request.
1422  */
1423 static inline size_t readahead_length(struct readahead_control *rac)
1424 {
1425 	return rac->_nr_pages * PAGE_SIZE;
1426 }
1427 
1428 /**
1429  * readahead_index - The index of the first page in this readahead request.
1430  * @rac: The readahead request.
1431  */
1432 static inline pgoff_t readahead_index(struct readahead_control *rac)
1433 {
1434 	return rac->_index;
1435 }
1436 
1437 /**
1438  * readahead_count - The number of pages in this readahead request.
1439  * @rac: The readahead request.
1440  */
1441 static inline unsigned int readahead_count(struct readahead_control *rac)
1442 {
1443 	return rac->_nr_pages;
1444 }
1445 
1446 /**
1447  * readahead_batch_length - The number of bytes in the current batch.
1448  * @rac: The readahead request.
1449  */
1450 static inline size_t readahead_batch_length(struct readahead_control *rac)
1451 {
1452 	return rac->_batch_count * PAGE_SIZE;
1453 }
1454 
1455 static inline unsigned long dir_pages(struct inode *inode)
1456 {
1457 	return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
1458 			       PAGE_SHIFT;
1459 }
1460 
1461 /**
1462  * folio_mkwrite_check_truncate - check if folio was truncated
1463  * @folio: the folio to check
1464  * @inode: the inode to check the folio against
1465  *
1466  * Return: the number of bytes in the folio up to EOF,
1467  * or -EFAULT if the folio was truncated.
1468  */
1469 static inline ssize_t folio_mkwrite_check_truncate(struct folio *folio,
1470 					      struct inode *inode)
1471 {
1472 	loff_t size = i_size_read(inode);
1473 	pgoff_t index = size >> PAGE_SHIFT;
1474 	size_t offset = offset_in_folio(folio, size);
1475 
1476 	if (!folio->mapping)
1477 		return -EFAULT;
1478 
1479 	/* folio is wholly inside EOF */
1480 	if (folio_next_index(folio) - 1 < index)
1481 		return folio_size(folio);
1482 	/* folio is wholly past EOF */
1483 	if (folio->index > index || !offset)
1484 		return -EFAULT;
1485 	/* folio is partially inside EOF */
1486 	return offset;
1487 }
1488 
1489 /**
1490  * page_mkwrite_check_truncate - check if page was truncated
1491  * @page: the page to check
1492  * @inode: the inode to check the page against
1493  *
1494  * Returns the number of bytes in the page up to EOF,
1495  * or -EFAULT if the page was truncated.
1496  */
1497 static inline int page_mkwrite_check_truncate(struct page *page,
1498 					      struct inode *inode)
1499 {
1500 	loff_t size = i_size_read(inode);
1501 	pgoff_t index = size >> PAGE_SHIFT;
1502 	int offset = offset_in_page(size);
1503 
1504 	if (page->mapping != inode->i_mapping)
1505 		return -EFAULT;
1506 
1507 	/* page is wholly inside EOF */
1508 	if (page->index < index)
1509 		return PAGE_SIZE;
1510 	/* page is wholly past EOF */
1511 	if (page->index > index || !offset)
1512 		return -EFAULT;
1513 	/* page is partially inside EOF */
1514 	return offset;
1515 }
1516 
1517 /**
1518  * i_blocks_per_folio - How many blocks fit in this folio.
1519  * @inode: The inode which contains the blocks.
1520  * @folio: The folio.
1521  *
1522  * If the block size is larger than the size of this folio, return zero.
1523  *
1524  * Context: The caller should hold a refcount on the folio to prevent it
1525  * from being split.
1526  * Return: The number of filesystem blocks covered by this folio.
1527  */
1528 static inline
1529 unsigned int i_blocks_per_folio(struct inode *inode, struct folio *folio)
1530 {
1531 	return folio_size(folio) >> inode->i_blkbits;
1532 }
1533 
1534 static inline
1535 unsigned int i_blocks_per_page(struct inode *inode, struct page *page)
1536 {
1537 	return i_blocks_per_folio(inode, page_folio(page));
1538 }
1539 #endif /* _LINUX_PAGEMAP_H */
1540