1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_PAGEMAP_H 3 #define _LINUX_PAGEMAP_H 4 5 /* 6 * Copyright 1995 Linus Torvalds 7 */ 8 #include <linux/mm.h> 9 #include <linux/fs.h> 10 #include <linux/list.h> 11 #include <linux/highmem.h> 12 #include <linux/compiler.h> 13 #include <linux/uaccess.h> 14 #include <linux/gfp.h> 15 #include <linux/bitops.h> 16 #include <linux/hardirq.h> /* for in_interrupt() */ 17 #include <linux/hugetlb_inline.h> 18 19 struct folio_batch; 20 21 unsigned long invalidate_mapping_pages(struct address_space *mapping, 22 pgoff_t start, pgoff_t end); 23 24 static inline void invalidate_remote_inode(struct inode *inode) 25 { 26 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 27 S_ISLNK(inode->i_mode)) 28 invalidate_mapping_pages(inode->i_mapping, 0, -1); 29 } 30 int invalidate_inode_pages2(struct address_space *mapping); 31 int invalidate_inode_pages2_range(struct address_space *mapping, 32 pgoff_t start, pgoff_t end); 33 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count); 34 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count); 35 36 int write_inode_now(struct inode *, int sync); 37 int filemap_fdatawrite(struct address_space *); 38 int filemap_flush(struct address_space *); 39 int filemap_fdatawait_keep_errors(struct address_space *mapping); 40 int filemap_fdatawait_range(struct address_space *, loff_t lstart, loff_t lend); 41 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 42 loff_t start_byte, loff_t end_byte); 43 44 static inline int filemap_fdatawait(struct address_space *mapping) 45 { 46 return filemap_fdatawait_range(mapping, 0, LLONG_MAX); 47 } 48 49 bool filemap_range_has_page(struct address_space *, loff_t lstart, loff_t lend); 50 int filemap_write_and_wait_range(struct address_space *mapping, 51 loff_t lstart, loff_t lend); 52 int __filemap_fdatawrite_range(struct address_space *mapping, 53 loff_t start, loff_t end, int sync_mode); 54 int filemap_fdatawrite_range(struct address_space *mapping, 55 loff_t start, loff_t end); 56 int filemap_check_errors(struct address_space *mapping); 57 void __filemap_set_wb_err(struct address_space *mapping, int err); 58 int filemap_fdatawrite_wbc(struct address_space *mapping, 59 struct writeback_control *wbc); 60 int kiocb_write_and_wait(struct kiocb *iocb, size_t count); 61 62 static inline int filemap_write_and_wait(struct address_space *mapping) 63 { 64 return filemap_write_and_wait_range(mapping, 0, LLONG_MAX); 65 } 66 67 /** 68 * filemap_set_wb_err - set a writeback error on an address_space 69 * @mapping: mapping in which to set writeback error 70 * @err: error to be set in mapping 71 * 72 * When writeback fails in some way, we must record that error so that 73 * userspace can be informed when fsync and the like are called. We endeavor 74 * to report errors on any file that was open at the time of the error. Some 75 * internal callers also need to know when writeback errors have occurred. 76 * 77 * When a writeback error occurs, most filesystems will want to call 78 * filemap_set_wb_err to record the error in the mapping so that it will be 79 * automatically reported whenever fsync is called on the file. 80 */ 81 static inline void filemap_set_wb_err(struct address_space *mapping, int err) 82 { 83 /* Fastpath for common case of no error */ 84 if (unlikely(err)) 85 __filemap_set_wb_err(mapping, err); 86 } 87 88 /** 89 * filemap_check_wb_err - has an error occurred since the mark was sampled? 90 * @mapping: mapping to check for writeback errors 91 * @since: previously-sampled errseq_t 92 * 93 * Grab the errseq_t value from the mapping, and see if it has changed "since" 94 * the given value was sampled. 95 * 96 * If it has then report the latest error set, otherwise return 0. 97 */ 98 static inline int filemap_check_wb_err(struct address_space *mapping, 99 errseq_t since) 100 { 101 return errseq_check(&mapping->wb_err, since); 102 } 103 104 /** 105 * filemap_sample_wb_err - sample the current errseq_t to test for later errors 106 * @mapping: mapping to be sampled 107 * 108 * Writeback errors are always reported relative to a particular sample point 109 * in the past. This function provides those sample points. 110 */ 111 static inline errseq_t filemap_sample_wb_err(struct address_space *mapping) 112 { 113 return errseq_sample(&mapping->wb_err); 114 } 115 116 /** 117 * file_sample_sb_err - sample the current errseq_t to test for later errors 118 * @file: file pointer to be sampled 119 * 120 * Grab the most current superblock-level errseq_t value for the given 121 * struct file. 122 */ 123 static inline errseq_t file_sample_sb_err(struct file *file) 124 { 125 return errseq_sample(&file->f_path.dentry->d_sb->s_wb_err); 126 } 127 128 /* 129 * Flush file data before changing attributes. Caller must hold any locks 130 * required to prevent further writes to this file until we're done setting 131 * flags. 132 */ 133 static inline int inode_drain_writes(struct inode *inode) 134 { 135 inode_dio_wait(inode); 136 return filemap_write_and_wait(inode->i_mapping); 137 } 138 139 static inline bool mapping_empty(struct address_space *mapping) 140 { 141 return xa_empty(&mapping->i_pages); 142 } 143 144 /* 145 * mapping_shrinkable - test if page cache state allows inode reclaim 146 * @mapping: the page cache mapping 147 * 148 * This checks the mapping's cache state for the pupose of inode 149 * reclaim and LRU management. 150 * 151 * The caller is expected to hold the i_lock, but is not required to 152 * hold the i_pages lock, which usually protects cache state. That's 153 * because the i_lock and the list_lru lock that protect the inode and 154 * its LRU state don't nest inside the irq-safe i_pages lock. 155 * 156 * Cache deletions are performed under the i_lock, which ensures that 157 * when an inode goes empty, it will reliably get queued on the LRU. 158 * 159 * Cache additions do not acquire the i_lock and may race with this 160 * check, in which case we'll report the inode as shrinkable when it 161 * has cache pages. This is okay: the shrinker also checks the 162 * refcount and the referenced bit, which will be elevated or set in 163 * the process of adding new cache pages to an inode. 164 */ 165 static inline bool mapping_shrinkable(struct address_space *mapping) 166 { 167 void *head; 168 169 /* 170 * On highmem systems, there could be lowmem pressure from the 171 * inodes before there is highmem pressure from the page 172 * cache. Make inodes shrinkable regardless of cache state. 173 */ 174 if (IS_ENABLED(CONFIG_HIGHMEM)) 175 return true; 176 177 /* Cache completely empty? Shrink away. */ 178 head = rcu_access_pointer(mapping->i_pages.xa_head); 179 if (!head) 180 return true; 181 182 /* 183 * The xarray stores single offset-0 entries directly in the 184 * head pointer, which allows non-resident page cache entries 185 * to escape the shadow shrinker's list of xarray nodes. The 186 * inode shrinker needs to pick them up under memory pressure. 187 */ 188 if (!xa_is_node(head) && xa_is_value(head)) 189 return true; 190 191 return false; 192 } 193 194 /* 195 * Bits in mapping->flags. 196 */ 197 enum mapping_flags { 198 AS_EIO = 0, /* IO error on async write */ 199 AS_ENOSPC = 1, /* ENOSPC on async write */ 200 AS_MM_ALL_LOCKS = 2, /* under mm_take_all_locks() */ 201 AS_UNEVICTABLE = 3, /* e.g., ramdisk, SHM_LOCK */ 202 AS_EXITING = 4, /* final truncate in progress */ 203 /* writeback related tags are not used */ 204 AS_NO_WRITEBACK_TAGS = 5, 205 AS_LARGE_FOLIO_SUPPORT = 6, 206 AS_RELEASE_ALWAYS, /* Call ->release_folio(), even if no private data */ 207 }; 208 209 /** 210 * mapping_set_error - record a writeback error in the address_space 211 * @mapping: the mapping in which an error should be set 212 * @error: the error to set in the mapping 213 * 214 * When writeback fails in some way, we must record that error so that 215 * userspace can be informed when fsync and the like are called. We endeavor 216 * to report errors on any file that was open at the time of the error. Some 217 * internal callers also need to know when writeback errors have occurred. 218 * 219 * When a writeback error occurs, most filesystems will want to call 220 * mapping_set_error to record the error in the mapping so that it can be 221 * reported when the application calls fsync(2). 222 */ 223 static inline void mapping_set_error(struct address_space *mapping, int error) 224 { 225 if (likely(!error)) 226 return; 227 228 /* Record in wb_err for checkers using errseq_t based tracking */ 229 __filemap_set_wb_err(mapping, error); 230 231 /* Record it in superblock */ 232 if (mapping->host) 233 errseq_set(&mapping->host->i_sb->s_wb_err, error); 234 235 /* Record it in flags for now, for legacy callers */ 236 if (error == -ENOSPC) 237 set_bit(AS_ENOSPC, &mapping->flags); 238 else 239 set_bit(AS_EIO, &mapping->flags); 240 } 241 242 static inline void mapping_set_unevictable(struct address_space *mapping) 243 { 244 set_bit(AS_UNEVICTABLE, &mapping->flags); 245 } 246 247 static inline void mapping_clear_unevictable(struct address_space *mapping) 248 { 249 clear_bit(AS_UNEVICTABLE, &mapping->flags); 250 } 251 252 static inline bool mapping_unevictable(struct address_space *mapping) 253 { 254 return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags); 255 } 256 257 static inline void mapping_set_exiting(struct address_space *mapping) 258 { 259 set_bit(AS_EXITING, &mapping->flags); 260 } 261 262 static inline int mapping_exiting(struct address_space *mapping) 263 { 264 return test_bit(AS_EXITING, &mapping->flags); 265 } 266 267 static inline void mapping_set_no_writeback_tags(struct address_space *mapping) 268 { 269 set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); 270 } 271 272 static inline int mapping_use_writeback_tags(struct address_space *mapping) 273 { 274 return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); 275 } 276 277 static inline bool mapping_release_always(const struct address_space *mapping) 278 { 279 return test_bit(AS_RELEASE_ALWAYS, &mapping->flags); 280 } 281 282 static inline void mapping_set_release_always(struct address_space *mapping) 283 { 284 set_bit(AS_RELEASE_ALWAYS, &mapping->flags); 285 } 286 287 static inline void mapping_clear_release_always(struct address_space *mapping) 288 { 289 clear_bit(AS_RELEASE_ALWAYS, &mapping->flags); 290 } 291 292 static inline gfp_t mapping_gfp_mask(struct address_space * mapping) 293 { 294 return mapping->gfp_mask; 295 } 296 297 /* Restricts the given gfp_mask to what the mapping allows. */ 298 static inline gfp_t mapping_gfp_constraint(struct address_space *mapping, 299 gfp_t gfp_mask) 300 { 301 return mapping_gfp_mask(mapping) & gfp_mask; 302 } 303 304 /* 305 * This is non-atomic. Only to be used before the mapping is activated. 306 * Probably needs a barrier... 307 */ 308 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask) 309 { 310 m->gfp_mask = mask; 311 } 312 313 /** 314 * mapping_set_large_folios() - Indicate the file supports large folios. 315 * @mapping: The file. 316 * 317 * The filesystem should call this function in its inode constructor to 318 * indicate that the VFS can use large folios to cache the contents of 319 * the file. 320 * 321 * Context: This should not be called while the inode is active as it 322 * is non-atomic. 323 */ 324 static inline void mapping_set_large_folios(struct address_space *mapping) 325 { 326 __set_bit(AS_LARGE_FOLIO_SUPPORT, &mapping->flags); 327 } 328 329 /* 330 * Large folio support currently depends on THP. These dependencies are 331 * being worked on but are not yet fixed. 332 */ 333 static inline bool mapping_large_folio_support(struct address_space *mapping) 334 { 335 return IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 336 test_bit(AS_LARGE_FOLIO_SUPPORT, &mapping->flags); 337 } 338 339 static inline int filemap_nr_thps(struct address_space *mapping) 340 { 341 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 342 return atomic_read(&mapping->nr_thps); 343 #else 344 return 0; 345 #endif 346 } 347 348 static inline void filemap_nr_thps_inc(struct address_space *mapping) 349 { 350 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 351 if (!mapping_large_folio_support(mapping)) 352 atomic_inc(&mapping->nr_thps); 353 #else 354 WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0); 355 #endif 356 } 357 358 static inline void filemap_nr_thps_dec(struct address_space *mapping) 359 { 360 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 361 if (!mapping_large_folio_support(mapping)) 362 atomic_dec(&mapping->nr_thps); 363 #else 364 WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0); 365 #endif 366 } 367 368 struct address_space *page_mapping(struct page *); 369 struct address_space *folio_mapping(struct folio *); 370 struct address_space *swapcache_mapping(struct folio *); 371 372 /** 373 * folio_file_mapping - Find the mapping this folio belongs to. 374 * @folio: The folio. 375 * 376 * For folios which are in the page cache, return the mapping that this 377 * page belongs to. Folios in the swap cache return the mapping of the 378 * swap file or swap device where the data is stored. This is different 379 * from the mapping returned by folio_mapping(). The only reason to 380 * use it is if, like NFS, you return 0 from ->activate_swapfile. 381 * 382 * Do not call this for folios which aren't in the page cache or swap cache. 383 */ 384 static inline struct address_space *folio_file_mapping(struct folio *folio) 385 { 386 if (unlikely(folio_test_swapcache(folio))) 387 return swapcache_mapping(folio); 388 389 return folio->mapping; 390 } 391 392 /** 393 * folio_flush_mapping - Find the file mapping this folio belongs to. 394 * @folio: The folio. 395 * 396 * For folios which are in the page cache, return the mapping that this 397 * page belongs to. Anonymous folios return NULL, even if they're in 398 * the swap cache. Other kinds of folio also return NULL. 399 * 400 * This is ONLY used by architecture cache flushing code. If you aren't 401 * writing cache flushing code, you want either folio_mapping() or 402 * folio_file_mapping(). 403 */ 404 static inline struct address_space *folio_flush_mapping(struct folio *folio) 405 { 406 if (unlikely(folio_test_swapcache(folio))) 407 return NULL; 408 409 return folio_mapping(folio); 410 } 411 412 static inline struct address_space *page_file_mapping(struct page *page) 413 { 414 return folio_file_mapping(page_folio(page)); 415 } 416 417 /** 418 * folio_inode - Get the host inode for this folio. 419 * @folio: The folio. 420 * 421 * For folios which are in the page cache, return the inode that this folio 422 * belongs to. 423 * 424 * Do not call this for folios which aren't in the page cache. 425 */ 426 static inline struct inode *folio_inode(struct folio *folio) 427 { 428 return folio->mapping->host; 429 } 430 431 /** 432 * folio_attach_private - Attach private data to a folio. 433 * @folio: Folio to attach data to. 434 * @data: Data to attach to folio. 435 * 436 * Attaching private data to a folio increments the page's reference count. 437 * The data must be detached before the folio will be freed. 438 */ 439 static inline void folio_attach_private(struct folio *folio, void *data) 440 { 441 folio_get(folio); 442 folio->private = data; 443 folio_set_private(folio); 444 } 445 446 /** 447 * folio_change_private - Change private data on a folio. 448 * @folio: Folio to change the data on. 449 * @data: Data to set on the folio. 450 * 451 * Change the private data attached to a folio and return the old 452 * data. The page must previously have had data attached and the data 453 * must be detached before the folio will be freed. 454 * 455 * Return: Data that was previously attached to the folio. 456 */ 457 static inline void *folio_change_private(struct folio *folio, void *data) 458 { 459 void *old = folio_get_private(folio); 460 461 folio->private = data; 462 return old; 463 } 464 465 /** 466 * folio_detach_private - Detach private data from a folio. 467 * @folio: Folio to detach data from. 468 * 469 * Removes the data that was previously attached to the folio and decrements 470 * the refcount on the page. 471 * 472 * Return: Data that was attached to the folio. 473 */ 474 static inline void *folio_detach_private(struct folio *folio) 475 { 476 void *data = folio_get_private(folio); 477 478 if (!folio_test_private(folio)) 479 return NULL; 480 folio_clear_private(folio); 481 folio->private = NULL; 482 folio_put(folio); 483 484 return data; 485 } 486 487 static inline void attach_page_private(struct page *page, void *data) 488 { 489 folio_attach_private(page_folio(page), data); 490 } 491 492 static inline void *detach_page_private(struct page *page) 493 { 494 return folio_detach_private(page_folio(page)); 495 } 496 497 /* 498 * There are some parts of the kernel which assume that PMD entries 499 * are exactly HPAGE_PMD_ORDER. Those should be fixed, but until then, 500 * limit the maximum allocation order to PMD size. I'm not aware of any 501 * assumptions about maximum order if THP are disabled, but 8 seems like 502 * a good order (that's 1MB if you're using 4kB pages) 503 */ 504 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 505 #define MAX_PAGECACHE_ORDER HPAGE_PMD_ORDER 506 #else 507 #define MAX_PAGECACHE_ORDER 8 508 #endif 509 510 #ifdef CONFIG_NUMA 511 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order); 512 #else 513 static inline struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order) 514 { 515 return folio_alloc(gfp, order); 516 } 517 #endif 518 519 static inline struct page *__page_cache_alloc(gfp_t gfp) 520 { 521 return &filemap_alloc_folio(gfp, 0)->page; 522 } 523 524 static inline struct page *page_cache_alloc(struct address_space *x) 525 { 526 return __page_cache_alloc(mapping_gfp_mask(x)); 527 } 528 529 static inline gfp_t readahead_gfp_mask(struct address_space *x) 530 { 531 return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN; 532 } 533 534 typedef int filler_t(struct file *, struct folio *); 535 536 pgoff_t page_cache_next_miss(struct address_space *mapping, 537 pgoff_t index, unsigned long max_scan); 538 pgoff_t page_cache_prev_miss(struct address_space *mapping, 539 pgoff_t index, unsigned long max_scan); 540 541 /** 542 * typedef fgf_t - Flags for getting folios from the page cache. 543 * 544 * Most users of the page cache will not need to use these flags; 545 * there are convenience functions such as filemap_get_folio() and 546 * filemap_lock_folio(). For users which need more control over exactly 547 * what is done with the folios, these flags to __filemap_get_folio() 548 * are available. 549 * 550 * * %FGP_ACCESSED - The folio will be marked accessed. 551 * * %FGP_LOCK - The folio is returned locked. 552 * * %FGP_CREAT - If no folio is present then a new folio is allocated, 553 * added to the page cache and the VM's LRU list. The folio is 554 * returned locked. 555 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the 556 * folio is already in cache. If the folio was allocated, unlock it 557 * before returning so the caller can do the same dance. 558 * * %FGP_WRITE - The folio will be written to by the caller. 559 * * %FGP_NOFS - __GFP_FS will get cleared in gfp. 560 * * %FGP_NOWAIT - Don't block on the folio lock. 561 * * %FGP_STABLE - Wait for the folio to be stable (finished writeback) 562 * * %FGP_WRITEBEGIN - The flags to use in a filesystem write_begin() 563 * implementation. 564 */ 565 typedef unsigned int __bitwise fgf_t; 566 567 #define FGP_ACCESSED ((__force fgf_t)0x00000001) 568 #define FGP_LOCK ((__force fgf_t)0x00000002) 569 #define FGP_CREAT ((__force fgf_t)0x00000004) 570 #define FGP_WRITE ((__force fgf_t)0x00000008) 571 #define FGP_NOFS ((__force fgf_t)0x00000010) 572 #define FGP_NOWAIT ((__force fgf_t)0x00000020) 573 #define FGP_FOR_MMAP ((__force fgf_t)0x00000040) 574 #define FGP_STABLE ((__force fgf_t)0x00000080) 575 #define FGF_GET_ORDER(fgf) (((__force unsigned)fgf) >> 26) /* top 6 bits */ 576 577 #define FGP_WRITEBEGIN (FGP_LOCK | FGP_WRITE | FGP_CREAT | FGP_STABLE) 578 579 /** 580 * fgf_set_order - Encode a length in the fgf_t flags. 581 * @size: The suggested size of the folio to create. 582 * 583 * The caller of __filemap_get_folio() can use this to suggest a preferred 584 * size for the folio that is created. If there is already a folio at 585 * the index, it will be returned, no matter what its size. If a folio 586 * is freshly created, it may be of a different size than requested 587 * due to alignment constraints, memory pressure, or the presence of 588 * other folios at nearby indices. 589 */ 590 static inline fgf_t fgf_set_order(size_t size) 591 { 592 unsigned int shift = ilog2(size); 593 594 if (shift <= PAGE_SHIFT) 595 return 0; 596 return (__force fgf_t)((shift - PAGE_SHIFT) << 26); 597 } 598 599 void *filemap_get_entry(struct address_space *mapping, pgoff_t index); 600 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index, 601 fgf_t fgp_flags, gfp_t gfp); 602 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index, 603 fgf_t fgp_flags, gfp_t gfp); 604 605 /** 606 * filemap_get_folio - Find and get a folio. 607 * @mapping: The address_space to search. 608 * @index: The page index. 609 * 610 * Looks up the page cache entry at @mapping & @index. If a folio is 611 * present, it is returned with an increased refcount. 612 * 613 * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for 614 * this index. Will not return a shadow, swap or DAX entry. 615 */ 616 static inline struct folio *filemap_get_folio(struct address_space *mapping, 617 pgoff_t index) 618 { 619 return __filemap_get_folio(mapping, index, 0, 0); 620 } 621 622 /** 623 * filemap_lock_folio - Find and lock a folio. 624 * @mapping: The address_space to search. 625 * @index: The page index. 626 * 627 * Looks up the page cache entry at @mapping & @index. If a folio is 628 * present, it is returned locked with an increased refcount. 629 * 630 * Context: May sleep. 631 * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for 632 * this index. Will not return a shadow, swap or DAX entry. 633 */ 634 static inline struct folio *filemap_lock_folio(struct address_space *mapping, 635 pgoff_t index) 636 { 637 return __filemap_get_folio(mapping, index, FGP_LOCK, 0); 638 } 639 640 /** 641 * filemap_grab_folio - grab a folio from the page cache 642 * @mapping: The address space to search 643 * @index: The page index 644 * 645 * Looks up the page cache entry at @mapping & @index. If no folio is found, 646 * a new folio is created. The folio is locked, marked as accessed, and 647 * returned. 648 * 649 * Return: A found or created folio. ERR_PTR(-ENOMEM) if no folio is found 650 * and failed to create a folio. 651 */ 652 static inline struct folio *filemap_grab_folio(struct address_space *mapping, 653 pgoff_t index) 654 { 655 return __filemap_get_folio(mapping, index, 656 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, 657 mapping_gfp_mask(mapping)); 658 } 659 660 /** 661 * find_get_page - find and get a page reference 662 * @mapping: the address_space to search 663 * @offset: the page index 664 * 665 * Looks up the page cache slot at @mapping & @offset. If there is a 666 * page cache page, it is returned with an increased refcount. 667 * 668 * Otherwise, %NULL is returned. 669 */ 670 static inline struct page *find_get_page(struct address_space *mapping, 671 pgoff_t offset) 672 { 673 return pagecache_get_page(mapping, offset, 0, 0); 674 } 675 676 static inline struct page *find_get_page_flags(struct address_space *mapping, 677 pgoff_t offset, fgf_t fgp_flags) 678 { 679 return pagecache_get_page(mapping, offset, fgp_flags, 0); 680 } 681 682 /** 683 * find_lock_page - locate, pin and lock a pagecache page 684 * @mapping: the address_space to search 685 * @index: the page index 686 * 687 * Looks up the page cache entry at @mapping & @index. If there is a 688 * page cache page, it is returned locked and with an increased 689 * refcount. 690 * 691 * Context: May sleep. 692 * Return: A struct page or %NULL if there is no page in the cache for this 693 * index. 694 */ 695 static inline struct page *find_lock_page(struct address_space *mapping, 696 pgoff_t index) 697 { 698 return pagecache_get_page(mapping, index, FGP_LOCK, 0); 699 } 700 701 /** 702 * find_or_create_page - locate or add a pagecache page 703 * @mapping: the page's address_space 704 * @index: the page's index into the mapping 705 * @gfp_mask: page allocation mode 706 * 707 * Looks up the page cache slot at @mapping & @offset. If there is a 708 * page cache page, it is returned locked and with an increased 709 * refcount. 710 * 711 * If the page is not present, a new page is allocated using @gfp_mask 712 * and added to the page cache and the VM's LRU list. The page is 713 * returned locked and with an increased refcount. 714 * 715 * On memory exhaustion, %NULL is returned. 716 * 717 * find_or_create_page() may sleep, even if @gfp_flags specifies an 718 * atomic allocation! 719 */ 720 static inline struct page *find_or_create_page(struct address_space *mapping, 721 pgoff_t index, gfp_t gfp_mask) 722 { 723 return pagecache_get_page(mapping, index, 724 FGP_LOCK|FGP_ACCESSED|FGP_CREAT, 725 gfp_mask); 726 } 727 728 /** 729 * grab_cache_page_nowait - returns locked page at given index in given cache 730 * @mapping: target address_space 731 * @index: the page index 732 * 733 * Same as grab_cache_page(), but do not wait if the page is unavailable. 734 * This is intended for speculative data generators, where the data can 735 * be regenerated if the page couldn't be grabbed. This routine should 736 * be safe to call while holding the lock for another page. 737 * 738 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 739 * and deadlock against the caller's locked page. 740 */ 741 static inline struct page *grab_cache_page_nowait(struct address_space *mapping, 742 pgoff_t index) 743 { 744 return pagecache_get_page(mapping, index, 745 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT, 746 mapping_gfp_mask(mapping)); 747 } 748 749 #define swapcache_index(folio) __page_file_index(&(folio)->page) 750 751 /** 752 * folio_index - File index of a folio. 753 * @folio: The folio. 754 * 755 * For a folio which is either in the page cache or the swap cache, 756 * return its index within the address_space it belongs to. If you know 757 * the page is definitely in the page cache, you can look at the folio's 758 * index directly. 759 * 760 * Return: The index (offset in units of pages) of a folio in its file. 761 */ 762 static inline pgoff_t folio_index(struct folio *folio) 763 { 764 if (unlikely(folio_test_swapcache(folio))) 765 return swapcache_index(folio); 766 return folio->index; 767 } 768 769 /** 770 * folio_next_index - Get the index of the next folio. 771 * @folio: The current folio. 772 * 773 * Return: The index of the folio which follows this folio in the file. 774 */ 775 static inline pgoff_t folio_next_index(struct folio *folio) 776 { 777 return folio->index + folio_nr_pages(folio); 778 } 779 780 /** 781 * folio_file_page - The page for a particular index. 782 * @folio: The folio which contains this index. 783 * @index: The index we want to look up. 784 * 785 * Sometimes after looking up a folio in the page cache, we need to 786 * obtain the specific page for an index (eg a page fault). 787 * 788 * Return: The page containing the file data for this index. 789 */ 790 static inline struct page *folio_file_page(struct folio *folio, pgoff_t index) 791 { 792 return folio_page(folio, index & (folio_nr_pages(folio) - 1)); 793 } 794 795 /** 796 * folio_contains - Does this folio contain this index? 797 * @folio: The folio. 798 * @index: The page index within the file. 799 * 800 * Context: The caller should have the page locked in order to prevent 801 * (eg) shmem from moving the page between the page cache and swap cache 802 * and changing its index in the middle of the operation. 803 * Return: true or false. 804 */ 805 static inline bool folio_contains(struct folio *folio, pgoff_t index) 806 { 807 return index - folio_index(folio) < folio_nr_pages(folio); 808 } 809 810 /* 811 * Given the page we found in the page cache, return the page corresponding 812 * to this index in the file 813 */ 814 static inline struct page *find_subpage(struct page *head, pgoff_t index) 815 { 816 /* HugeTLBfs wants the head page regardless */ 817 if (PageHuge(head)) 818 return head; 819 820 return head + (index & (thp_nr_pages(head) - 1)); 821 } 822 823 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start, 824 pgoff_t end, struct folio_batch *fbatch); 825 unsigned filemap_get_folios_contig(struct address_space *mapping, 826 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch); 827 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start, 828 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch); 829 830 struct page *grab_cache_page_write_begin(struct address_space *mapping, 831 pgoff_t index); 832 833 /* 834 * Returns locked page at given index in given cache, creating it if needed. 835 */ 836 static inline struct page *grab_cache_page(struct address_space *mapping, 837 pgoff_t index) 838 { 839 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping)); 840 } 841 842 struct folio *read_cache_folio(struct address_space *, pgoff_t index, 843 filler_t *filler, struct file *file); 844 struct folio *mapping_read_folio_gfp(struct address_space *, pgoff_t index, 845 gfp_t flags); 846 struct page *read_cache_page(struct address_space *, pgoff_t index, 847 filler_t *filler, struct file *file); 848 extern struct page * read_cache_page_gfp(struct address_space *mapping, 849 pgoff_t index, gfp_t gfp_mask); 850 851 static inline struct page *read_mapping_page(struct address_space *mapping, 852 pgoff_t index, struct file *file) 853 { 854 return read_cache_page(mapping, index, NULL, file); 855 } 856 857 static inline struct folio *read_mapping_folio(struct address_space *mapping, 858 pgoff_t index, struct file *file) 859 { 860 return read_cache_folio(mapping, index, NULL, file); 861 } 862 863 /* 864 * Get the offset in PAGE_SIZE (even for hugetlb pages). 865 */ 866 static inline pgoff_t page_to_pgoff(struct page *page) 867 { 868 struct page *head; 869 870 if (likely(!PageTransTail(page))) 871 return page->index; 872 873 head = compound_head(page); 874 /* 875 * We don't initialize ->index for tail pages: calculate based on 876 * head page 877 */ 878 return head->index + page - head; 879 } 880 881 /* 882 * Return byte-offset into filesystem object for page. 883 */ 884 static inline loff_t page_offset(struct page *page) 885 { 886 return ((loff_t)page->index) << PAGE_SHIFT; 887 } 888 889 static inline loff_t page_file_offset(struct page *page) 890 { 891 return ((loff_t)page_index(page)) << PAGE_SHIFT; 892 } 893 894 /** 895 * folio_pos - Returns the byte position of this folio in its file. 896 * @folio: The folio. 897 */ 898 static inline loff_t folio_pos(struct folio *folio) 899 { 900 return page_offset(&folio->page); 901 } 902 903 /** 904 * folio_file_pos - Returns the byte position of this folio in its file. 905 * @folio: The folio. 906 * 907 * This differs from folio_pos() for folios which belong to a swap file. 908 * NFS is the only filesystem today which needs to use folio_file_pos(). 909 */ 910 static inline loff_t folio_file_pos(struct folio *folio) 911 { 912 return page_file_offset(&folio->page); 913 } 914 915 /* 916 * Get the offset in PAGE_SIZE (even for hugetlb folios). 917 */ 918 static inline pgoff_t folio_pgoff(struct folio *folio) 919 { 920 return folio->index; 921 } 922 923 static inline pgoff_t linear_page_index(struct vm_area_struct *vma, 924 unsigned long address) 925 { 926 pgoff_t pgoff; 927 pgoff = (address - vma->vm_start) >> PAGE_SHIFT; 928 pgoff += vma->vm_pgoff; 929 return pgoff; 930 } 931 932 struct wait_page_key { 933 struct folio *folio; 934 int bit_nr; 935 int page_match; 936 }; 937 938 struct wait_page_queue { 939 struct folio *folio; 940 int bit_nr; 941 wait_queue_entry_t wait; 942 }; 943 944 static inline bool wake_page_match(struct wait_page_queue *wait_page, 945 struct wait_page_key *key) 946 { 947 if (wait_page->folio != key->folio) 948 return false; 949 key->page_match = 1; 950 951 if (wait_page->bit_nr != key->bit_nr) 952 return false; 953 954 return true; 955 } 956 957 void __folio_lock(struct folio *folio); 958 int __folio_lock_killable(struct folio *folio); 959 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf); 960 void unlock_page(struct page *page); 961 void folio_unlock(struct folio *folio); 962 963 /** 964 * folio_trylock() - Attempt to lock a folio. 965 * @folio: The folio to attempt to lock. 966 * 967 * Sometimes it is undesirable to wait for a folio to be unlocked (eg 968 * when the locks are being taken in the wrong order, or if making 969 * progress through a batch of folios is more important than processing 970 * them in order). Usually folio_lock() is the correct function to call. 971 * 972 * Context: Any context. 973 * Return: Whether the lock was successfully acquired. 974 */ 975 static inline bool folio_trylock(struct folio *folio) 976 { 977 return likely(!test_and_set_bit_lock(PG_locked, folio_flags(folio, 0))); 978 } 979 980 /* 981 * Return true if the page was successfully locked 982 */ 983 static inline int trylock_page(struct page *page) 984 { 985 return folio_trylock(page_folio(page)); 986 } 987 988 /** 989 * folio_lock() - Lock this folio. 990 * @folio: The folio to lock. 991 * 992 * The folio lock protects against many things, probably more than it 993 * should. It is primarily held while a folio is being brought uptodate, 994 * either from its backing file or from swap. It is also held while a 995 * folio is being truncated from its address_space, so holding the lock 996 * is sufficient to keep folio->mapping stable. 997 * 998 * The folio lock is also held while write() is modifying the page to 999 * provide POSIX atomicity guarantees (as long as the write does not 1000 * cross a page boundary). Other modifications to the data in the folio 1001 * do not hold the folio lock and can race with writes, eg DMA and stores 1002 * to mapped pages. 1003 * 1004 * Context: May sleep. If you need to acquire the locks of two or 1005 * more folios, they must be in order of ascending index, if they are 1006 * in the same address_space. If they are in different address_spaces, 1007 * acquire the lock of the folio which belongs to the address_space which 1008 * has the lowest address in memory first. 1009 */ 1010 static inline void folio_lock(struct folio *folio) 1011 { 1012 might_sleep(); 1013 if (!folio_trylock(folio)) 1014 __folio_lock(folio); 1015 } 1016 1017 /** 1018 * lock_page() - Lock the folio containing this page. 1019 * @page: The page to lock. 1020 * 1021 * See folio_lock() for a description of what the lock protects. 1022 * This is a legacy function and new code should probably use folio_lock() 1023 * instead. 1024 * 1025 * Context: May sleep. Pages in the same folio share a lock, so do not 1026 * attempt to lock two pages which share a folio. 1027 */ 1028 static inline void lock_page(struct page *page) 1029 { 1030 struct folio *folio; 1031 might_sleep(); 1032 1033 folio = page_folio(page); 1034 if (!folio_trylock(folio)) 1035 __folio_lock(folio); 1036 } 1037 1038 /** 1039 * folio_lock_killable() - Lock this folio, interruptible by a fatal signal. 1040 * @folio: The folio to lock. 1041 * 1042 * Attempts to lock the folio, like folio_lock(), except that the sleep 1043 * to acquire the lock is interruptible by a fatal signal. 1044 * 1045 * Context: May sleep; see folio_lock(). 1046 * Return: 0 if the lock was acquired; -EINTR if a fatal signal was received. 1047 */ 1048 static inline int folio_lock_killable(struct folio *folio) 1049 { 1050 might_sleep(); 1051 if (!folio_trylock(folio)) 1052 return __folio_lock_killable(folio); 1053 return 0; 1054 } 1055 1056 /* 1057 * folio_lock_or_retry - Lock the folio, unless this would block and the 1058 * caller indicated that it can handle a retry. 1059 * 1060 * Return value and mmap_lock implications depend on flags; see 1061 * __folio_lock_or_retry(). 1062 */ 1063 static inline vm_fault_t folio_lock_or_retry(struct folio *folio, 1064 struct vm_fault *vmf) 1065 { 1066 might_sleep(); 1067 if (!folio_trylock(folio)) 1068 return __folio_lock_or_retry(folio, vmf); 1069 return 0; 1070 } 1071 1072 /* 1073 * This is exported only for folio_wait_locked/folio_wait_writeback, etc., 1074 * and should not be used directly. 1075 */ 1076 void folio_wait_bit(struct folio *folio, int bit_nr); 1077 int folio_wait_bit_killable(struct folio *folio, int bit_nr); 1078 1079 /* 1080 * Wait for a folio to be unlocked. 1081 * 1082 * This must be called with the caller "holding" the folio, 1083 * ie with increased folio reference count so that the folio won't 1084 * go away during the wait. 1085 */ 1086 static inline void folio_wait_locked(struct folio *folio) 1087 { 1088 if (folio_test_locked(folio)) 1089 folio_wait_bit(folio, PG_locked); 1090 } 1091 1092 static inline int folio_wait_locked_killable(struct folio *folio) 1093 { 1094 if (!folio_test_locked(folio)) 1095 return 0; 1096 return folio_wait_bit_killable(folio, PG_locked); 1097 } 1098 1099 static inline void wait_on_page_locked(struct page *page) 1100 { 1101 folio_wait_locked(page_folio(page)); 1102 } 1103 1104 void folio_end_read(struct folio *folio, bool success); 1105 void wait_on_page_writeback(struct page *page); 1106 void folio_wait_writeback(struct folio *folio); 1107 int folio_wait_writeback_killable(struct folio *folio); 1108 void end_page_writeback(struct page *page); 1109 void folio_end_writeback(struct folio *folio); 1110 void wait_for_stable_page(struct page *page); 1111 void folio_wait_stable(struct folio *folio); 1112 void __folio_mark_dirty(struct folio *folio, struct address_space *, int warn); 1113 static inline void __set_page_dirty(struct page *page, 1114 struct address_space *mapping, int warn) 1115 { 1116 __folio_mark_dirty(page_folio(page), mapping, warn); 1117 } 1118 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb); 1119 void __folio_cancel_dirty(struct folio *folio); 1120 static inline void folio_cancel_dirty(struct folio *folio) 1121 { 1122 /* Avoid atomic ops, locking, etc. when not actually needed. */ 1123 if (folio_test_dirty(folio)) 1124 __folio_cancel_dirty(folio); 1125 } 1126 bool folio_clear_dirty_for_io(struct folio *folio); 1127 bool clear_page_dirty_for_io(struct page *page); 1128 void folio_invalidate(struct folio *folio, size_t offset, size_t length); 1129 int __set_page_dirty_nobuffers(struct page *page); 1130 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio); 1131 1132 #ifdef CONFIG_MIGRATION 1133 int filemap_migrate_folio(struct address_space *mapping, struct folio *dst, 1134 struct folio *src, enum migrate_mode mode); 1135 #else 1136 #define filemap_migrate_folio NULL 1137 #endif 1138 void folio_end_private_2(struct folio *folio); 1139 void folio_wait_private_2(struct folio *folio); 1140 int folio_wait_private_2_killable(struct folio *folio); 1141 1142 /* 1143 * Add an arbitrary waiter to a page's wait queue 1144 */ 1145 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter); 1146 1147 /* 1148 * Fault in userspace address range. 1149 */ 1150 size_t fault_in_writeable(char __user *uaddr, size_t size); 1151 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size); 1152 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size); 1153 size_t fault_in_readable(const char __user *uaddr, size_t size); 1154 1155 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 1156 pgoff_t index, gfp_t gfp); 1157 int filemap_add_folio(struct address_space *mapping, struct folio *folio, 1158 pgoff_t index, gfp_t gfp); 1159 void filemap_remove_folio(struct folio *folio); 1160 void __filemap_remove_folio(struct folio *folio, void *shadow); 1161 void replace_page_cache_folio(struct folio *old, struct folio *new); 1162 void delete_from_page_cache_batch(struct address_space *mapping, 1163 struct folio_batch *fbatch); 1164 bool filemap_release_folio(struct folio *folio, gfp_t gfp); 1165 loff_t mapping_seek_hole_data(struct address_space *, loff_t start, loff_t end, 1166 int whence); 1167 1168 /* Must be non-static for BPF error injection */ 1169 int __filemap_add_folio(struct address_space *mapping, struct folio *folio, 1170 pgoff_t index, gfp_t gfp, void **shadowp); 1171 1172 bool filemap_range_has_writeback(struct address_space *mapping, 1173 loff_t start_byte, loff_t end_byte); 1174 1175 /** 1176 * filemap_range_needs_writeback - check if range potentially needs writeback 1177 * @mapping: address space within which to check 1178 * @start_byte: offset in bytes where the range starts 1179 * @end_byte: offset in bytes where the range ends (inclusive) 1180 * 1181 * Find at least one page in the range supplied, usually used to check if 1182 * direct writing in this range will trigger a writeback. Used by O_DIRECT 1183 * read/write with IOCB_NOWAIT, to see if the caller needs to do 1184 * filemap_write_and_wait_range() before proceeding. 1185 * 1186 * Return: %true if the caller should do filemap_write_and_wait_range() before 1187 * doing O_DIRECT to a page in this range, %false otherwise. 1188 */ 1189 static inline bool filemap_range_needs_writeback(struct address_space *mapping, 1190 loff_t start_byte, 1191 loff_t end_byte) 1192 { 1193 if (!mapping->nrpages) 1194 return false; 1195 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 1196 !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) 1197 return false; 1198 return filemap_range_has_writeback(mapping, start_byte, end_byte); 1199 } 1200 1201 /** 1202 * struct readahead_control - Describes a readahead request. 1203 * 1204 * A readahead request is for consecutive pages. Filesystems which 1205 * implement the ->readahead method should call readahead_page() or 1206 * readahead_page_batch() in a loop and attempt to start I/O against 1207 * each page in the request. 1208 * 1209 * Most of the fields in this struct are private and should be accessed 1210 * by the functions below. 1211 * 1212 * @file: The file, used primarily by network filesystems for authentication. 1213 * May be NULL if invoked internally by the filesystem. 1214 * @mapping: Readahead this filesystem object. 1215 * @ra: File readahead state. May be NULL. 1216 */ 1217 struct readahead_control { 1218 struct file *file; 1219 struct address_space *mapping; 1220 struct file_ra_state *ra; 1221 /* private: use the readahead_* accessors instead */ 1222 pgoff_t _index; 1223 unsigned int _nr_pages; 1224 unsigned int _batch_count; 1225 bool _workingset; 1226 unsigned long _pflags; 1227 }; 1228 1229 #define DEFINE_READAHEAD(ractl, f, r, m, i) \ 1230 struct readahead_control ractl = { \ 1231 .file = f, \ 1232 .mapping = m, \ 1233 .ra = r, \ 1234 ._index = i, \ 1235 } 1236 1237 #define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE) 1238 1239 void page_cache_ra_unbounded(struct readahead_control *, 1240 unsigned long nr_to_read, unsigned long lookahead_count); 1241 void page_cache_sync_ra(struct readahead_control *, unsigned long req_count); 1242 void page_cache_async_ra(struct readahead_control *, struct folio *, 1243 unsigned long req_count); 1244 void readahead_expand(struct readahead_control *ractl, 1245 loff_t new_start, size_t new_len); 1246 1247 /** 1248 * page_cache_sync_readahead - generic file readahead 1249 * @mapping: address_space which holds the pagecache and I/O vectors 1250 * @ra: file_ra_state which holds the readahead state 1251 * @file: Used by the filesystem for authentication. 1252 * @index: Index of first page to be read. 1253 * @req_count: Total number of pages being read by the caller. 1254 * 1255 * page_cache_sync_readahead() should be called when a cache miss happened: 1256 * it will submit the read. The readahead logic may decide to piggyback more 1257 * pages onto the read request if access patterns suggest it will improve 1258 * performance. 1259 */ 1260 static inline 1261 void page_cache_sync_readahead(struct address_space *mapping, 1262 struct file_ra_state *ra, struct file *file, pgoff_t index, 1263 unsigned long req_count) 1264 { 1265 DEFINE_READAHEAD(ractl, file, ra, mapping, index); 1266 page_cache_sync_ra(&ractl, req_count); 1267 } 1268 1269 /** 1270 * page_cache_async_readahead - file readahead for marked pages 1271 * @mapping: address_space which holds the pagecache and I/O vectors 1272 * @ra: file_ra_state which holds the readahead state 1273 * @file: Used by the filesystem for authentication. 1274 * @folio: The folio at @index which triggered the readahead call. 1275 * @index: Index of first page to be read. 1276 * @req_count: Total number of pages being read by the caller. 1277 * 1278 * page_cache_async_readahead() should be called when a page is used which 1279 * is marked as PageReadahead; this is a marker to suggest that the application 1280 * has used up enough of the readahead window that we should start pulling in 1281 * more pages. 1282 */ 1283 static inline 1284 void page_cache_async_readahead(struct address_space *mapping, 1285 struct file_ra_state *ra, struct file *file, 1286 struct folio *folio, pgoff_t index, unsigned long req_count) 1287 { 1288 DEFINE_READAHEAD(ractl, file, ra, mapping, index); 1289 page_cache_async_ra(&ractl, folio, req_count); 1290 } 1291 1292 static inline struct folio *__readahead_folio(struct readahead_control *ractl) 1293 { 1294 struct folio *folio; 1295 1296 BUG_ON(ractl->_batch_count > ractl->_nr_pages); 1297 ractl->_nr_pages -= ractl->_batch_count; 1298 ractl->_index += ractl->_batch_count; 1299 1300 if (!ractl->_nr_pages) { 1301 ractl->_batch_count = 0; 1302 return NULL; 1303 } 1304 1305 folio = xa_load(&ractl->mapping->i_pages, ractl->_index); 1306 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1307 ractl->_batch_count = folio_nr_pages(folio); 1308 1309 return folio; 1310 } 1311 1312 /** 1313 * readahead_page - Get the next page to read. 1314 * @ractl: The current readahead request. 1315 * 1316 * Context: The page is locked and has an elevated refcount. The caller 1317 * should decreases the refcount once the page has been submitted for I/O 1318 * and unlock the page once all I/O to that page has completed. 1319 * Return: A pointer to the next page, or %NULL if we are done. 1320 */ 1321 static inline struct page *readahead_page(struct readahead_control *ractl) 1322 { 1323 struct folio *folio = __readahead_folio(ractl); 1324 1325 return &folio->page; 1326 } 1327 1328 /** 1329 * readahead_folio - Get the next folio to read. 1330 * @ractl: The current readahead request. 1331 * 1332 * Context: The folio is locked. The caller should unlock the folio once 1333 * all I/O to that folio has completed. 1334 * Return: A pointer to the next folio, or %NULL if we are done. 1335 */ 1336 static inline struct folio *readahead_folio(struct readahead_control *ractl) 1337 { 1338 struct folio *folio = __readahead_folio(ractl); 1339 1340 if (folio) 1341 folio_put(folio); 1342 return folio; 1343 } 1344 1345 static inline unsigned int __readahead_batch(struct readahead_control *rac, 1346 struct page **array, unsigned int array_sz) 1347 { 1348 unsigned int i = 0; 1349 XA_STATE(xas, &rac->mapping->i_pages, 0); 1350 struct page *page; 1351 1352 BUG_ON(rac->_batch_count > rac->_nr_pages); 1353 rac->_nr_pages -= rac->_batch_count; 1354 rac->_index += rac->_batch_count; 1355 rac->_batch_count = 0; 1356 1357 xas_set(&xas, rac->_index); 1358 rcu_read_lock(); 1359 xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) { 1360 if (xas_retry(&xas, page)) 1361 continue; 1362 VM_BUG_ON_PAGE(!PageLocked(page), page); 1363 VM_BUG_ON_PAGE(PageTail(page), page); 1364 array[i++] = page; 1365 rac->_batch_count += thp_nr_pages(page); 1366 if (i == array_sz) 1367 break; 1368 } 1369 rcu_read_unlock(); 1370 1371 return i; 1372 } 1373 1374 /** 1375 * readahead_page_batch - Get a batch of pages to read. 1376 * @rac: The current readahead request. 1377 * @array: An array of pointers to struct page. 1378 * 1379 * Context: The pages are locked and have an elevated refcount. The caller 1380 * should decreases the refcount once the page has been submitted for I/O 1381 * and unlock the page once all I/O to that page has completed. 1382 * Return: The number of pages placed in the array. 0 indicates the request 1383 * is complete. 1384 */ 1385 #define readahead_page_batch(rac, array) \ 1386 __readahead_batch(rac, array, ARRAY_SIZE(array)) 1387 1388 /** 1389 * readahead_pos - The byte offset into the file of this readahead request. 1390 * @rac: The readahead request. 1391 */ 1392 static inline loff_t readahead_pos(struct readahead_control *rac) 1393 { 1394 return (loff_t)rac->_index * PAGE_SIZE; 1395 } 1396 1397 /** 1398 * readahead_length - The number of bytes in this readahead request. 1399 * @rac: The readahead request. 1400 */ 1401 static inline size_t readahead_length(struct readahead_control *rac) 1402 { 1403 return rac->_nr_pages * PAGE_SIZE; 1404 } 1405 1406 /** 1407 * readahead_index - The index of the first page in this readahead request. 1408 * @rac: The readahead request. 1409 */ 1410 static inline pgoff_t readahead_index(struct readahead_control *rac) 1411 { 1412 return rac->_index; 1413 } 1414 1415 /** 1416 * readahead_count - The number of pages in this readahead request. 1417 * @rac: The readahead request. 1418 */ 1419 static inline unsigned int readahead_count(struct readahead_control *rac) 1420 { 1421 return rac->_nr_pages; 1422 } 1423 1424 /** 1425 * readahead_batch_length - The number of bytes in the current batch. 1426 * @rac: The readahead request. 1427 */ 1428 static inline size_t readahead_batch_length(struct readahead_control *rac) 1429 { 1430 return rac->_batch_count * PAGE_SIZE; 1431 } 1432 1433 static inline unsigned long dir_pages(struct inode *inode) 1434 { 1435 return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >> 1436 PAGE_SHIFT; 1437 } 1438 1439 /** 1440 * folio_mkwrite_check_truncate - check if folio was truncated 1441 * @folio: the folio to check 1442 * @inode: the inode to check the folio against 1443 * 1444 * Return: the number of bytes in the folio up to EOF, 1445 * or -EFAULT if the folio was truncated. 1446 */ 1447 static inline ssize_t folio_mkwrite_check_truncate(struct folio *folio, 1448 struct inode *inode) 1449 { 1450 loff_t size = i_size_read(inode); 1451 pgoff_t index = size >> PAGE_SHIFT; 1452 size_t offset = offset_in_folio(folio, size); 1453 1454 if (!folio->mapping) 1455 return -EFAULT; 1456 1457 /* folio is wholly inside EOF */ 1458 if (folio_next_index(folio) - 1 < index) 1459 return folio_size(folio); 1460 /* folio is wholly past EOF */ 1461 if (folio->index > index || !offset) 1462 return -EFAULT; 1463 /* folio is partially inside EOF */ 1464 return offset; 1465 } 1466 1467 /** 1468 * page_mkwrite_check_truncate - check if page was truncated 1469 * @page: the page to check 1470 * @inode: the inode to check the page against 1471 * 1472 * Returns the number of bytes in the page up to EOF, 1473 * or -EFAULT if the page was truncated. 1474 */ 1475 static inline int page_mkwrite_check_truncate(struct page *page, 1476 struct inode *inode) 1477 { 1478 loff_t size = i_size_read(inode); 1479 pgoff_t index = size >> PAGE_SHIFT; 1480 int offset = offset_in_page(size); 1481 1482 if (page->mapping != inode->i_mapping) 1483 return -EFAULT; 1484 1485 /* page is wholly inside EOF */ 1486 if (page->index < index) 1487 return PAGE_SIZE; 1488 /* page is wholly past EOF */ 1489 if (page->index > index || !offset) 1490 return -EFAULT; 1491 /* page is partially inside EOF */ 1492 return offset; 1493 } 1494 1495 /** 1496 * i_blocks_per_folio - How many blocks fit in this folio. 1497 * @inode: The inode which contains the blocks. 1498 * @folio: The folio. 1499 * 1500 * If the block size is larger than the size of this folio, return zero. 1501 * 1502 * Context: The caller should hold a refcount on the folio to prevent it 1503 * from being split. 1504 * Return: The number of filesystem blocks covered by this folio. 1505 */ 1506 static inline 1507 unsigned int i_blocks_per_folio(struct inode *inode, struct folio *folio) 1508 { 1509 return folio_size(folio) >> inode->i_blkbits; 1510 } 1511 1512 static inline 1513 unsigned int i_blocks_per_page(struct inode *inode, struct page *page) 1514 { 1515 return i_blocks_per_folio(inode, page_folio(page)); 1516 } 1517 #endif /* _LINUX_PAGEMAP_H */ 1518