xref: /linux-6.15/include/linux/page-flags.h (revision ff1b80ec)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Macros for manipulating and testing page->flags
4  */
5 
6 #ifndef PAGE_FLAGS_H
7 #define PAGE_FLAGS_H
8 
9 #include <linux/types.h>
10 #include <linux/bug.h>
11 #include <linux/mmdebug.h>
12 #ifndef __GENERATING_BOUNDS_H
13 #include <linux/mm_types.h>
14 #include <generated/bounds.h>
15 #endif /* !__GENERATING_BOUNDS_H */
16 
17 /*
18  * Various page->flags bits:
19  *
20  * PG_reserved is set for special pages. The "struct page" of such a page
21  * should in general not be touched (e.g. set dirty) except by its owner.
22  * Pages marked as PG_reserved include:
23  * - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS,
24  *   initrd, HW tables)
25  * - Pages reserved or allocated early during boot (before the page allocator
26  *   was initialized). This includes (depending on the architecture) the
27  *   initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much
28  *   much more. Once (if ever) freed, PG_reserved is cleared and they will
29  *   be given to the page allocator.
30  * - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying
31  *   to read/write these pages might end badly. Don't touch!
32  * - The zero page(s)
33  * - Pages not added to the page allocator when onlining a section because
34  *   they were excluded via the online_page_callback() or because they are
35  *   PG_hwpoison.
36  * - Pages allocated in the context of kexec/kdump (loaded kernel image,
37  *   control pages, vmcoreinfo)
38  * - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are
39  *   not marked PG_reserved (as they might be in use by somebody else who does
40  *   not respect the caching strategy).
41  * - Pages part of an offline section (struct pages of offline sections should
42  *   not be trusted as they will be initialized when first onlined).
43  * - MCA pages on ia64
44  * - Pages holding CPU notes for POWER Firmware Assisted Dump
45  * - Device memory (e.g. PMEM, DAX, HMM)
46  * Some PG_reserved pages will be excluded from the hibernation image.
47  * PG_reserved does in general not hinder anybody from dumping or swapping
48  * and is no longer required for remap_pfn_range(). ioremap might require it.
49  * Consequently, PG_reserved for a page mapped into user space can indicate
50  * the zero page, the vDSO, MMIO pages or device memory.
51  *
52  * The PG_private bitflag is set on pagecache pages if they contain filesystem
53  * specific data (which is normally at page->private). It can be used by
54  * private allocations for its own usage.
55  *
56  * During initiation of disk I/O, PG_locked is set. This bit is set before I/O
57  * and cleared when writeback _starts_ or when read _completes_. PG_writeback
58  * is set before writeback starts and cleared when it finishes.
59  *
60  * PG_locked also pins a page in pagecache, and blocks truncation of the file
61  * while it is held.
62  *
63  * page_waitqueue(page) is a wait queue of all tasks waiting for the page
64  * to become unlocked.
65  *
66  * PG_swapbacked is set when a page uses swap as a backing storage.  This are
67  * usually PageAnon or shmem pages but please note that even anonymous pages
68  * might lose their PG_swapbacked flag when they simply can be dropped (e.g. as
69  * a result of MADV_FREE).
70  *
71  * PG_referenced, PG_reclaim are used for page reclaim for anonymous and
72  * file-backed pagecache (see mm/vmscan.c).
73  *
74  * PG_error is set to indicate that an I/O error occurred on this page.
75  *
76  * PG_arch_1 is an architecture specific page state bit.  The generic code
77  * guarantees that this bit is cleared for a page when it first is entered into
78  * the page cache.
79  *
80  * PG_hwpoison indicates that a page got corrupted in hardware and contains
81  * data with incorrect ECC bits that triggered a machine check. Accessing is
82  * not safe since it may cause another machine check. Don't touch!
83  */
84 
85 /*
86  * Don't use the pageflags directly.  Use the PageFoo macros.
87  *
88  * The page flags field is split into two parts, the main flags area
89  * which extends from the low bits upwards, and the fields area which
90  * extends from the high bits downwards.
91  *
92  *  | FIELD | ... | FLAGS |
93  *  N-1           ^       0
94  *               (NR_PAGEFLAGS)
95  *
96  * The fields area is reserved for fields mapping zone, node (for NUMA) and
97  * SPARSEMEM section (for variants of SPARSEMEM that require section ids like
98  * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
99  */
100 enum pageflags {
101 	PG_locked,		/* Page is locked. Don't touch. */
102 	PG_referenced,
103 	PG_uptodate,
104 	PG_dirty,
105 	PG_lru,
106 	PG_active,
107 	PG_workingset,
108 	PG_waiters,		/* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */
109 	PG_error,
110 	PG_slab,
111 	PG_owner_priv_1,	/* Owner use. If pagecache, fs may use*/
112 	PG_arch_1,
113 	PG_reserved,
114 	PG_private,		/* If pagecache, has fs-private data */
115 	PG_private_2,		/* If pagecache, has fs aux data */
116 	PG_writeback,		/* Page is under writeback */
117 	PG_head,		/* A head page */
118 	PG_mappedtodisk,	/* Has blocks allocated on-disk */
119 	PG_reclaim,		/* To be reclaimed asap */
120 	PG_swapbacked,		/* Page is backed by RAM/swap */
121 	PG_unevictable,		/* Page is "unevictable"  */
122 #ifdef CONFIG_MMU
123 	PG_mlocked,		/* Page is vma mlocked */
124 #endif
125 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
126 	PG_uncached,		/* Page has been mapped as uncached */
127 #endif
128 #ifdef CONFIG_MEMORY_FAILURE
129 	PG_hwpoison,		/* hardware poisoned page. Don't touch */
130 #endif
131 #if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT)
132 	PG_young,
133 	PG_idle,
134 #endif
135 #ifdef CONFIG_64BIT
136 	PG_arch_2,
137 #endif
138 #ifdef CONFIG_KASAN_HW_TAGS
139 	PG_skip_kasan_poison,
140 #endif
141 	__NR_PAGEFLAGS,
142 
143 	PG_readahead = PG_reclaim,
144 
145 	/*
146 	 * Depending on the way an anonymous folio can be mapped into a page
147 	 * table (e.g., single PMD/PUD/CONT of the head page vs. PTE-mapped
148 	 * THP), PG_anon_exclusive may be set only for the head page or for
149 	 * tail pages of an anonymous folio. For now, we only expect it to be
150 	 * set on tail pages for PTE-mapped THP.
151 	 */
152 	PG_anon_exclusive = PG_mappedtodisk,
153 
154 	/* Filesystems */
155 	PG_checked = PG_owner_priv_1,
156 
157 	/* SwapBacked */
158 	PG_swapcache = PG_owner_priv_1,	/* Swap page: swp_entry_t in private */
159 
160 	/* Two page bits are conscripted by FS-Cache to maintain local caching
161 	 * state.  These bits are set on pages belonging to the netfs's inodes
162 	 * when those inodes are being locally cached.
163 	 */
164 	PG_fscache = PG_private_2,	/* page backed by cache */
165 
166 	/* XEN */
167 	/* Pinned in Xen as a read-only pagetable page. */
168 	PG_pinned = PG_owner_priv_1,
169 	/* Pinned as part of domain save (see xen_mm_pin_all()). */
170 	PG_savepinned = PG_dirty,
171 	/* Has a grant mapping of another (foreign) domain's page. */
172 	PG_foreign = PG_owner_priv_1,
173 	/* Remapped by swiotlb-xen. */
174 	PG_xen_remapped = PG_owner_priv_1,
175 
176 	/* SLOB */
177 	PG_slob_free = PG_private,
178 
179 	/* Compound pages. Stored in first tail page's flags */
180 	PG_double_map = PG_workingset,
181 
182 #ifdef CONFIG_MEMORY_FAILURE
183 	/*
184 	 * Compound pages. Stored in first tail page's flags.
185 	 * Indicates that at least one subpage is hwpoisoned in the
186 	 * THP.
187 	 */
188 	PG_has_hwpoisoned = PG_error,
189 #endif
190 
191 	/* non-lru isolated movable page */
192 	PG_isolated = PG_reclaim,
193 
194 	/* Only valid for buddy pages. Used to track pages that are reported */
195 	PG_reported = PG_uptodate,
196 
197 #ifdef CONFIG_MEMORY_HOTPLUG
198 	/* For self-hosted memmap pages */
199 	PG_vmemmap_self_hosted = PG_owner_priv_1,
200 #endif
201 };
202 
203 #define PAGEFLAGS_MASK		((1UL << NR_PAGEFLAGS) - 1)
204 
205 #ifndef __GENERATING_BOUNDS_H
206 
207 #ifdef CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP
208 DECLARE_STATIC_KEY_MAYBE(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP_DEFAULT_ON,
209 			 hugetlb_optimize_vmemmap_key);
210 
211 static __always_inline bool hugetlb_optimize_vmemmap_enabled(void)
212 {
213 	return static_branch_maybe(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP_DEFAULT_ON,
214 				   &hugetlb_optimize_vmemmap_key);
215 }
216 
217 /*
218  * If the feature of optimizing vmemmap pages associated with each HugeTLB
219  * page is enabled, the head vmemmap page frame is reused and all of the tail
220  * vmemmap addresses map to the head vmemmap page frame (furture details can
221  * refer to the figure at the head of the mm/hugetlb_vmemmap.c).  In other
222  * words, there are more than one page struct with PG_head associated with each
223  * HugeTLB page.  We __know__ that there is only one head page struct, the tail
224  * page structs with PG_head are fake head page structs.  We need an approach
225  * to distinguish between those two different types of page structs so that
226  * compound_head() can return the real head page struct when the parameter is
227  * the tail page struct but with PG_head.
228  *
229  * The page_fixed_fake_head() returns the real head page struct if the @page is
230  * fake page head, otherwise, returns @page which can either be a true page
231  * head or tail.
232  */
233 static __always_inline const struct page *page_fixed_fake_head(const struct page *page)
234 {
235 	if (!hugetlb_optimize_vmemmap_enabled())
236 		return page;
237 
238 	/*
239 	 * Only addresses aligned with PAGE_SIZE of struct page may be fake head
240 	 * struct page. The alignment check aims to avoid access the fields (
241 	 * e.g. compound_head) of the @page[1]. It can avoid touch a (possibly)
242 	 * cold cacheline in some cases.
243 	 */
244 	if (IS_ALIGNED((unsigned long)page, PAGE_SIZE) &&
245 	    test_bit(PG_head, &page->flags)) {
246 		/*
247 		 * We can safely access the field of the @page[1] with PG_head
248 		 * because the @page is a compound page composed with at least
249 		 * two contiguous pages.
250 		 */
251 		unsigned long head = READ_ONCE(page[1].compound_head);
252 
253 		if (likely(head & 1))
254 			return (const struct page *)(head - 1);
255 	}
256 	return page;
257 }
258 #else
259 static inline const struct page *page_fixed_fake_head(const struct page *page)
260 {
261 	return page;
262 }
263 
264 static inline bool hugetlb_optimize_vmemmap_enabled(void)
265 {
266 	return false;
267 }
268 #endif
269 
270 static __always_inline int page_is_fake_head(struct page *page)
271 {
272 	return page_fixed_fake_head(page) != page;
273 }
274 
275 static inline unsigned long _compound_head(const struct page *page)
276 {
277 	unsigned long head = READ_ONCE(page->compound_head);
278 
279 	if (unlikely(head & 1))
280 		return head - 1;
281 	return (unsigned long)page_fixed_fake_head(page);
282 }
283 
284 #define compound_head(page)	((typeof(page))_compound_head(page))
285 
286 /**
287  * page_folio - Converts from page to folio.
288  * @p: The page.
289  *
290  * Every page is part of a folio.  This function cannot be called on a
291  * NULL pointer.
292  *
293  * Context: No reference, nor lock is required on @page.  If the caller
294  * does not hold a reference, this call may race with a folio split, so
295  * it should re-check the folio still contains this page after gaining
296  * a reference on the folio.
297  * Return: The folio which contains this page.
298  */
299 #define page_folio(p)		(_Generic((p),				\
300 	const struct page *:	(const struct folio *)_compound_head(p), \
301 	struct page *:		(struct folio *)_compound_head(p)))
302 
303 /**
304  * folio_page - Return a page from a folio.
305  * @folio: The folio.
306  * @n: The page number to return.
307  *
308  * @n is relative to the start of the folio.  This function does not
309  * check that the page number lies within @folio; the caller is presumed
310  * to have a reference to the page.
311  */
312 #define folio_page(folio, n)	nth_page(&(folio)->page, n)
313 
314 static __always_inline int PageTail(struct page *page)
315 {
316 	return READ_ONCE(page->compound_head) & 1 || page_is_fake_head(page);
317 }
318 
319 static __always_inline int PageCompound(struct page *page)
320 {
321 	return test_bit(PG_head, &page->flags) ||
322 	       READ_ONCE(page->compound_head) & 1;
323 }
324 
325 #define	PAGE_POISON_PATTERN	-1l
326 static inline int PagePoisoned(const struct page *page)
327 {
328 	return READ_ONCE(page->flags) == PAGE_POISON_PATTERN;
329 }
330 
331 #ifdef CONFIG_DEBUG_VM
332 void page_init_poison(struct page *page, size_t size);
333 #else
334 static inline void page_init_poison(struct page *page, size_t size)
335 {
336 }
337 #endif
338 
339 static unsigned long *folio_flags(struct folio *folio, unsigned n)
340 {
341 	struct page *page = &folio->page;
342 
343 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
344 	VM_BUG_ON_PGFLAGS(n > 0 && !test_bit(PG_head, &page->flags), page);
345 	return &page[n].flags;
346 }
347 
348 /*
349  * Page flags policies wrt compound pages
350  *
351  * PF_POISONED_CHECK
352  *     check if this struct page poisoned/uninitialized
353  *
354  * PF_ANY:
355  *     the page flag is relevant for small, head and tail pages.
356  *
357  * PF_HEAD:
358  *     for compound page all operations related to the page flag applied to
359  *     head page.
360  *
361  * PF_ONLY_HEAD:
362  *     for compound page, callers only ever operate on the head page.
363  *
364  * PF_NO_TAIL:
365  *     modifications of the page flag must be done on small or head pages,
366  *     checks can be done on tail pages too.
367  *
368  * PF_NO_COMPOUND:
369  *     the page flag is not relevant for compound pages.
370  *
371  * PF_SECOND:
372  *     the page flag is stored in the first tail page.
373  */
374 #define PF_POISONED_CHECK(page) ({					\
375 		VM_BUG_ON_PGFLAGS(PagePoisoned(page), page);		\
376 		page; })
377 #define PF_ANY(page, enforce)	PF_POISONED_CHECK(page)
378 #define PF_HEAD(page, enforce)	PF_POISONED_CHECK(compound_head(page))
379 #define PF_ONLY_HEAD(page, enforce) ({					\
380 		VM_BUG_ON_PGFLAGS(PageTail(page), page);		\
381 		PF_POISONED_CHECK(page); })
382 #define PF_NO_TAIL(page, enforce) ({					\
383 		VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page);	\
384 		PF_POISONED_CHECK(compound_head(page)); })
385 #define PF_NO_COMPOUND(page, enforce) ({				\
386 		VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page);	\
387 		PF_POISONED_CHECK(page); })
388 #define PF_SECOND(page, enforce) ({					\
389 		VM_BUG_ON_PGFLAGS(!PageHead(page), page);		\
390 		PF_POISONED_CHECK(&page[1]); })
391 
392 /* Which page is the flag stored in */
393 #define FOLIO_PF_ANY		0
394 #define FOLIO_PF_HEAD		0
395 #define FOLIO_PF_ONLY_HEAD	0
396 #define FOLIO_PF_NO_TAIL	0
397 #define FOLIO_PF_NO_COMPOUND	0
398 #define FOLIO_PF_SECOND		1
399 
400 /*
401  * Macros to create function definitions for page flags
402  */
403 #define TESTPAGEFLAG(uname, lname, policy)				\
404 static __always_inline bool folio_test_##lname(struct folio *folio)	\
405 { return test_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }	\
406 static __always_inline int Page##uname(struct page *page)		\
407 { return test_bit(PG_##lname, &policy(page, 0)->flags); }
408 
409 #define SETPAGEFLAG(uname, lname, policy)				\
410 static __always_inline							\
411 void folio_set_##lname(struct folio *folio)				\
412 { set_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }		\
413 static __always_inline void SetPage##uname(struct page *page)		\
414 { set_bit(PG_##lname, &policy(page, 1)->flags); }
415 
416 #define CLEARPAGEFLAG(uname, lname, policy)				\
417 static __always_inline							\
418 void folio_clear_##lname(struct folio *folio)				\
419 { clear_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }		\
420 static __always_inline void ClearPage##uname(struct page *page)		\
421 { clear_bit(PG_##lname, &policy(page, 1)->flags); }
422 
423 #define __SETPAGEFLAG(uname, lname, policy)				\
424 static __always_inline							\
425 void __folio_set_##lname(struct folio *folio)				\
426 { __set_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }		\
427 static __always_inline void __SetPage##uname(struct page *page)		\
428 { __set_bit(PG_##lname, &policy(page, 1)->flags); }
429 
430 #define __CLEARPAGEFLAG(uname, lname, policy)				\
431 static __always_inline							\
432 void __folio_clear_##lname(struct folio *folio)				\
433 { __clear_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }	\
434 static __always_inline void __ClearPage##uname(struct page *page)	\
435 { __clear_bit(PG_##lname, &policy(page, 1)->flags); }
436 
437 #define TESTSETFLAG(uname, lname, policy)				\
438 static __always_inline							\
439 bool folio_test_set_##lname(struct folio *folio)			\
440 { return test_and_set_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \
441 static __always_inline int TestSetPage##uname(struct page *page)	\
442 { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); }
443 
444 #define TESTCLEARFLAG(uname, lname, policy)				\
445 static __always_inline							\
446 bool folio_test_clear_##lname(struct folio *folio)			\
447 { return test_and_clear_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \
448 static __always_inline int TestClearPage##uname(struct page *page)	\
449 { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); }
450 
451 #define PAGEFLAG(uname, lname, policy)					\
452 	TESTPAGEFLAG(uname, lname, policy)				\
453 	SETPAGEFLAG(uname, lname, policy)				\
454 	CLEARPAGEFLAG(uname, lname, policy)
455 
456 #define __PAGEFLAG(uname, lname, policy)				\
457 	TESTPAGEFLAG(uname, lname, policy)				\
458 	__SETPAGEFLAG(uname, lname, policy)				\
459 	__CLEARPAGEFLAG(uname, lname, policy)
460 
461 #define TESTSCFLAG(uname, lname, policy)				\
462 	TESTSETFLAG(uname, lname, policy)				\
463 	TESTCLEARFLAG(uname, lname, policy)
464 
465 #define TESTPAGEFLAG_FALSE(uname, lname)				\
466 static inline bool folio_test_##lname(const struct folio *folio) { return false; } \
467 static inline int Page##uname(const struct page *page) { return 0; }
468 
469 #define SETPAGEFLAG_NOOP(uname, lname)					\
470 static inline void folio_set_##lname(struct folio *folio) { }		\
471 static inline void SetPage##uname(struct page *page) {  }
472 
473 #define CLEARPAGEFLAG_NOOP(uname, lname)				\
474 static inline void folio_clear_##lname(struct folio *folio) { }		\
475 static inline void ClearPage##uname(struct page *page) {  }
476 
477 #define __CLEARPAGEFLAG_NOOP(uname, lname)				\
478 static inline void __folio_clear_##lname(struct folio *folio) { }	\
479 static inline void __ClearPage##uname(struct page *page) {  }
480 
481 #define TESTSETFLAG_FALSE(uname, lname)					\
482 static inline bool folio_test_set_##lname(struct folio *folio)		\
483 { return 0; }								\
484 static inline int TestSetPage##uname(struct page *page) { return 0; }
485 
486 #define TESTCLEARFLAG_FALSE(uname, lname)				\
487 static inline bool folio_test_clear_##lname(struct folio *folio)	\
488 { return 0; }								\
489 static inline int TestClearPage##uname(struct page *page) { return 0; }
490 
491 #define PAGEFLAG_FALSE(uname, lname) TESTPAGEFLAG_FALSE(uname, lname)	\
492 	SETPAGEFLAG_NOOP(uname, lname) CLEARPAGEFLAG_NOOP(uname, lname)
493 
494 #define TESTSCFLAG_FALSE(uname, lname)					\
495 	TESTSETFLAG_FALSE(uname, lname) TESTCLEARFLAG_FALSE(uname, lname)
496 
497 __PAGEFLAG(Locked, locked, PF_NO_TAIL)
498 PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD)
499 PAGEFLAG(Error, error, PF_NO_TAIL) TESTCLEARFLAG(Error, error, PF_NO_TAIL)
500 PAGEFLAG(Referenced, referenced, PF_HEAD)
501 	TESTCLEARFLAG(Referenced, referenced, PF_HEAD)
502 	__SETPAGEFLAG(Referenced, referenced, PF_HEAD)
503 PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD)
504 	__CLEARPAGEFLAG(Dirty, dirty, PF_HEAD)
505 PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD)
506 	TESTCLEARFLAG(LRU, lru, PF_HEAD)
507 PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD)
508 	TESTCLEARFLAG(Active, active, PF_HEAD)
509 PAGEFLAG(Workingset, workingset, PF_HEAD)
510 	TESTCLEARFLAG(Workingset, workingset, PF_HEAD)
511 __PAGEFLAG(Slab, slab, PF_NO_TAIL)
512 __PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL)
513 PAGEFLAG(Checked, checked, PF_NO_COMPOUND)	   /* Used by some filesystems */
514 
515 /* Xen */
516 PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND)
517 	TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND)
518 PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND);
519 PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND);
520 PAGEFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
521 	TESTCLEARFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
522 
523 PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
524 	__CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
525 	__SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
526 PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
527 	__CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
528 	__SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
529 
530 /*
531  * Private page markings that may be used by the filesystem that owns the page
532  * for its own purposes.
533  * - PG_private and PG_private_2 cause release_folio() and co to be invoked
534  */
535 PAGEFLAG(Private, private, PF_ANY)
536 PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY)
537 PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
538 	TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
539 
540 /*
541  * Only test-and-set exist for PG_writeback.  The unconditional operators are
542  * risky: they bypass page accounting.
543  */
544 TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL)
545 	TESTSCFLAG(Writeback, writeback, PF_NO_TAIL)
546 PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL)
547 
548 /* PG_readahead is only used for reads; PG_reclaim is only for writes */
549 PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL)
550 	TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL)
551 PAGEFLAG(Readahead, readahead, PF_NO_COMPOUND)
552 	TESTCLEARFLAG(Readahead, readahead, PF_NO_COMPOUND)
553 
554 #ifdef CONFIG_HIGHMEM
555 /*
556  * Must use a macro here due to header dependency issues. page_zone() is not
557  * available at this point.
558  */
559 #define PageHighMem(__p) is_highmem_idx(page_zonenum(__p))
560 #else
561 PAGEFLAG_FALSE(HighMem, highmem)
562 #endif
563 
564 #ifdef CONFIG_SWAP
565 static __always_inline bool folio_test_swapcache(struct folio *folio)
566 {
567 	return folio_test_swapbacked(folio) &&
568 			test_bit(PG_swapcache, folio_flags(folio, 0));
569 }
570 
571 static __always_inline bool PageSwapCache(struct page *page)
572 {
573 	return folio_test_swapcache(page_folio(page));
574 }
575 
576 SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
577 CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
578 #else
579 PAGEFLAG_FALSE(SwapCache, swapcache)
580 #endif
581 
582 PAGEFLAG(Unevictable, unevictable, PF_HEAD)
583 	__CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD)
584 	TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD)
585 
586 #ifdef CONFIG_MMU
587 PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
588 	__CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
589 	TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL)
590 #else
591 PAGEFLAG_FALSE(Mlocked, mlocked) __CLEARPAGEFLAG_NOOP(Mlocked, mlocked)
592 	TESTSCFLAG_FALSE(Mlocked, mlocked)
593 #endif
594 
595 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
596 PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND)
597 #else
598 PAGEFLAG_FALSE(Uncached, uncached)
599 #endif
600 
601 #ifdef CONFIG_MEMORY_FAILURE
602 PAGEFLAG(HWPoison, hwpoison, PF_ANY)
603 TESTSCFLAG(HWPoison, hwpoison, PF_ANY)
604 #define __PG_HWPOISON (1UL << PG_hwpoison)
605 #define MAGIC_HWPOISON	0x48575053U	/* HWPS */
606 extern void SetPageHWPoisonTakenOff(struct page *page);
607 extern void ClearPageHWPoisonTakenOff(struct page *page);
608 extern bool take_page_off_buddy(struct page *page);
609 extern bool put_page_back_buddy(struct page *page);
610 #else
611 PAGEFLAG_FALSE(HWPoison, hwpoison)
612 #define __PG_HWPOISON 0
613 #endif
614 
615 #if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT)
616 TESTPAGEFLAG(Young, young, PF_ANY)
617 SETPAGEFLAG(Young, young, PF_ANY)
618 TESTCLEARFLAG(Young, young, PF_ANY)
619 PAGEFLAG(Idle, idle, PF_ANY)
620 #endif
621 
622 #ifdef CONFIG_KASAN_HW_TAGS
623 PAGEFLAG(SkipKASanPoison, skip_kasan_poison, PF_HEAD)
624 #else
625 PAGEFLAG_FALSE(SkipKASanPoison, skip_kasan_poison)
626 #endif
627 
628 /*
629  * PageReported() is used to track reported free pages within the Buddy
630  * allocator. We can use the non-atomic version of the test and set
631  * operations as both should be shielded with the zone lock to prevent
632  * any possible races on the setting or clearing of the bit.
633  */
634 __PAGEFLAG(Reported, reported, PF_NO_COMPOUND)
635 
636 #ifdef CONFIG_MEMORY_HOTPLUG
637 PAGEFLAG(VmemmapSelfHosted, vmemmap_self_hosted, PF_ANY)
638 #else
639 PAGEFLAG_FALSE(VmemmapSelfHosted, vmemmap_self_hosted)
640 #endif
641 
642 /*
643  * On an anonymous page mapped into a user virtual memory area,
644  * page->mapping points to its anon_vma, not to a struct address_space;
645  * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
646  *
647  * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
648  * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON
649  * bit; and then page->mapping points, not to an anon_vma, but to a private
650  * structure which KSM associates with that merged page.  See ksm.h.
651  *
652  * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable
653  * page and then page->mapping points to a struct movable_operations.
654  *
655  * Please note that, confusingly, "page_mapping" refers to the inode
656  * address_space which maps the page from disk; whereas "page_mapped"
657  * refers to user virtual address space into which the page is mapped.
658  */
659 #define PAGE_MAPPING_ANON	0x1
660 #define PAGE_MAPPING_MOVABLE	0x2
661 #define PAGE_MAPPING_KSM	(PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
662 #define PAGE_MAPPING_FLAGS	(PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
663 
664 /*
665  * Different with flags above, this flag is used only for fsdax mode.  It
666  * indicates that this page->mapping is now under reflink case.
667  */
668 #define PAGE_MAPPING_DAX_COW	0x1
669 
670 static __always_inline bool folio_mapping_flags(struct folio *folio)
671 {
672 	return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) != 0;
673 }
674 
675 static __always_inline int PageMappingFlags(struct page *page)
676 {
677 	return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0;
678 }
679 
680 static __always_inline bool folio_test_anon(struct folio *folio)
681 {
682 	return ((unsigned long)folio->mapping & PAGE_MAPPING_ANON) != 0;
683 }
684 
685 static __always_inline bool PageAnon(struct page *page)
686 {
687 	return folio_test_anon(page_folio(page));
688 }
689 
690 static __always_inline bool __folio_test_movable(const struct folio *folio)
691 {
692 	return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) ==
693 			PAGE_MAPPING_MOVABLE;
694 }
695 
696 static __always_inline int __PageMovable(struct page *page)
697 {
698 	return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
699 				PAGE_MAPPING_MOVABLE;
700 }
701 
702 #ifdef CONFIG_KSM
703 /*
704  * A KSM page is one of those write-protected "shared pages" or "merged pages"
705  * which KSM maps into multiple mms, wherever identical anonymous page content
706  * is found in VM_MERGEABLE vmas.  It's a PageAnon page, pointing not to any
707  * anon_vma, but to that page's node of the stable tree.
708  */
709 static __always_inline bool folio_test_ksm(struct folio *folio)
710 {
711 	return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) ==
712 				PAGE_MAPPING_KSM;
713 }
714 
715 static __always_inline bool PageKsm(struct page *page)
716 {
717 	return folio_test_ksm(page_folio(page));
718 }
719 #else
720 TESTPAGEFLAG_FALSE(Ksm, ksm)
721 #endif
722 
723 u64 stable_page_flags(struct page *page);
724 
725 /**
726  * folio_test_uptodate - Is this folio up to date?
727  * @folio: The folio.
728  *
729  * The uptodate flag is set on a folio when every byte in the folio is
730  * at least as new as the corresponding bytes on storage.  Anonymous
731  * and CoW folios are always uptodate.  If the folio is not uptodate,
732  * some of the bytes in it may be; see the is_partially_uptodate()
733  * address_space operation.
734  */
735 static inline bool folio_test_uptodate(struct folio *folio)
736 {
737 	bool ret = test_bit(PG_uptodate, folio_flags(folio, 0));
738 	/*
739 	 * Must ensure that the data we read out of the folio is loaded
740 	 * _after_ we've loaded folio->flags to check the uptodate bit.
741 	 * We can skip the barrier if the folio is not uptodate, because
742 	 * we wouldn't be reading anything from it.
743 	 *
744 	 * See folio_mark_uptodate() for the other side of the story.
745 	 */
746 	if (ret)
747 		smp_rmb();
748 
749 	return ret;
750 }
751 
752 static inline int PageUptodate(struct page *page)
753 {
754 	return folio_test_uptodate(page_folio(page));
755 }
756 
757 static __always_inline void __folio_mark_uptodate(struct folio *folio)
758 {
759 	smp_wmb();
760 	__set_bit(PG_uptodate, folio_flags(folio, 0));
761 }
762 
763 static __always_inline void folio_mark_uptodate(struct folio *folio)
764 {
765 	/*
766 	 * Memory barrier must be issued before setting the PG_uptodate bit,
767 	 * so that all previous stores issued in order to bring the folio
768 	 * uptodate are actually visible before folio_test_uptodate becomes true.
769 	 */
770 	smp_wmb();
771 	set_bit(PG_uptodate, folio_flags(folio, 0));
772 }
773 
774 static __always_inline void __SetPageUptodate(struct page *page)
775 {
776 	__folio_mark_uptodate((struct folio *)page);
777 }
778 
779 static __always_inline void SetPageUptodate(struct page *page)
780 {
781 	folio_mark_uptodate((struct folio *)page);
782 }
783 
784 CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL)
785 
786 bool __folio_start_writeback(struct folio *folio, bool keep_write);
787 bool set_page_writeback(struct page *page);
788 
789 #define folio_start_writeback(folio)			\
790 	__folio_start_writeback(folio, false)
791 #define folio_start_writeback_keepwrite(folio)	\
792 	__folio_start_writeback(folio, true)
793 
794 static inline void set_page_writeback_keepwrite(struct page *page)
795 {
796 	folio_start_writeback_keepwrite(page_folio(page));
797 }
798 
799 static inline bool test_set_page_writeback(struct page *page)
800 {
801 	return set_page_writeback(page);
802 }
803 
804 static __always_inline bool folio_test_head(struct folio *folio)
805 {
806 	return test_bit(PG_head, folio_flags(folio, FOLIO_PF_ANY));
807 }
808 
809 static __always_inline int PageHead(struct page *page)
810 {
811 	PF_POISONED_CHECK(page);
812 	return test_bit(PG_head, &page->flags) && !page_is_fake_head(page);
813 }
814 
815 __SETPAGEFLAG(Head, head, PF_ANY)
816 __CLEARPAGEFLAG(Head, head, PF_ANY)
817 CLEARPAGEFLAG(Head, head, PF_ANY)
818 
819 /**
820  * folio_test_large() - Does this folio contain more than one page?
821  * @folio: The folio to test.
822  *
823  * Return: True if the folio is larger than one page.
824  */
825 static inline bool folio_test_large(struct folio *folio)
826 {
827 	return folio_test_head(folio);
828 }
829 
830 static __always_inline void set_compound_head(struct page *page, struct page *head)
831 {
832 	WRITE_ONCE(page->compound_head, (unsigned long)head + 1);
833 }
834 
835 static __always_inline void clear_compound_head(struct page *page)
836 {
837 	WRITE_ONCE(page->compound_head, 0);
838 }
839 
840 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
841 static inline void ClearPageCompound(struct page *page)
842 {
843 	BUG_ON(!PageHead(page));
844 	ClearPageHead(page);
845 }
846 #endif
847 
848 #define PG_head_mask ((1UL << PG_head))
849 
850 #ifdef CONFIG_HUGETLB_PAGE
851 int PageHuge(struct page *page);
852 int PageHeadHuge(struct page *page);
853 static inline bool folio_test_hugetlb(struct folio *folio)
854 {
855 	return PageHeadHuge(&folio->page);
856 }
857 #else
858 TESTPAGEFLAG_FALSE(Huge, hugetlb)
859 TESTPAGEFLAG_FALSE(HeadHuge, headhuge)
860 #endif
861 
862 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
863 /*
864  * PageHuge() only returns true for hugetlbfs pages, but not for
865  * normal or transparent huge pages.
866  *
867  * PageTransHuge() returns true for both transparent huge and
868  * hugetlbfs pages, but not normal pages. PageTransHuge() can only be
869  * called only in the core VM paths where hugetlbfs pages can't exist.
870  */
871 static inline int PageTransHuge(struct page *page)
872 {
873 	VM_BUG_ON_PAGE(PageTail(page), page);
874 	return PageHead(page);
875 }
876 
877 static inline bool folio_test_transhuge(struct folio *folio)
878 {
879 	return folio_test_head(folio);
880 }
881 
882 /*
883  * PageTransCompound returns true for both transparent huge pages
884  * and hugetlbfs pages, so it should only be called when it's known
885  * that hugetlbfs pages aren't involved.
886  */
887 static inline int PageTransCompound(struct page *page)
888 {
889 	return PageCompound(page);
890 }
891 
892 /*
893  * PageTransTail returns true for both transparent huge pages
894  * and hugetlbfs pages, so it should only be called when it's known
895  * that hugetlbfs pages aren't involved.
896  */
897 static inline int PageTransTail(struct page *page)
898 {
899 	return PageTail(page);
900 }
901 
902 /*
903  * PageDoubleMap indicates that the compound page is mapped with PTEs as well
904  * as PMDs.
905  *
906  * This is required for optimization of rmap operations for THP: we can postpone
907  * per small page mapcount accounting (and its overhead from atomic operations)
908  * until the first PMD split.
909  *
910  * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up
911  * by one. This reference will go away with last compound_mapcount.
912  *
913  * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap().
914  */
915 PAGEFLAG(DoubleMap, double_map, PF_SECOND)
916 	TESTSCFLAG(DoubleMap, double_map, PF_SECOND)
917 #else
918 TESTPAGEFLAG_FALSE(TransHuge, transhuge)
919 TESTPAGEFLAG_FALSE(TransCompound, transcompound)
920 TESTPAGEFLAG_FALSE(TransCompoundMap, transcompoundmap)
921 TESTPAGEFLAG_FALSE(TransTail, transtail)
922 PAGEFLAG_FALSE(DoubleMap, double_map)
923 	TESTSCFLAG_FALSE(DoubleMap, double_map)
924 #endif
925 
926 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
927 /*
928  * PageHasHWPoisoned indicates that at least one subpage is hwpoisoned in the
929  * compound page.
930  *
931  * This flag is set by hwpoison handler.  Cleared by THP split or free page.
932  */
933 PAGEFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND)
934 	TESTSCFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND)
935 #else
936 PAGEFLAG_FALSE(HasHWPoisoned, has_hwpoisoned)
937 	TESTSCFLAG_FALSE(HasHWPoisoned, has_hwpoisoned)
938 #endif
939 
940 /*
941  * Check if a page is currently marked HWPoisoned. Note that this check is
942  * best effort only and inherently racy: there is no way to synchronize with
943  * failing hardware.
944  */
945 static inline bool is_page_hwpoison(struct page *page)
946 {
947 	if (PageHWPoison(page))
948 		return true;
949 	return PageHuge(page) && PageHWPoison(compound_head(page));
950 }
951 
952 /*
953  * For pages that are never mapped to userspace (and aren't PageSlab),
954  * page_type may be used.  Because it is initialised to -1, we invert the
955  * sense of the bit, so __SetPageFoo *clears* the bit used for PageFoo, and
956  * __ClearPageFoo *sets* the bit used for PageFoo.  We reserve a few high and
957  * low bits so that an underflow or overflow of page_mapcount() won't be
958  * mistaken for a page type value.
959  */
960 
961 #define PAGE_TYPE_BASE	0xf0000000
962 /* Reserve		0x0000007f to catch underflows of page_mapcount */
963 #define PAGE_MAPCOUNT_RESERVE	-128
964 #define PG_buddy	0x00000080
965 #define PG_offline	0x00000100
966 #define PG_table	0x00000200
967 #define PG_guard	0x00000400
968 
969 #define PageType(page, flag)						\
970 	((page->page_type & (PAGE_TYPE_BASE | flag)) == PAGE_TYPE_BASE)
971 
972 static inline int page_has_type(struct page *page)
973 {
974 	return (int)page->page_type < PAGE_MAPCOUNT_RESERVE;
975 }
976 
977 #define PAGE_TYPE_OPS(uname, lname)					\
978 static __always_inline int Page##uname(struct page *page)		\
979 {									\
980 	return PageType(page, PG_##lname);				\
981 }									\
982 static __always_inline void __SetPage##uname(struct page *page)		\
983 {									\
984 	VM_BUG_ON_PAGE(!PageType(page, 0), page);			\
985 	page->page_type &= ~PG_##lname;					\
986 }									\
987 static __always_inline void __ClearPage##uname(struct page *page)	\
988 {									\
989 	VM_BUG_ON_PAGE(!Page##uname(page), page);			\
990 	page->page_type |= PG_##lname;					\
991 }
992 
993 /*
994  * PageBuddy() indicates that the page is free and in the buddy system
995  * (see mm/page_alloc.c).
996  */
997 PAGE_TYPE_OPS(Buddy, buddy)
998 
999 /*
1000  * PageOffline() indicates that the page is logically offline although the
1001  * containing section is online. (e.g. inflated in a balloon driver or
1002  * not onlined when onlining the section).
1003  * The content of these pages is effectively stale. Such pages should not
1004  * be touched (read/write/dump/save) except by their owner.
1005  *
1006  * If a driver wants to allow to offline unmovable PageOffline() pages without
1007  * putting them back to the buddy, it can do so via the memory notifier by
1008  * decrementing the reference count in MEM_GOING_OFFLINE and incrementing the
1009  * reference count in MEM_CANCEL_OFFLINE. When offlining, the PageOffline()
1010  * pages (now with a reference count of zero) are treated like free pages,
1011  * allowing the containing memory block to get offlined. A driver that
1012  * relies on this feature is aware that re-onlining the memory block will
1013  * require to re-set the pages PageOffline() and not giving them to the
1014  * buddy via online_page_callback_t.
1015  *
1016  * There are drivers that mark a page PageOffline() and expect there won't be
1017  * any further access to page content. PFN walkers that read content of random
1018  * pages should check PageOffline() and synchronize with such drivers using
1019  * page_offline_freeze()/page_offline_thaw().
1020  */
1021 PAGE_TYPE_OPS(Offline, offline)
1022 
1023 extern void page_offline_freeze(void);
1024 extern void page_offline_thaw(void);
1025 extern void page_offline_begin(void);
1026 extern void page_offline_end(void);
1027 
1028 /*
1029  * Marks pages in use as page tables.
1030  */
1031 PAGE_TYPE_OPS(Table, table)
1032 
1033 /*
1034  * Marks guardpages used with debug_pagealloc.
1035  */
1036 PAGE_TYPE_OPS(Guard, guard)
1037 
1038 extern bool is_free_buddy_page(struct page *page);
1039 
1040 PAGEFLAG(Isolated, isolated, PF_ANY);
1041 
1042 static __always_inline int PageAnonExclusive(struct page *page)
1043 {
1044 	VM_BUG_ON_PGFLAGS(!PageAnon(page), page);
1045 	VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page);
1046 	return test_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags);
1047 }
1048 
1049 static __always_inline void SetPageAnonExclusive(struct page *page)
1050 {
1051 	VM_BUG_ON_PGFLAGS(!PageAnon(page) || PageKsm(page), page);
1052 	VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page);
1053 	set_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags);
1054 }
1055 
1056 static __always_inline void ClearPageAnonExclusive(struct page *page)
1057 {
1058 	VM_BUG_ON_PGFLAGS(!PageAnon(page) || PageKsm(page), page);
1059 	VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page);
1060 	clear_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags);
1061 }
1062 
1063 static __always_inline void __ClearPageAnonExclusive(struct page *page)
1064 {
1065 	VM_BUG_ON_PGFLAGS(!PageAnon(page), page);
1066 	VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page);
1067 	__clear_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags);
1068 }
1069 
1070 #ifdef CONFIG_MMU
1071 #define __PG_MLOCKED		(1UL << PG_mlocked)
1072 #else
1073 #define __PG_MLOCKED		0
1074 #endif
1075 
1076 /*
1077  * Flags checked when a page is freed.  Pages being freed should not have
1078  * these flags set.  If they are, there is a problem.
1079  */
1080 #define PAGE_FLAGS_CHECK_AT_FREE				\
1081 	(1UL << PG_lru		| 1UL << PG_locked	|	\
1082 	 1UL << PG_private	| 1UL << PG_private_2	|	\
1083 	 1UL << PG_writeback	| 1UL << PG_reserved	|	\
1084 	 1UL << PG_slab		| 1UL << PG_active 	|	\
1085 	 1UL << PG_unevictable	| __PG_MLOCKED)
1086 
1087 /*
1088  * Flags checked when a page is prepped for return by the page allocator.
1089  * Pages being prepped should not have these flags set.  If they are set,
1090  * there has been a kernel bug or struct page corruption.
1091  *
1092  * __PG_HWPOISON is exceptional because it needs to be kept beyond page's
1093  * alloc-free cycle to prevent from reusing the page.
1094  */
1095 #define PAGE_FLAGS_CHECK_AT_PREP	\
1096 	(PAGEFLAGS_MASK & ~__PG_HWPOISON)
1097 
1098 #define PAGE_FLAGS_PRIVATE				\
1099 	(1UL << PG_private | 1UL << PG_private_2)
1100 /**
1101  * page_has_private - Determine if page has private stuff
1102  * @page: The page to be checked
1103  *
1104  * Determine if a page has private stuff, indicating that release routines
1105  * should be invoked upon it.
1106  */
1107 static inline int page_has_private(struct page *page)
1108 {
1109 	return !!(page->flags & PAGE_FLAGS_PRIVATE);
1110 }
1111 
1112 static inline bool folio_has_private(struct folio *folio)
1113 {
1114 	return page_has_private(&folio->page);
1115 }
1116 
1117 #undef PF_ANY
1118 #undef PF_HEAD
1119 #undef PF_ONLY_HEAD
1120 #undef PF_NO_TAIL
1121 #undef PF_NO_COMPOUND
1122 #undef PF_SECOND
1123 #endif /* !__GENERATING_BOUNDS_H */
1124 
1125 #endif	/* PAGE_FLAGS_H */
1126