1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Macros for manipulating and testing page->flags 4 */ 5 6 #ifndef PAGE_FLAGS_H 7 #define PAGE_FLAGS_H 8 9 #include <linux/types.h> 10 #include <linux/bug.h> 11 #include <linux/mmdebug.h> 12 #ifndef __GENERATING_BOUNDS_H 13 #include <linux/mm_types.h> 14 #include <generated/bounds.h> 15 #endif /* !__GENERATING_BOUNDS_H */ 16 17 /* 18 * Various page->flags bits: 19 * 20 * PG_reserved is set for special pages. The "struct page" of such a page 21 * should in general not be touched (e.g. set dirty) except by its owner. 22 * Pages marked as PG_reserved include: 23 * - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS, 24 * initrd, HW tables) 25 * - Pages reserved or allocated early during boot (before the page allocator 26 * was initialized). This includes (depending on the architecture) the 27 * initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much 28 * much more. Once (if ever) freed, PG_reserved is cleared and they will 29 * be given to the page allocator. 30 * - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying 31 * to read/write these pages might end badly. Don't touch! 32 * - The zero page(s) 33 * - Pages not added to the page allocator when onlining a section because 34 * they were excluded via the online_page_callback() or because they are 35 * PG_hwpoison. 36 * - Pages allocated in the context of kexec/kdump (loaded kernel image, 37 * control pages, vmcoreinfo) 38 * - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are 39 * not marked PG_reserved (as they might be in use by somebody else who does 40 * not respect the caching strategy). 41 * - Pages part of an offline section (struct pages of offline sections should 42 * not be trusted as they will be initialized when first onlined). 43 * - MCA pages on ia64 44 * - Pages holding CPU notes for POWER Firmware Assisted Dump 45 * - Device memory (e.g. PMEM, DAX, HMM) 46 * Some PG_reserved pages will be excluded from the hibernation image. 47 * PG_reserved does in general not hinder anybody from dumping or swapping 48 * and is no longer required for remap_pfn_range(). ioremap might require it. 49 * Consequently, PG_reserved for a page mapped into user space can indicate 50 * the zero page, the vDSO, MMIO pages or device memory. 51 * 52 * The PG_private bitflag is set on pagecache pages if they contain filesystem 53 * specific data (which is normally at page->private). It can be used by 54 * private allocations for its own usage. 55 * 56 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O 57 * and cleared when writeback _starts_ or when read _completes_. PG_writeback 58 * is set before writeback starts and cleared when it finishes. 59 * 60 * PG_locked also pins a page in pagecache, and blocks truncation of the file 61 * while it is held. 62 * 63 * page_waitqueue(page) is a wait queue of all tasks waiting for the page 64 * to become unlocked. 65 * 66 * PG_swapbacked is set when a page uses swap as a backing storage. This are 67 * usually PageAnon or shmem pages but please note that even anonymous pages 68 * might lose their PG_swapbacked flag when they simply can be dropped (e.g. as 69 * a result of MADV_FREE). 70 * 71 * PG_uptodate tells whether the page's contents is valid. When a read 72 * completes, the page becomes uptodate, unless a disk I/O error happened. 73 * 74 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and 75 * file-backed pagecache (see mm/vmscan.c). 76 * 77 * PG_error is set to indicate that an I/O error occurred on this page. 78 * 79 * PG_arch_1 is an architecture specific page state bit. The generic code 80 * guarantees that this bit is cleared for a page when it first is entered into 81 * the page cache. 82 * 83 * PG_hwpoison indicates that a page got corrupted in hardware and contains 84 * data with incorrect ECC bits that triggered a machine check. Accessing is 85 * not safe since it may cause another machine check. Don't touch! 86 */ 87 88 /* 89 * Don't use the pageflags directly. Use the PageFoo macros. 90 * 91 * The page flags field is split into two parts, the main flags area 92 * which extends from the low bits upwards, and the fields area which 93 * extends from the high bits downwards. 94 * 95 * | FIELD | ... | FLAGS | 96 * N-1 ^ 0 97 * (NR_PAGEFLAGS) 98 * 99 * The fields area is reserved for fields mapping zone, node (for NUMA) and 100 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like 101 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP). 102 */ 103 enum pageflags { 104 PG_locked, /* Page is locked. Don't touch. */ 105 PG_referenced, 106 PG_uptodate, 107 PG_dirty, 108 PG_lru, 109 PG_active, 110 PG_workingset, 111 PG_waiters, /* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */ 112 PG_error, 113 PG_slab, 114 PG_owner_priv_1, /* Owner use. If pagecache, fs may use*/ 115 PG_arch_1, 116 PG_reserved, 117 PG_private, /* If pagecache, has fs-private data */ 118 PG_private_2, /* If pagecache, has fs aux data */ 119 PG_writeback, /* Page is under writeback */ 120 PG_head, /* A head page */ 121 PG_mappedtodisk, /* Has blocks allocated on-disk */ 122 PG_reclaim, /* To be reclaimed asap */ 123 PG_swapbacked, /* Page is backed by RAM/swap */ 124 PG_unevictable, /* Page is "unevictable" */ 125 #ifdef CONFIG_MMU 126 PG_mlocked, /* Page is vma mlocked */ 127 #endif 128 #ifdef CONFIG_ARCH_USES_PG_UNCACHED 129 PG_uncached, /* Page has been mapped as uncached */ 130 #endif 131 #ifdef CONFIG_MEMORY_FAILURE 132 PG_hwpoison, /* hardware poisoned page. Don't touch */ 133 #endif 134 #if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT) 135 PG_young, 136 PG_idle, 137 #endif 138 #ifdef CONFIG_64BIT 139 PG_arch_2, 140 #endif 141 #ifdef CONFIG_KASAN_HW_TAGS 142 PG_skip_kasan_poison, 143 #endif 144 __NR_PAGEFLAGS, 145 146 PG_readahead = PG_reclaim, 147 148 /* Filesystems */ 149 PG_checked = PG_owner_priv_1, 150 151 /* SwapBacked */ 152 PG_swapcache = PG_owner_priv_1, /* Swap page: swp_entry_t in private */ 153 154 /* Two page bits are conscripted by FS-Cache to maintain local caching 155 * state. These bits are set on pages belonging to the netfs's inodes 156 * when those inodes are being locally cached. 157 */ 158 PG_fscache = PG_private_2, /* page backed by cache */ 159 160 /* XEN */ 161 /* Pinned in Xen as a read-only pagetable page. */ 162 PG_pinned = PG_owner_priv_1, 163 /* Pinned as part of domain save (see xen_mm_pin_all()). */ 164 PG_savepinned = PG_dirty, 165 /* Has a grant mapping of another (foreign) domain's page. */ 166 PG_foreign = PG_owner_priv_1, 167 /* Remapped by swiotlb-xen. */ 168 PG_xen_remapped = PG_owner_priv_1, 169 170 /* SLOB */ 171 PG_slob_free = PG_private, 172 173 /* Compound pages. Stored in first tail page's flags */ 174 PG_double_map = PG_workingset, 175 176 #ifdef CONFIG_MEMORY_FAILURE 177 /* 178 * Compound pages. Stored in first tail page's flags. 179 * Indicates that at least one subpage is hwpoisoned in the 180 * THP. 181 */ 182 PG_has_hwpoisoned = PG_mappedtodisk, 183 #endif 184 185 /* non-lru isolated movable page */ 186 PG_isolated = PG_reclaim, 187 188 /* Only valid for buddy pages. Used to track pages that are reported */ 189 PG_reported = PG_uptodate, 190 }; 191 192 #define PAGEFLAGS_MASK ((1UL << NR_PAGEFLAGS) - 1) 193 194 #ifndef __GENERATING_BOUNDS_H 195 196 static inline unsigned long _compound_head(const struct page *page) 197 { 198 unsigned long head = READ_ONCE(page->compound_head); 199 200 if (unlikely(head & 1)) 201 return head - 1; 202 return (unsigned long)page; 203 } 204 205 #define compound_head(page) ((typeof(page))_compound_head(page)) 206 207 /** 208 * page_folio - Converts from page to folio. 209 * @p: The page. 210 * 211 * Every page is part of a folio. This function cannot be called on a 212 * NULL pointer. 213 * 214 * Context: No reference, nor lock is required on @page. If the caller 215 * does not hold a reference, this call may race with a folio split, so 216 * it should re-check the folio still contains this page after gaining 217 * a reference on the folio. 218 * Return: The folio which contains this page. 219 */ 220 #define page_folio(p) (_Generic((p), \ 221 const struct page *: (const struct folio *)_compound_head(p), \ 222 struct page *: (struct folio *)_compound_head(p))) 223 224 /** 225 * folio_page - Return a page from a folio. 226 * @folio: The folio. 227 * @n: The page number to return. 228 * 229 * @n is relative to the start of the folio. This function does not 230 * check that the page number lies within @folio; the caller is presumed 231 * to have a reference to the page. 232 */ 233 #define folio_page(folio, n) nth_page(&(folio)->page, n) 234 235 static __always_inline int PageTail(struct page *page) 236 { 237 return READ_ONCE(page->compound_head) & 1; 238 } 239 240 static __always_inline int PageCompound(struct page *page) 241 { 242 return test_bit(PG_head, &page->flags) || PageTail(page); 243 } 244 245 #define PAGE_POISON_PATTERN -1l 246 static inline int PagePoisoned(const struct page *page) 247 { 248 return READ_ONCE(page->flags) == PAGE_POISON_PATTERN; 249 } 250 251 #ifdef CONFIG_DEBUG_VM 252 void page_init_poison(struct page *page, size_t size); 253 #else 254 static inline void page_init_poison(struct page *page, size_t size) 255 { 256 } 257 #endif 258 259 static unsigned long *folio_flags(struct folio *folio, unsigned n) 260 { 261 struct page *page = &folio->page; 262 263 VM_BUG_ON_PGFLAGS(PageTail(page), page); 264 VM_BUG_ON_PGFLAGS(n > 0 && !test_bit(PG_head, &page->flags), page); 265 return &page[n].flags; 266 } 267 268 /* 269 * Page flags policies wrt compound pages 270 * 271 * PF_POISONED_CHECK 272 * check if this struct page poisoned/uninitialized 273 * 274 * PF_ANY: 275 * the page flag is relevant for small, head and tail pages. 276 * 277 * PF_HEAD: 278 * for compound page all operations related to the page flag applied to 279 * head page. 280 * 281 * PF_ONLY_HEAD: 282 * for compound page, callers only ever operate on the head page. 283 * 284 * PF_NO_TAIL: 285 * modifications of the page flag must be done on small or head pages, 286 * checks can be done on tail pages too. 287 * 288 * PF_NO_COMPOUND: 289 * the page flag is not relevant for compound pages. 290 * 291 * PF_SECOND: 292 * the page flag is stored in the first tail page. 293 */ 294 #define PF_POISONED_CHECK(page) ({ \ 295 VM_BUG_ON_PGFLAGS(PagePoisoned(page), page); \ 296 page; }) 297 #define PF_ANY(page, enforce) PF_POISONED_CHECK(page) 298 #define PF_HEAD(page, enforce) PF_POISONED_CHECK(compound_head(page)) 299 #define PF_ONLY_HEAD(page, enforce) ({ \ 300 VM_BUG_ON_PGFLAGS(PageTail(page), page); \ 301 PF_POISONED_CHECK(page); }) 302 #define PF_NO_TAIL(page, enforce) ({ \ 303 VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page); \ 304 PF_POISONED_CHECK(compound_head(page)); }) 305 #define PF_NO_COMPOUND(page, enforce) ({ \ 306 VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \ 307 PF_POISONED_CHECK(page); }) 308 #define PF_SECOND(page, enforce) ({ \ 309 VM_BUG_ON_PGFLAGS(!PageHead(page), page); \ 310 PF_POISONED_CHECK(&page[1]); }) 311 312 /* Which page is the flag stored in */ 313 #define FOLIO_PF_ANY 0 314 #define FOLIO_PF_HEAD 0 315 #define FOLIO_PF_ONLY_HEAD 0 316 #define FOLIO_PF_NO_TAIL 0 317 #define FOLIO_PF_NO_COMPOUND 0 318 #define FOLIO_PF_SECOND 1 319 320 /* 321 * Macros to create function definitions for page flags 322 */ 323 #define TESTPAGEFLAG(uname, lname, policy) \ 324 static __always_inline bool folio_test_##lname(struct folio *folio) \ 325 { return test_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \ 326 static __always_inline int Page##uname(struct page *page) \ 327 { return test_bit(PG_##lname, &policy(page, 0)->flags); } 328 329 #define SETPAGEFLAG(uname, lname, policy) \ 330 static __always_inline \ 331 void folio_set_##lname(struct folio *folio) \ 332 { set_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \ 333 static __always_inline void SetPage##uname(struct page *page) \ 334 { set_bit(PG_##lname, &policy(page, 1)->flags); } 335 336 #define CLEARPAGEFLAG(uname, lname, policy) \ 337 static __always_inline \ 338 void folio_clear_##lname(struct folio *folio) \ 339 { clear_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \ 340 static __always_inline void ClearPage##uname(struct page *page) \ 341 { clear_bit(PG_##lname, &policy(page, 1)->flags); } 342 343 #define __SETPAGEFLAG(uname, lname, policy) \ 344 static __always_inline \ 345 void __folio_set_##lname(struct folio *folio) \ 346 { __set_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \ 347 static __always_inline void __SetPage##uname(struct page *page) \ 348 { __set_bit(PG_##lname, &policy(page, 1)->flags); } 349 350 #define __CLEARPAGEFLAG(uname, lname, policy) \ 351 static __always_inline \ 352 void __folio_clear_##lname(struct folio *folio) \ 353 { __clear_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \ 354 static __always_inline void __ClearPage##uname(struct page *page) \ 355 { __clear_bit(PG_##lname, &policy(page, 1)->flags); } 356 357 #define TESTSETFLAG(uname, lname, policy) \ 358 static __always_inline \ 359 bool folio_test_set_##lname(struct folio *folio) \ 360 { return test_and_set_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \ 361 static __always_inline int TestSetPage##uname(struct page *page) \ 362 { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); } 363 364 #define TESTCLEARFLAG(uname, lname, policy) \ 365 static __always_inline \ 366 bool folio_test_clear_##lname(struct folio *folio) \ 367 { return test_and_clear_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \ 368 static __always_inline int TestClearPage##uname(struct page *page) \ 369 { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); } 370 371 #define PAGEFLAG(uname, lname, policy) \ 372 TESTPAGEFLAG(uname, lname, policy) \ 373 SETPAGEFLAG(uname, lname, policy) \ 374 CLEARPAGEFLAG(uname, lname, policy) 375 376 #define __PAGEFLAG(uname, lname, policy) \ 377 TESTPAGEFLAG(uname, lname, policy) \ 378 __SETPAGEFLAG(uname, lname, policy) \ 379 __CLEARPAGEFLAG(uname, lname, policy) 380 381 #define TESTSCFLAG(uname, lname, policy) \ 382 TESTSETFLAG(uname, lname, policy) \ 383 TESTCLEARFLAG(uname, lname, policy) 384 385 #define TESTPAGEFLAG_FALSE(uname, lname) \ 386 static inline bool folio_test_##lname(const struct folio *folio) { return 0; } \ 387 static inline int Page##uname(const struct page *page) { return 0; } 388 389 #define SETPAGEFLAG_NOOP(uname, lname) \ 390 static inline void folio_set_##lname(struct folio *folio) { } \ 391 static inline void SetPage##uname(struct page *page) { } 392 393 #define CLEARPAGEFLAG_NOOP(uname, lname) \ 394 static inline void folio_clear_##lname(struct folio *folio) { } \ 395 static inline void ClearPage##uname(struct page *page) { } 396 397 #define __CLEARPAGEFLAG_NOOP(uname, lname) \ 398 static inline void __folio_clear_##lname(struct folio *folio) { } \ 399 static inline void __ClearPage##uname(struct page *page) { } 400 401 #define TESTSETFLAG_FALSE(uname, lname) \ 402 static inline bool folio_test_set_##lname(struct folio *folio) \ 403 { return 0; } \ 404 static inline int TestSetPage##uname(struct page *page) { return 0; } 405 406 #define TESTCLEARFLAG_FALSE(uname, lname) \ 407 static inline bool folio_test_clear_##lname(struct folio *folio) \ 408 { return 0; } \ 409 static inline int TestClearPage##uname(struct page *page) { return 0; } 410 411 #define PAGEFLAG_FALSE(uname, lname) TESTPAGEFLAG_FALSE(uname, lname) \ 412 SETPAGEFLAG_NOOP(uname, lname) CLEARPAGEFLAG_NOOP(uname, lname) 413 414 #define TESTSCFLAG_FALSE(uname, lname) \ 415 TESTSETFLAG_FALSE(uname, lname) TESTCLEARFLAG_FALSE(uname, lname) 416 417 __PAGEFLAG(Locked, locked, PF_NO_TAIL) 418 PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) __CLEARPAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) 419 PAGEFLAG(Error, error, PF_NO_TAIL) TESTCLEARFLAG(Error, error, PF_NO_TAIL) 420 PAGEFLAG(Referenced, referenced, PF_HEAD) 421 TESTCLEARFLAG(Referenced, referenced, PF_HEAD) 422 __SETPAGEFLAG(Referenced, referenced, PF_HEAD) 423 PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD) 424 __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD) 425 PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD) 426 TESTCLEARFLAG(LRU, lru, PF_HEAD) 427 PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD) 428 TESTCLEARFLAG(Active, active, PF_HEAD) 429 PAGEFLAG(Workingset, workingset, PF_HEAD) 430 TESTCLEARFLAG(Workingset, workingset, PF_HEAD) 431 __PAGEFLAG(Slab, slab, PF_NO_TAIL) 432 __PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL) 433 PAGEFLAG(Checked, checked, PF_NO_COMPOUND) /* Used by some filesystems */ 434 435 /* Xen */ 436 PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND) 437 TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND) 438 PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND); 439 PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND); 440 PAGEFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND) 441 TESTCLEARFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND) 442 443 PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 444 __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 445 __SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 446 PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 447 __CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 448 __SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 449 450 /* 451 * Private page markings that may be used by the filesystem that owns the page 452 * for its own purposes. 453 * - PG_private and PG_private_2 cause releasepage() and co to be invoked 454 */ 455 PAGEFLAG(Private, private, PF_ANY) 456 PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY) 457 PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY) 458 TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY) 459 460 /* 461 * Only test-and-set exist for PG_writeback. The unconditional operators are 462 * risky: they bypass page accounting. 463 */ 464 TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL) 465 TESTSCFLAG(Writeback, writeback, PF_NO_TAIL) 466 PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL) 467 468 /* PG_readahead is only used for reads; PG_reclaim is only for writes */ 469 PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL) 470 TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL) 471 PAGEFLAG(Readahead, readahead, PF_NO_COMPOUND) 472 TESTCLEARFLAG(Readahead, readahead, PF_NO_COMPOUND) 473 474 #ifdef CONFIG_HIGHMEM 475 /* 476 * Must use a macro here due to header dependency issues. page_zone() is not 477 * available at this point. 478 */ 479 #define PageHighMem(__p) is_highmem_idx(page_zonenum(__p)) 480 #else 481 PAGEFLAG_FALSE(HighMem, highmem) 482 #endif 483 484 #ifdef CONFIG_SWAP 485 static __always_inline bool folio_test_swapcache(struct folio *folio) 486 { 487 return folio_test_swapbacked(folio) && 488 test_bit(PG_swapcache, folio_flags(folio, 0)); 489 } 490 491 static __always_inline bool PageSwapCache(struct page *page) 492 { 493 return folio_test_swapcache(page_folio(page)); 494 } 495 496 SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL) 497 CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL) 498 #else 499 PAGEFLAG_FALSE(SwapCache, swapcache) 500 #endif 501 502 PAGEFLAG(Unevictable, unevictable, PF_HEAD) 503 __CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD) 504 TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD) 505 506 #ifdef CONFIG_MMU 507 PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL) 508 __CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL) 509 TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL) 510 #else 511 PAGEFLAG_FALSE(Mlocked, mlocked) __CLEARPAGEFLAG_NOOP(Mlocked, mlocked) 512 TESTSCFLAG_FALSE(Mlocked, mlocked) 513 #endif 514 515 #ifdef CONFIG_ARCH_USES_PG_UNCACHED 516 PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND) 517 #else 518 PAGEFLAG_FALSE(Uncached, uncached) 519 #endif 520 521 #ifdef CONFIG_MEMORY_FAILURE 522 PAGEFLAG(HWPoison, hwpoison, PF_ANY) 523 TESTSCFLAG(HWPoison, hwpoison, PF_ANY) 524 #define __PG_HWPOISON (1UL << PG_hwpoison) 525 extern bool take_page_off_buddy(struct page *page); 526 #else 527 PAGEFLAG_FALSE(HWPoison, hwpoison) 528 #define __PG_HWPOISON 0 529 #endif 530 531 #if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT) 532 TESTPAGEFLAG(Young, young, PF_ANY) 533 SETPAGEFLAG(Young, young, PF_ANY) 534 TESTCLEARFLAG(Young, young, PF_ANY) 535 PAGEFLAG(Idle, idle, PF_ANY) 536 #endif 537 538 #ifdef CONFIG_KASAN_HW_TAGS 539 PAGEFLAG(SkipKASanPoison, skip_kasan_poison, PF_HEAD) 540 #else 541 PAGEFLAG_FALSE(SkipKASanPoison, skip_kasan_poison) 542 #endif 543 544 /* 545 * PageReported() is used to track reported free pages within the Buddy 546 * allocator. We can use the non-atomic version of the test and set 547 * operations as both should be shielded with the zone lock to prevent 548 * any possible races on the setting or clearing of the bit. 549 */ 550 __PAGEFLAG(Reported, reported, PF_NO_COMPOUND) 551 552 /* 553 * On an anonymous page mapped into a user virtual memory area, 554 * page->mapping points to its anon_vma, not to a struct address_space; 555 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 556 * 557 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 558 * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON 559 * bit; and then page->mapping points, not to an anon_vma, but to a private 560 * structure which KSM associates with that merged page. See ksm.h. 561 * 562 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable 563 * page and then page->mapping points a struct address_space. 564 * 565 * Please note that, confusingly, "page_mapping" refers to the inode 566 * address_space which maps the page from disk; whereas "page_mapped" 567 * refers to user virtual address space into which the page is mapped. 568 */ 569 #define PAGE_MAPPING_ANON 0x1 570 #define PAGE_MAPPING_MOVABLE 0x2 571 #define PAGE_MAPPING_KSM (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE) 572 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE) 573 574 static __always_inline int PageMappingFlags(struct page *page) 575 { 576 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0; 577 } 578 579 static __always_inline bool folio_test_anon(struct folio *folio) 580 { 581 return ((unsigned long)folio->mapping & PAGE_MAPPING_ANON) != 0; 582 } 583 584 static __always_inline bool PageAnon(struct page *page) 585 { 586 return folio_test_anon(page_folio(page)); 587 } 588 589 static __always_inline int __PageMovable(struct page *page) 590 { 591 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) == 592 PAGE_MAPPING_MOVABLE; 593 } 594 595 #ifdef CONFIG_KSM 596 /* 597 * A KSM page is one of those write-protected "shared pages" or "merged pages" 598 * which KSM maps into multiple mms, wherever identical anonymous page content 599 * is found in VM_MERGEABLE vmas. It's a PageAnon page, pointing not to any 600 * anon_vma, but to that page's node of the stable tree. 601 */ 602 static __always_inline bool folio_test_ksm(struct folio *folio) 603 { 604 return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) == 605 PAGE_MAPPING_KSM; 606 } 607 608 static __always_inline bool PageKsm(struct page *page) 609 { 610 return folio_test_ksm(page_folio(page)); 611 } 612 #else 613 TESTPAGEFLAG_FALSE(Ksm, ksm) 614 #endif 615 616 u64 stable_page_flags(struct page *page); 617 618 static inline bool folio_test_uptodate(struct folio *folio) 619 { 620 bool ret = test_bit(PG_uptodate, folio_flags(folio, 0)); 621 /* 622 * Must ensure that the data we read out of the folio is loaded 623 * _after_ we've loaded folio->flags to check the uptodate bit. 624 * We can skip the barrier if the folio is not uptodate, because 625 * we wouldn't be reading anything from it. 626 * 627 * See folio_mark_uptodate() for the other side of the story. 628 */ 629 if (ret) 630 smp_rmb(); 631 632 return ret; 633 } 634 635 static inline int PageUptodate(struct page *page) 636 { 637 return folio_test_uptodate(page_folio(page)); 638 } 639 640 static __always_inline void __folio_mark_uptodate(struct folio *folio) 641 { 642 smp_wmb(); 643 __set_bit(PG_uptodate, folio_flags(folio, 0)); 644 } 645 646 static __always_inline void folio_mark_uptodate(struct folio *folio) 647 { 648 /* 649 * Memory barrier must be issued before setting the PG_uptodate bit, 650 * so that all previous stores issued in order to bring the folio 651 * uptodate are actually visible before folio_test_uptodate becomes true. 652 */ 653 smp_wmb(); 654 set_bit(PG_uptodate, folio_flags(folio, 0)); 655 } 656 657 static __always_inline void __SetPageUptodate(struct page *page) 658 { 659 __folio_mark_uptodate((struct folio *)page); 660 } 661 662 static __always_inline void SetPageUptodate(struct page *page) 663 { 664 folio_mark_uptodate((struct folio *)page); 665 } 666 667 CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL) 668 669 bool __folio_start_writeback(struct folio *folio, bool keep_write); 670 bool set_page_writeback(struct page *page); 671 672 #define folio_start_writeback(folio) \ 673 __folio_start_writeback(folio, false) 674 #define folio_start_writeback_keepwrite(folio) \ 675 __folio_start_writeback(folio, true) 676 677 static inline void set_page_writeback_keepwrite(struct page *page) 678 { 679 folio_start_writeback_keepwrite(page_folio(page)); 680 } 681 682 static inline bool test_set_page_writeback(struct page *page) 683 { 684 return set_page_writeback(page); 685 } 686 687 __PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY) 688 689 /* Whether there are one or multiple pages in a folio */ 690 static inline bool folio_test_single(struct folio *folio) 691 { 692 return !folio_test_head(folio); 693 } 694 695 static inline bool folio_test_multi(struct folio *folio) 696 { 697 return folio_test_head(folio); 698 } 699 700 static __always_inline void set_compound_head(struct page *page, struct page *head) 701 { 702 WRITE_ONCE(page->compound_head, (unsigned long)head + 1); 703 } 704 705 static __always_inline void clear_compound_head(struct page *page) 706 { 707 WRITE_ONCE(page->compound_head, 0); 708 } 709 710 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 711 static inline void ClearPageCompound(struct page *page) 712 { 713 BUG_ON(!PageHead(page)); 714 ClearPageHead(page); 715 } 716 #endif 717 718 #define PG_head_mask ((1UL << PG_head)) 719 720 #ifdef CONFIG_HUGETLB_PAGE 721 int PageHuge(struct page *page); 722 int PageHeadHuge(struct page *page); 723 static inline bool folio_test_hugetlb(struct folio *folio) 724 { 725 return PageHeadHuge(&folio->page); 726 } 727 #else 728 TESTPAGEFLAG_FALSE(Huge, hugetlb) 729 TESTPAGEFLAG_FALSE(HeadHuge, headhuge) 730 #endif 731 732 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 733 /* 734 * PageHuge() only returns true for hugetlbfs pages, but not for 735 * normal or transparent huge pages. 736 * 737 * PageTransHuge() returns true for both transparent huge and 738 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be 739 * called only in the core VM paths where hugetlbfs pages can't exist. 740 */ 741 static inline int PageTransHuge(struct page *page) 742 { 743 VM_BUG_ON_PAGE(PageTail(page), page); 744 return PageHead(page); 745 } 746 747 static inline bool folio_test_transhuge(struct folio *folio) 748 { 749 return folio_test_head(folio); 750 } 751 752 /* 753 * PageTransCompound returns true for both transparent huge pages 754 * and hugetlbfs pages, so it should only be called when it's known 755 * that hugetlbfs pages aren't involved. 756 */ 757 static inline int PageTransCompound(struct page *page) 758 { 759 return PageCompound(page); 760 } 761 762 /* 763 * PageTransTail returns true for both transparent huge pages 764 * and hugetlbfs pages, so it should only be called when it's known 765 * that hugetlbfs pages aren't involved. 766 */ 767 static inline int PageTransTail(struct page *page) 768 { 769 return PageTail(page); 770 } 771 772 /* 773 * PageDoubleMap indicates that the compound page is mapped with PTEs as well 774 * as PMDs. 775 * 776 * This is required for optimization of rmap operations for THP: we can postpone 777 * per small page mapcount accounting (and its overhead from atomic operations) 778 * until the first PMD split. 779 * 780 * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up 781 * by one. This reference will go away with last compound_mapcount. 782 * 783 * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap(). 784 */ 785 PAGEFLAG(DoubleMap, double_map, PF_SECOND) 786 TESTSCFLAG(DoubleMap, double_map, PF_SECOND) 787 #else 788 TESTPAGEFLAG_FALSE(TransHuge, transhuge) 789 TESTPAGEFLAG_FALSE(TransCompound, transcompound) 790 TESTPAGEFLAG_FALSE(TransCompoundMap, transcompoundmap) 791 TESTPAGEFLAG_FALSE(TransTail, transtail) 792 PAGEFLAG_FALSE(DoubleMap, double_map) 793 TESTSCFLAG_FALSE(DoubleMap, double_map) 794 #endif 795 796 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 797 /* 798 * PageHasHWPoisoned indicates that at least one subpage is hwpoisoned in the 799 * compound page. 800 * 801 * This flag is set by hwpoison handler. Cleared by THP split or free page. 802 */ 803 PAGEFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND) 804 TESTSCFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND) 805 #else 806 PAGEFLAG_FALSE(HasHWPoisoned, has_hwpoisoned) 807 TESTSCFLAG_FALSE(HasHWPoisoned, has_hwpoisoned) 808 #endif 809 810 /* 811 * Check if a page is currently marked HWPoisoned. Note that this check is 812 * best effort only and inherently racy: there is no way to synchronize with 813 * failing hardware. 814 */ 815 static inline bool is_page_hwpoison(struct page *page) 816 { 817 if (PageHWPoison(page)) 818 return true; 819 return PageHuge(page) && PageHWPoison(compound_head(page)); 820 } 821 822 /* 823 * For pages that are never mapped to userspace (and aren't PageSlab), 824 * page_type may be used. Because it is initialised to -1, we invert the 825 * sense of the bit, so __SetPageFoo *clears* the bit used for PageFoo, and 826 * __ClearPageFoo *sets* the bit used for PageFoo. We reserve a few high and 827 * low bits so that an underflow or overflow of page_mapcount() won't be 828 * mistaken for a page type value. 829 */ 830 831 #define PAGE_TYPE_BASE 0xf0000000 832 /* Reserve 0x0000007f to catch underflows of page_mapcount */ 833 #define PAGE_MAPCOUNT_RESERVE -128 834 #define PG_buddy 0x00000080 835 #define PG_offline 0x00000100 836 #define PG_table 0x00000200 837 #define PG_guard 0x00000400 838 839 #define PageType(page, flag) \ 840 ((page->page_type & (PAGE_TYPE_BASE | flag)) == PAGE_TYPE_BASE) 841 842 static inline int page_has_type(struct page *page) 843 { 844 return (int)page->page_type < PAGE_MAPCOUNT_RESERVE; 845 } 846 847 #define PAGE_TYPE_OPS(uname, lname) \ 848 static __always_inline int Page##uname(struct page *page) \ 849 { \ 850 return PageType(page, PG_##lname); \ 851 } \ 852 static __always_inline void __SetPage##uname(struct page *page) \ 853 { \ 854 VM_BUG_ON_PAGE(!PageType(page, 0), page); \ 855 page->page_type &= ~PG_##lname; \ 856 } \ 857 static __always_inline void __ClearPage##uname(struct page *page) \ 858 { \ 859 VM_BUG_ON_PAGE(!Page##uname(page), page); \ 860 page->page_type |= PG_##lname; \ 861 } 862 863 /* 864 * PageBuddy() indicates that the page is free and in the buddy system 865 * (see mm/page_alloc.c). 866 */ 867 PAGE_TYPE_OPS(Buddy, buddy) 868 869 /* 870 * PageOffline() indicates that the page is logically offline although the 871 * containing section is online. (e.g. inflated in a balloon driver or 872 * not onlined when onlining the section). 873 * The content of these pages is effectively stale. Such pages should not 874 * be touched (read/write/dump/save) except by their owner. 875 * 876 * If a driver wants to allow to offline unmovable PageOffline() pages without 877 * putting them back to the buddy, it can do so via the memory notifier by 878 * decrementing the reference count in MEM_GOING_OFFLINE and incrementing the 879 * reference count in MEM_CANCEL_OFFLINE. When offlining, the PageOffline() 880 * pages (now with a reference count of zero) are treated like free pages, 881 * allowing the containing memory block to get offlined. A driver that 882 * relies on this feature is aware that re-onlining the memory block will 883 * require to re-set the pages PageOffline() and not giving them to the 884 * buddy via online_page_callback_t. 885 * 886 * There are drivers that mark a page PageOffline() and expect there won't be 887 * any further access to page content. PFN walkers that read content of random 888 * pages should check PageOffline() and synchronize with such drivers using 889 * page_offline_freeze()/page_offline_thaw(). 890 */ 891 PAGE_TYPE_OPS(Offline, offline) 892 893 extern void page_offline_freeze(void); 894 extern void page_offline_thaw(void); 895 extern void page_offline_begin(void); 896 extern void page_offline_end(void); 897 898 /* 899 * Marks pages in use as page tables. 900 */ 901 PAGE_TYPE_OPS(Table, table) 902 903 /* 904 * Marks guardpages used with debug_pagealloc. 905 */ 906 PAGE_TYPE_OPS(Guard, guard) 907 908 extern bool is_free_buddy_page(struct page *page); 909 910 __PAGEFLAG(Isolated, isolated, PF_ANY); 911 912 /* 913 * If network-based swap is enabled, sl*b must keep track of whether pages 914 * were allocated from pfmemalloc reserves. 915 */ 916 static inline int PageSlabPfmemalloc(struct page *page) 917 { 918 VM_BUG_ON_PAGE(!PageSlab(page), page); 919 return PageActive(page); 920 } 921 922 /* 923 * A version of PageSlabPfmemalloc() for opportunistic checks where the page 924 * might have been freed under us and not be a PageSlab anymore. 925 */ 926 static inline int __PageSlabPfmemalloc(struct page *page) 927 { 928 return PageActive(page); 929 } 930 931 static inline void SetPageSlabPfmemalloc(struct page *page) 932 { 933 VM_BUG_ON_PAGE(!PageSlab(page), page); 934 SetPageActive(page); 935 } 936 937 static inline void __ClearPageSlabPfmemalloc(struct page *page) 938 { 939 VM_BUG_ON_PAGE(!PageSlab(page), page); 940 __ClearPageActive(page); 941 } 942 943 static inline void ClearPageSlabPfmemalloc(struct page *page) 944 { 945 VM_BUG_ON_PAGE(!PageSlab(page), page); 946 ClearPageActive(page); 947 } 948 949 #ifdef CONFIG_MMU 950 #define __PG_MLOCKED (1UL << PG_mlocked) 951 #else 952 #define __PG_MLOCKED 0 953 #endif 954 955 /* 956 * Flags checked when a page is freed. Pages being freed should not have 957 * these flags set. If they are, there is a problem. 958 */ 959 #define PAGE_FLAGS_CHECK_AT_FREE \ 960 (1UL << PG_lru | 1UL << PG_locked | \ 961 1UL << PG_private | 1UL << PG_private_2 | \ 962 1UL << PG_writeback | 1UL << PG_reserved | \ 963 1UL << PG_slab | 1UL << PG_active | \ 964 1UL << PG_unevictable | __PG_MLOCKED) 965 966 /* 967 * Flags checked when a page is prepped for return by the page allocator. 968 * Pages being prepped should not have these flags set. If they are set, 969 * there has been a kernel bug or struct page corruption. 970 * 971 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's 972 * alloc-free cycle to prevent from reusing the page. 973 */ 974 #define PAGE_FLAGS_CHECK_AT_PREP \ 975 (PAGEFLAGS_MASK & ~__PG_HWPOISON) 976 977 #define PAGE_FLAGS_PRIVATE \ 978 (1UL << PG_private | 1UL << PG_private_2) 979 /** 980 * page_has_private - Determine if page has private stuff 981 * @page: The page to be checked 982 * 983 * Determine if a page has private stuff, indicating that release routines 984 * should be invoked upon it. 985 */ 986 static inline int page_has_private(struct page *page) 987 { 988 return !!(page->flags & PAGE_FLAGS_PRIVATE); 989 } 990 991 static inline bool folio_has_private(struct folio *folio) 992 { 993 return page_has_private(&folio->page); 994 } 995 996 #undef PF_ANY 997 #undef PF_HEAD 998 #undef PF_ONLY_HEAD 999 #undef PF_NO_TAIL 1000 #undef PF_NO_COMPOUND 1001 #undef PF_SECOND 1002 #endif /* !__GENERATING_BOUNDS_H */ 1003 1004 #endif /* PAGE_FLAGS_H */ 1005