xref: /linux-6.15/include/linux/page-flags.h (revision cd3bc044)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Macros for manipulating and testing page->flags
4  */
5 
6 #ifndef PAGE_FLAGS_H
7 #define PAGE_FLAGS_H
8 
9 #include <linux/types.h>
10 #include <linux/bug.h>
11 #include <linux/mmdebug.h>
12 #ifndef __GENERATING_BOUNDS_H
13 #include <linux/mm_types.h>
14 #include <generated/bounds.h>
15 #endif /* !__GENERATING_BOUNDS_H */
16 
17 /*
18  * Various page->flags bits:
19  *
20  * PG_reserved is set for special pages. The "struct page" of such a page
21  * should in general not be touched (e.g. set dirty) except by its owner.
22  * Pages marked as PG_reserved include:
23  * - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS,
24  *   initrd, HW tables)
25  * - Pages reserved or allocated early during boot (before the page allocator
26  *   was initialized). This includes (depending on the architecture) the
27  *   initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much
28  *   much more. Once (if ever) freed, PG_reserved is cleared and they will
29  *   be given to the page allocator.
30  * - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying
31  *   to read/write these pages might end badly. Don't touch!
32  * - The zero page(s)
33  * - Pages not added to the page allocator when onlining a section because
34  *   they were excluded via the online_page_callback() or because they are
35  *   PG_hwpoison.
36  * - Pages allocated in the context of kexec/kdump (loaded kernel image,
37  *   control pages, vmcoreinfo)
38  * - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are
39  *   not marked PG_reserved (as they might be in use by somebody else who does
40  *   not respect the caching strategy).
41  * - Pages part of an offline section (struct pages of offline sections should
42  *   not be trusted as they will be initialized when first onlined).
43  * - MCA pages on ia64
44  * - Pages holding CPU notes for POWER Firmware Assisted Dump
45  * - Device memory (e.g. PMEM, DAX, HMM)
46  * Some PG_reserved pages will be excluded from the hibernation image.
47  * PG_reserved does in general not hinder anybody from dumping or swapping
48  * and is no longer required for remap_pfn_range(). ioremap might require it.
49  * Consequently, PG_reserved for a page mapped into user space can indicate
50  * the zero page, the vDSO, MMIO pages or device memory.
51  *
52  * The PG_private bitflag is set on pagecache pages if they contain filesystem
53  * specific data (which is normally at page->private). It can be used by
54  * private allocations for its own usage.
55  *
56  * During initiation of disk I/O, PG_locked is set. This bit is set before I/O
57  * and cleared when writeback _starts_ or when read _completes_. PG_writeback
58  * is set before writeback starts and cleared when it finishes.
59  *
60  * PG_locked also pins a page in pagecache, and blocks truncation of the file
61  * while it is held.
62  *
63  * page_waitqueue(page) is a wait queue of all tasks waiting for the page
64  * to become unlocked.
65  *
66  * PG_swapbacked is set when a page uses swap as a backing storage.  This are
67  * usually PageAnon or shmem pages but please note that even anonymous pages
68  * might lose their PG_swapbacked flag when they simply can be dropped (e.g. as
69  * a result of MADV_FREE).
70  *
71  * PG_referenced, PG_reclaim are used for page reclaim for anonymous and
72  * file-backed pagecache (see mm/vmscan.c).
73  *
74  * PG_error is set to indicate that an I/O error occurred on this page.
75  *
76  * PG_arch_1 is an architecture specific page state bit.  The generic code
77  * guarantees that this bit is cleared for a page when it first is entered into
78  * the page cache.
79  *
80  * PG_hwpoison indicates that a page got corrupted in hardware and contains
81  * data with incorrect ECC bits that triggered a machine check. Accessing is
82  * not safe since it may cause another machine check. Don't touch!
83  */
84 
85 /*
86  * Don't use the pageflags directly.  Use the PageFoo macros.
87  *
88  * The page flags field is split into two parts, the main flags area
89  * which extends from the low bits upwards, and the fields area which
90  * extends from the high bits downwards.
91  *
92  *  | FIELD | ... | FLAGS |
93  *  N-1           ^       0
94  *               (NR_PAGEFLAGS)
95  *
96  * The fields area is reserved for fields mapping zone, node (for NUMA) and
97  * SPARSEMEM section (for variants of SPARSEMEM that require section ids like
98  * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
99  */
100 enum pageflags {
101 	PG_locked,		/* Page is locked. Don't touch. */
102 	PG_referenced,
103 	PG_uptodate,
104 	PG_dirty,
105 	PG_lru,
106 	PG_active,
107 	PG_workingset,
108 	PG_waiters,		/* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */
109 	PG_error,
110 	PG_slab,
111 	PG_owner_priv_1,	/* Owner use. If pagecache, fs may use*/
112 	PG_arch_1,
113 	PG_reserved,
114 	PG_private,		/* If pagecache, has fs-private data */
115 	PG_private_2,		/* If pagecache, has fs aux data */
116 	PG_writeback,		/* Page is under writeback */
117 	PG_head,		/* A head page */
118 	PG_mappedtodisk,	/* Has blocks allocated on-disk */
119 	PG_reclaim,		/* To be reclaimed asap */
120 	PG_swapbacked,		/* Page is backed by RAM/swap */
121 	PG_unevictable,		/* Page is "unevictable"  */
122 #ifdef CONFIG_MMU
123 	PG_mlocked,		/* Page is vma mlocked */
124 #endif
125 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
126 	PG_uncached,		/* Page has been mapped as uncached */
127 #endif
128 #ifdef CONFIG_MEMORY_FAILURE
129 	PG_hwpoison,		/* hardware poisoned page. Don't touch */
130 #endif
131 #if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT)
132 	PG_young,
133 	PG_idle,
134 #endif
135 #ifdef CONFIG_64BIT
136 	PG_arch_2,
137 #endif
138 #ifdef CONFIG_KASAN_HW_TAGS
139 	PG_skip_kasan_poison,
140 #endif
141 	__NR_PAGEFLAGS,
142 
143 	PG_readahead = PG_reclaim,
144 
145 	/* Filesystems */
146 	PG_checked = PG_owner_priv_1,
147 
148 	/* SwapBacked */
149 	PG_swapcache = PG_owner_priv_1,	/* Swap page: swp_entry_t in private */
150 
151 	/* Two page bits are conscripted by FS-Cache to maintain local caching
152 	 * state.  These bits are set on pages belonging to the netfs's inodes
153 	 * when those inodes are being locally cached.
154 	 */
155 	PG_fscache = PG_private_2,	/* page backed by cache */
156 
157 	/* XEN */
158 	/* Pinned in Xen as a read-only pagetable page. */
159 	PG_pinned = PG_owner_priv_1,
160 	/* Pinned as part of domain save (see xen_mm_pin_all()). */
161 	PG_savepinned = PG_dirty,
162 	/* Has a grant mapping of another (foreign) domain's page. */
163 	PG_foreign = PG_owner_priv_1,
164 	/* Remapped by swiotlb-xen. */
165 	PG_xen_remapped = PG_owner_priv_1,
166 
167 	/* SLOB */
168 	PG_slob_free = PG_private,
169 
170 	/* Compound pages. Stored in first tail page's flags */
171 	PG_double_map = PG_workingset,
172 
173 #ifdef CONFIG_MEMORY_FAILURE
174 	/*
175 	 * Compound pages. Stored in first tail page's flags.
176 	 * Indicates that at least one subpage is hwpoisoned in the
177 	 * THP.
178 	 */
179 	PG_has_hwpoisoned = PG_mappedtodisk,
180 #endif
181 
182 	/* non-lru isolated movable page */
183 	PG_isolated = PG_reclaim,
184 
185 	/* Only valid for buddy pages. Used to track pages that are reported */
186 	PG_reported = PG_uptodate,
187 };
188 
189 #define PAGEFLAGS_MASK		((1UL << NR_PAGEFLAGS) - 1)
190 
191 #ifndef __GENERATING_BOUNDS_H
192 
193 static inline unsigned long _compound_head(const struct page *page)
194 {
195 	unsigned long head = READ_ONCE(page->compound_head);
196 
197 	if (unlikely(head & 1))
198 		return head - 1;
199 	return (unsigned long)page;
200 }
201 
202 #define compound_head(page)	((typeof(page))_compound_head(page))
203 
204 /**
205  * page_folio - Converts from page to folio.
206  * @p: The page.
207  *
208  * Every page is part of a folio.  This function cannot be called on a
209  * NULL pointer.
210  *
211  * Context: No reference, nor lock is required on @page.  If the caller
212  * does not hold a reference, this call may race with a folio split, so
213  * it should re-check the folio still contains this page after gaining
214  * a reference on the folio.
215  * Return: The folio which contains this page.
216  */
217 #define page_folio(p)		(_Generic((p),				\
218 	const struct page *:	(const struct folio *)_compound_head(p), \
219 	struct page *:		(struct folio *)_compound_head(p)))
220 
221 /**
222  * folio_page - Return a page from a folio.
223  * @folio: The folio.
224  * @n: The page number to return.
225  *
226  * @n is relative to the start of the folio.  This function does not
227  * check that the page number lies within @folio; the caller is presumed
228  * to have a reference to the page.
229  */
230 #define folio_page(folio, n)	nth_page(&(folio)->page, n)
231 
232 static __always_inline int PageTail(struct page *page)
233 {
234 	return READ_ONCE(page->compound_head) & 1;
235 }
236 
237 static __always_inline int PageCompound(struct page *page)
238 {
239 	return test_bit(PG_head, &page->flags) || PageTail(page);
240 }
241 
242 #define	PAGE_POISON_PATTERN	-1l
243 static inline int PagePoisoned(const struct page *page)
244 {
245 	return READ_ONCE(page->flags) == PAGE_POISON_PATTERN;
246 }
247 
248 #ifdef CONFIG_DEBUG_VM
249 void page_init_poison(struct page *page, size_t size);
250 #else
251 static inline void page_init_poison(struct page *page, size_t size)
252 {
253 }
254 #endif
255 
256 static unsigned long *folio_flags(struct folio *folio, unsigned n)
257 {
258 	struct page *page = &folio->page;
259 
260 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
261 	VM_BUG_ON_PGFLAGS(n > 0 && !test_bit(PG_head, &page->flags), page);
262 	return &page[n].flags;
263 }
264 
265 /*
266  * Page flags policies wrt compound pages
267  *
268  * PF_POISONED_CHECK
269  *     check if this struct page poisoned/uninitialized
270  *
271  * PF_ANY:
272  *     the page flag is relevant for small, head and tail pages.
273  *
274  * PF_HEAD:
275  *     for compound page all operations related to the page flag applied to
276  *     head page.
277  *
278  * PF_ONLY_HEAD:
279  *     for compound page, callers only ever operate on the head page.
280  *
281  * PF_NO_TAIL:
282  *     modifications of the page flag must be done on small or head pages,
283  *     checks can be done on tail pages too.
284  *
285  * PF_NO_COMPOUND:
286  *     the page flag is not relevant for compound pages.
287  *
288  * PF_SECOND:
289  *     the page flag is stored in the first tail page.
290  */
291 #define PF_POISONED_CHECK(page) ({					\
292 		VM_BUG_ON_PGFLAGS(PagePoisoned(page), page);		\
293 		page; })
294 #define PF_ANY(page, enforce)	PF_POISONED_CHECK(page)
295 #define PF_HEAD(page, enforce)	PF_POISONED_CHECK(compound_head(page))
296 #define PF_ONLY_HEAD(page, enforce) ({					\
297 		VM_BUG_ON_PGFLAGS(PageTail(page), page);		\
298 		PF_POISONED_CHECK(page); })
299 #define PF_NO_TAIL(page, enforce) ({					\
300 		VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page);	\
301 		PF_POISONED_CHECK(compound_head(page)); })
302 #define PF_NO_COMPOUND(page, enforce) ({				\
303 		VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page);	\
304 		PF_POISONED_CHECK(page); })
305 #define PF_SECOND(page, enforce) ({					\
306 		VM_BUG_ON_PGFLAGS(!PageHead(page), page);		\
307 		PF_POISONED_CHECK(&page[1]); })
308 
309 /* Which page is the flag stored in */
310 #define FOLIO_PF_ANY		0
311 #define FOLIO_PF_HEAD		0
312 #define FOLIO_PF_ONLY_HEAD	0
313 #define FOLIO_PF_NO_TAIL	0
314 #define FOLIO_PF_NO_COMPOUND	0
315 #define FOLIO_PF_SECOND		1
316 
317 /*
318  * Macros to create function definitions for page flags
319  */
320 #define TESTPAGEFLAG(uname, lname, policy)				\
321 static __always_inline bool folio_test_##lname(struct folio *folio)	\
322 { return test_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }	\
323 static __always_inline int Page##uname(struct page *page)		\
324 { return test_bit(PG_##lname, &policy(page, 0)->flags); }
325 
326 #define SETPAGEFLAG(uname, lname, policy)				\
327 static __always_inline							\
328 void folio_set_##lname(struct folio *folio)				\
329 { set_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }		\
330 static __always_inline void SetPage##uname(struct page *page)		\
331 { set_bit(PG_##lname, &policy(page, 1)->flags); }
332 
333 #define CLEARPAGEFLAG(uname, lname, policy)				\
334 static __always_inline							\
335 void folio_clear_##lname(struct folio *folio)				\
336 { clear_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }		\
337 static __always_inline void ClearPage##uname(struct page *page)		\
338 { clear_bit(PG_##lname, &policy(page, 1)->flags); }
339 
340 #define __SETPAGEFLAG(uname, lname, policy)				\
341 static __always_inline							\
342 void __folio_set_##lname(struct folio *folio)				\
343 { __set_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }		\
344 static __always_inline void __SetPage##uname(struct page *page)		\
345 { __set_bit(PG_##lname, &policy(page, 1)->flags); }
346 
347 #define __CLEARPAGEFLAG(uname, lname, policy)				\
348 static __always_inline							\
349 void __folio_clear_##lname(struct folio *folio)				\
350 { __clear_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }	\
351 static __always_inline void __ClearPage##uname(struct page *page)	\
352 { __clear_bit(PG_##lname, &policy(page, 1)->flags); }
353 
354 #define TESTSETFLAG(uname, lname, policy)				\
355 static __always_inline							\
356 bool folio_test_set_##lname(struct folio *folio)			\
357 { return test_and_set_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \
358 static __always_inline int TestSetPage##uname(struct page *page)	\
359 { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); }
360 
361 #define TESTCLEARFLAG(uname, lname, policy)				\
362 static __always_inline							\
363 bool folio_test_clear_##lname(struct folio *folio)			\
364 { return test_and_clear_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \
365 static __always_inline int TestClearPage##uname(struct page *page)	\
366 { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); }
367 
368 #define PAGEFLAG(uname, lname, policy)					\
369 	TESTPAGEFLAG(uname, lname, policy)				\
370 	SETPAGEFLAG(uname, lname, policy)				\
371 	CLEARPAGEFLAG(uname, lname, policy)
372 
373 #define __PAGEFLAG(uname, lname, policy)				\
374 	TESTPAGEFLAG(uname, lname, policy)				\
375 	__SETPAGEFLAG(uname, lname, policy)				\
376 	__CLEARPAGEFLAG(uname, lname, policy)
377 
378 #define TESTSCFLAG(uname, lname, policy)				\
379 	TESTSETFLAG(uname, lname, policy)				\
380 	TESTCLEARFLAG(uname, lname, policy)
381 
382 #define TESTPAGEFLAG_FALSE(uname, lname)				\
383 static inline bool folio_test_##lname(const struct folio *folio) { return false; } \
384 static inline int Page##uname(const struct page *page) { return 0; }
385 
386 #define SETPAGEFLAG_NOOP(uname, lname)					\
387 static inline void folio_set_##lname(struct folio *folio) { }		\
388 static inline void SetPage##uname(struct page *page) {  }
389 
390 #define CLEARPAGEFLAG_NOOP(uname, lname)				\
391 static inline void folio_clear_##lname(struct folio *folio) { }		\
392 static inline void ClearPage##uname(struct page *page) {  }
393 
394 #define __CLEARPAGEFLAG_NOOP(uname, lname)				\
395 static inline void __folio_clear_##lname(struct folio *folio) { }	\
396 static inline void __ClearPage##uname(struct page *page) {  }
397 
398 #define TESTSETFLAG_FALSE(uname, lname)					\
399 static inline bool folio_test_set_##lname(struct folio *folio)		\
400 { return 0; }								\
401 static inline int TestSetPage##uname(struct page *page) { return 0; }
402 
403 #define TESTCLEARFLAG_FALSE(uname, lname)				\
404 static inline bool folio_test_clear_##lname(struct folio *folio)	\
405 { return 0; }								\
406 static inline int TestClearPage##uname(struct page *page) { return 0; }
407 
408 #define PAGEFLAG_FALSE(uname, lname) TESTPAGEFLAG_FALSE(uname, lname)	\
409 	SETPAGEFLAG_NOOP(uname, lname) CLEARPAGEFLAG_NOOP(uname, lname)
410 
411 #define TESTSCFLAG_FALSE(uname, lname)					\
412 	TESTSETFLAG_FALSE(uname, lname) TESTCLEARFLAG_FALSE(uname, lname)
413 
414 __PAGEFLAG(Locked, locked, PF_NO_TAIL)
415 PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) __CLEARPAGEFLAG(Waiters, waiters, PF_ONLY_HEAD)
416 PAGEFLAG(Error, error, PF_NO_TAIL) TESTCLEARFLAG(Error, error, PF_NO_TAIL)
417 PAGEFLAG(Referenced, referenced, PF_HEAD)
418 	TESTCLEARFLAG(Referenced, referenced, PF_HEAD)
419 	__SETPAGEFLAG(Referenced, referenced, PF_HEAD)
420 PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD)
421 	__CLEARPAGEFLAG(Dirty, dirty, PF_HEAD)
422 PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD)
423 	TESTCLEARFLAG(LRU, lru, PF_HEAD)
424 PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD)
425 	TESTCLEARFLAG(Active, active, PF_HEAD)
426 PAGEFLAG(Workingset, workingset, PF_HEAD)
427 	TESTCLEARFLAG(Workingset, workingset, PF_HEAD)
428 __PAGEFLAG(Slab, slab, PF_NO_TAIL)
429 __PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL)
430 PAGEFLAG(Checked, checked, PF_NO_COMPOUND)	   /* Used by some filesystems */
431 
432 /* Xen */
433 PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND)
434 	TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND)
435 PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND);
436 PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND);
437 PAGEFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
438 	TESTCLEARFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
439 
440 PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
441 	__CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
442 	__SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
443 PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
444 	__CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
445 	__SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
446 
447 /*
448  * Private page markings that may be used by the filesystem that owns the page
449  * for its own purposes.
450  * - PG_private and PG_private_2 cause releasepage() and co to be invoked
451  */
452 PAGEFLAG(Private, private, PF_ANY)
453 PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY)
454 PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
455 	TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
456 
457 /*
458  * Only test-and-set exist for PG_writeback.  The unconditional operators are
459  * risky: they bypass page accounting.
460  */
461 TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL)
462 	TESTSCFLAG(Writeback, writeback, PF_NO_TAIL)
463 PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL)
464 
465 /* PG_readahead is only used for reads; PG_reclaim is only for writes */
466 PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL)
467 	TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL)
468 PAGEFLAG(Readahead, readahead, PF_NO_COMPOUND)
469 	TESTCLEARFLAG(Readahead, readahead, PF_NO_COMPOUND)
470 
471 #ifdef CONFIG_HIGHMEM
472 /*
473  * Must use a macro here due to header dependency issues. page_zone() is not
474  * available at this point.
475  */
476 #define PageHighMem(__p) is_highmem_idx(page_zonenum(__p))
477 #else
478 PAGEFLAG_FALSE(HighMem, highmem)
479 #endif
480 
481 #ifdef CONFIG_SWAP
482 static __always_inline bool folio_test_swapcache(struct folio *folio)
483 {
484 	return folio_test_swapbacked(folio) &&
485 			test_bit(PG_swapcache, folio_flags(folio, 0));
486 }
487 
488 static __always_inline bool PageSwapCache(struct page *page)
489 {
490 	return folio_test_swapcache(page_folio(page));
491 }
492 
493 SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
494 CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
495 #else
496 PAGEFLAG_FALSE(SwapCache, swapcache)
497 #endif
498 
499 PAGEFLAG(Unevictable, unevictable, PF_HEAD)
500 	__CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD)
501 	TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD)
502 
503 #ifdef CONFIG_MMU
504 PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
505 	__CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
506 	TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL)
507 #else
508 PAGEFLAG_FALSE(Mlocked, mlocked) __CLEARPAGEFLAG_NOOP(Mlocked, mlocked)
509 	TESTSCFLAG_FALSE(Mlocked, mlocked)
510 #endif
511 
512 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
513 PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND)
514 #else
515 PAGEFLAG_FALSE(Uncached, uncached)
516 #endif
517 
518 #ifdef CONFIG_MEMORY_FAILURE
519 PAGEFLAG(HWPoison, hwpoison, PF_ANY)
520 TESTSCFLAG(HWPoison, hwpoison, PF_ANY)
521 #define __PG_HWPOISON (1UL << PG_hwpoison)
522 #define MAGIC_HWPOISON	0x48575053U	/* HWPS */
523 extern void SetPageHWPoisonTakenOff(struct page *page);
524 extern void ClearPageHWPoisonTakenOff(struct page *page);
525 extern bool take_page_off_buddy(struct page *page);
526 extern bool put_page_back_buddy(struct page *page);
527 #else
528 PAGEFLAG_FALSE(HWPoison, hwpoison)
529 #define __PG_HWPOISON 0
530 #endif
531 
532 #if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT)
533 TESTPAGEFLAG(Young, young, PF_ANY)
534 SETPAGEFLAG(Young, young, PF_ANY)
535 TESTCLEARFLAG(Young, young, PF_ANY)
536 PAGEFLAG(Idle, idle, PF_ANY)
537 #endif
538 
539 #ifdef CONFIG_KASAN_HW_TAGS
540 PAGEFLAG(SkipKASanPoison, skip_kasan_poison, PF_HEAD)
541 #else
542 PAGEFLAG_FALSE(SkipKASanPoison, skip_kasan_poison)
543 #endif
544 
545 /*
546  * PageReported() is used to track reported free pages within the Buddy
547  * allocator. We can use the non-atomic version of the test and set
548  * operations as both should be shielded with the zone lock to prevent
549  * any possible races on the setting or clearing of the bit.
550  */
551 __PAGEFLAG(Reported, reported, PF_NO_COMPOUND)
552 
553 /*
554  * On an anonymous page mapped into a user virtual memory area,
555  * page->mapping points to its anon_vma, not to a struct address_space;
556  * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
557  *
558  * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
559  * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON
560  * bit; and then page->mapping points, not to an anon_vma, but to a private
561  * structure which KSM associates with that merged page.  See ksm.h.
562  *
563  * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable
564  * page and then page->mapping points a struct address_space.
565  *
566  * Please note that, confusingly, "page_mapping" refers to the inode
567  * address_space which maps the page from disk; whereas "page_mapped"
568  * refers to user virtual address space into which the page is mapped.
569  */
570 #define PAGE_MAPPING_ANON	0x1
571 #define PAGE_MAPPING_MOVABLE	0x2
572 #define PAGE_MAPPING_KSM	(PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
573 #define PAGE_MAPPING_FLAGS	(PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
574 
575 static __always_inline int PageMappingFlags(struct page *page)
576 {
577 	return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0;
578 }
579 
580 static __always_inline bool folio_test_anon(struct folio *folio)
581 {
582 	return ((unsigned long)folio->mapping & PAGE_MAPPING_ANON) != 0;
583 }
584 
585 static __always_inline bool PageAnon(struct page *page)
586 {
587 	return folio_test_anon(page_folio(page));
588 }
589 
590 static __always_inline int __PageMovable(struct page *page)
591 {
592 	return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
593 				PAGE_MAPPING_MOVABLE;
594 }
595 
596 #ifdef CONFIG_KSM
597 /*
598  * A KSM page is one of those write-protected "shared pages" or "merged pages"
599  * which KSM maps into multiple mms, wherever identical anonymous page content
600  * is found in VM_MERGEABLE vmas.  It's a PageAnon page, pointing not to any
601  * anon_vma, but to that page's node of the stable tree.
602  */
603 static __always_inline bool folio_test_ksm(struct folio *folio)
604 {
605 	return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) ==
606 				PAGE_MAPPING_KSM;
607 }
608 
609 static __always_inline bool PageKsm(struct page *page)
610 {
611 	return folio_test_ksm(page_folio(page));
612 }
613 #else
614 TESTPAGEFLAG_FALSE(Ksm, ksm)
615 #endif
616 
617 u64 stable_page_flags(struct page *page);
618 
619 /**
620  * folio_test_uptodate - Is this folio up to date?
621  * @folio: The folio.
622  *
623  * The uptodate flag is set on a folio when every byte in the folio is
624  * at least as new as the corresponding bytes on storage.  Anonymous
625  * and CoW folios are always uptodate.  If the folio is not uptodate,
626  * some of the bytes in it may be; see the is_partially_uptodate()
627  * address_space operation.
628  */
629 static inline bool folio_test_uptodate(struct folio *folio)
630 {
631 	bool ret = test_bit(PG_uptodate, folio_flags(folio, 0));
632 	/*
633 	 * Must ensure that the data we read out of the folio is loaded
634 	 * _after_ we've loaded folio->flags to check the uptodate bit.
635 	 * We can skip the barrier if the folio is not uptodate, because
636 	 * we wouldn't be reading anything from it.
637 	 *
638 	 * See folio_mark_uptodate() for the other side of the story.
639 	 */
640 	if (ret)
641 		smp_rmb();
642 
643 	return ret;
644 }
645 
646 static inline int PageUptodate(struct page *page)
647 {
648 	return folio_test_uptodate(page_folio(page));
649 }
650 
651 static __always_inline void __folio_mark_uptodate(struct folio *folio)
652 {
653 	smp_wmb();
654 	__set_bit(PG_uptodate, folio_flags(folio, 0));
655 }
656 
657 static __always_inline void folio_mark_uptodate(struct folio *folio)
658 {
659 	/*
660 	 * Memory barrier must be issued before setting the PG_uptodate bit,
661 	 * so that all previous stores issued in order to bring the folio
662 	 * uptodate are actually visible before folio_test_uptodate becomes true.
663 	 */
664 	smp_wmb();
665 	set_bit(PG_uptodate, folio_flags(folio, 0));
666 }
667 
668 static __always_inline void __SetPageUptodate(struct page *page)
669 {
670 	__folio_mark_uptodate((struct folio *)page);
671 }
672 
673 static __always_inline void SetPageUptodate(struct page *page)
674 {
675 	folio_mark_uptodate((struct folio *)page);
676 }
677 
678 CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL)
679 
680 bool __folio_start_writeback(struct folio *folio, bool keep_write);
681 bool set_page_writeback(struct page *page);
682 
683 #define folio_start_writeback(folio)			\
684 	__folio_start_writeback(folio, false)
685 #define folio_start_writeback_keepwrite(folio)	\
686 	__folio_start_writeback(folio, true)
687 
688 static inline void set_page_writeback_keepwrite(struct page *page)
689 {
690 	folio_start_writeback_keepwrite(page_folio(page));
691 }
692 
693 static inline bool test_set_page_writeback(struct page *page)
694 {
695 	return set_page_writeback(page);
696 }
697 
698 __PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY)
699 
700 /**
701  * folio_test_large() - Does this folio contain more than one page?
702  * @folio: The folio to test.
703  *
704  * Return: True if the folio is larger than one page.
705  */
706 static inline bool folio_test_large(struct folio *folio)
707 {
708 	return folio_test_head(folio);
709 }
710 
711 static __always_inline void set_compound_head(struct page *page, struct page *head)
712 {
713 	WRITE_ONCE(page->compound_head, (unsigned long)head + 1);
714 }
715 
716 static __always_inline void clear_compound_head(struct page *page)
717 {
718 	WRITE_ONCE(page->compound_head, 0);
719 }
720 
721 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
722 static inline void ClearPageCompound(struct page *page)
723 {
724 	BUG_ON(!PageHead(page));
725 	ClearPageHead(page);
726 }
727 #endif
728 
729 #define PG_head_mask ((1UL << PG_head))
730 
731 #ifdef CONFIG_HUGETLB_PAGE
732 int PageHuge(struct page *page);
733 int PageHeadHuge(struct page *page);
734 static inline bool folio_test_hugetlb(struct folio *folio)
735 {
736 	return PageHeadHuge(&folio->page);
737 }
738 #else
739 TESTPAGEFLAG_FALSE(Huge, hugetlb)
740 TESTPAGEFLAG_FALSE(HeadHuge, headhuge)
741 #endif
742 
743 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
744 /*
745  * PageHuge() only returns true for hugetlbfs pages, but not for
746  * normal or transparent huge pages.
747  *
748  * PageTransHuge() returns true for both transparent huge and
749  * hugetlbfs pages, but not normal pages. PageTransHuge() can only be
750  * called only in the core VM paths where hugetlbfs pages can't exist.
751  */
752 static inline int PageTransHuge(struct page *page)
753 {
754 	VM_BUG_ON_PAGE(PageTail(page), page);
755 	return PageHead(page);
756 }
757 
758 static inline bool folio_test_transhuge(struct folio *folio)
759 {
760 	return folio_test_head(folio);
761 }
762 
763 /*
764  * PageTransCompound returns true for both transparent huge pages
765  * and hugetlbfs pages, so it should only be called when it's known
766  * that hugetlbfs pages aren't involved.
767  */
768 static inline int PageTransCompound(struct page *page)
769 {
770 	return PageCompound(page);
771 }
772 
773 /*
774  * PageTransTail returns true for both transparent huge pages
775  * and hugetlbfs pages, so it should only be called when it's known
776  * that hugetlbfs pages aren't involved.
777  */
778 static inline int PageTransTail(struct page *page)
779 {
780 	return PageTail(page);
781 }
782 
783 /*
784  * PageDoubleMap indicates that the compound page is mapped with PTEs as well
785  * as PMDs.
786  *
787  * This is required for optimization of rmap operations for THP: we can postpone
788  * per small page mapcount accounting (and its overhead from atomic operations)
789  * until the first PMD split.
790  *
791  * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up
792  * by one. This reference will go away with last compound_mapcount.
793  *
794  * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap().
795  */
796 PAGEFLAG(DoubleMap, double_map, PF_SECOND)
797 	TESTSCFLAG(DoubleMap, double_map, PF_SECOND)
798 #else
799 TESTPAGEFLAG_FALSE(TransHuge, transhuge)
800 TESTPAGEFLAG_FALSE(TransCompound, transcompound)
801 TESTPAGEFLAG_FALSE(TransCompoundMap, transcompoundmap)
802 TESTPAGEFLAG_FALSE(TransTail, transtail)
803 PAGEFLAG_FALSE(DoubleMap, double_map)
804 	TESTSCFLAG_FALSE(DoubleMap, double_map)
805 #endif
806 
807 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
808 /*
809  * PageHasHWPoisoned indicates that at least one subpage is hwpoisoned in the
810  * compound page.
811  *
812  * This flag is set by hwpoison handler.  Cleared by THP split or free page.
813  */
814 PAGEFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND)
815 	TESTSCFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND)
816 #else
817 PAGEFLAG_FALSE(HasHWPoisoned, has_hwpoisoned)
818 	TESTSCFLAG_FALSE(HasHWPoisoned, has_hwpoisoned)
819 #endif
820 
821 /*
822  * Check if a page is currently marked HWPoisoned. Note that this check is
823  * best effort only and inherently racy: there is no way to synchronize with
824  * failing hardware.
825  */
826 static inline bool is_page_hwpoison(struct page *page)
827 {
828 	if (PageHWPoison(page))
829 		return true;
830 	return PageHuge(page) && PageHWPoison(compound_head(page));
831 }
832 
833 /*
834  * For pages that are never mapped to userspace (and aren't PageSlab),
835  * page_type may be used.  Because it is initialised to -1, we invert the
836  * sense of the bit, so __SetPageFoo *clears* the bit used for PageFoo, and
837  * __ClearPageFoo *sets* the bit used for PageFoo.  We reserve a few high and
838  * low bits so that an underflow or overflow of page_mapcount() won't be
839  * mistaken for a page type value.
840  */
841 
842 #define PAGE_TYPE_BASE	0xf0000000
843 /* Reserve		0x0000007f to catch underflows of page_mapcount */
844 #define PAGE_MAPCOUNT_RESERVE	-128
845 #define PG_buddy	0x00000080
846 #define PG_offline	0x00000100
847 #define PG_table	0x00000200
848 #define PG_guard	0x00000400
849 
850 #define PageType(page, flag)						\
851 	((page->page_type & (PAGE_TYPE_BASE | flag)) == PAGE_TYPE_BASE)
852 
853 static inline int page_has_type(struct page *page)
854 {
855 	return (int)page->page_type < PAGE_MAPCOUNT_RESERVE;
856 }
857 
858 #define PAGE_TYPE_OPS(uname, lname)					\
859 static __always_inline int Page##uname(struct page *page)		\
860 {									\
861 	return PageType(page, PG_##lname);				\
862 }									\
863 static __always_inline void __SetPage##uname(struct page *page)		\
864 {									\
865 	VM_BUG_ON_PAGE(!PageType(page, 0), page);			\
866 	page->page_type &= ~PG_##lname;					\
867 }									\
868 static __always_inline void __ClearPage##uname(struct page *page)	\
869 {									\
870 	VM_BUG_ON_PAGE(!Page##uname(page), page);			\
871 	page->page_type |= PG_##lname;					\
872 }
873 
874 /*
875  * PageBuddy() indicates that the page is free and in the buddy system
876  * (see mm/page_alloc.c).
877  */
878 PAGE_TYPE_OPS(Buddy, buddy)
879 
880 /*
881  * PageOffline() indicates that the page is logically offline although the
882  * containing section is online. (e.g. inflated in a balloon driver or
883  * not onlined when onlining the section).
884  * The content of these pages is effectively stale. Such pages should not
885  * be touched (read/write/dump/save) except by their owner.
886  *
887  * If a driver wants to allow to offline unmovable PageOffline() pages without
888  * putting them back to the buddy, it can do so via the memory notifier by
889  * decrementing the reference count in MEM_GOING_OFFLINE and incrementing the
890  * reference count in MEM_CANCEL_OFFLINE. When offlining, the PageOffline()
891  * pages (now with a reference count of zero) are treated like free pages,
892  * allowing the containing memory block to get offlined. A driver that
893  * relies on this feature is aware that re-onlining the memory block will
894  * require to re-set the pages PageOffline() and not giving them to the
895  * buddy via online_page_callback_t.
896  *
897  * There are drivers that mark a page PageOffline() and expect there won't be
898  * any further access to page content. PFN walkers that read content of random
899  * pages should check PageOffline() and synchronize with such drivers using
900  * page_offline_freeze()/page_offline_thaw().
901  */
902 PAGE_TYPE_OPS(Offline, offline)
903 
904 extern void page_offline_freeze(void);
905 extern void page_offline_thaw(void);
906 extern void page_offline_begin(void);
907 extern void page_offline_end(void);
908 
909 /*
910  * Marks pages in use as page tables.
911  */
912 PAGE_TYPE_OPS(Table, table)
913 
914 /*
915  * Marks guardpages used with debug_pagealloc.
916  */
917 PAGE_TYPE_OPS(Guard, guard)
918 
919 extern bool is_free_buddy_page(struct page *page);
920 
921 __PAGEFLAG(Isolated, isolated, PF_ANY);
922 
923 #ifdef CONFIG_MMU
924 #define __PG_MLOCKED		(1UL << PG_mlocked)
925 #else
926 #define __PG_MLOCKED		0
927 #endif
928 
929 /*
930  * Flags checked when a page is freed.  Pages being freed should not have
931  * these flags set.  If they are, there is a problem.
932  */
933 #define PAGE_FLAGS_CHECK_AT_FREE				\
934 	(1UL << PG_lru		| 1UL << PG_locked	|	\
935 	 1UL << PG_private	| 1UL << PG_private_2	|	\
936 	 1UL << PG_writeback	| 1UL << PG_reserved	|	\
937 	 1UL << PG_slab		| 1UL << PG_active 	|	\
938 	 1UL << PG_unevictable	| __PG_MLOCKED)
939 
940 /*
941  * Flags checked when a page is prepped for return by the page allocator.
942  * Pages being prepped should not have these flags set.  If they are set,
943  * there has been a kernel bug or struct page corruption.
944  *
945  * __PG_HWPOISON is exceptional because it needs to be kept beyond page's
946  * alloc-free cycle to prevent from reusing the page.
947  */
948 #define PAGE_FLAGS_CHECK_AT_PREP	\
949 	(PAGEFLAGS_MASK & ~__PG_HWPOISON)
950 
951 #define PAGE_FLAGS_PRIVATE				\
952 	(1UL << PG_private | 1UL << PG_private_2)
953 /**
954  * page_has_private - Determine if page has private stuff
955  * @page: The page to be checked
956  *
957  * Determine if a page has private stuff, indicating that release routines
958  * should be invoked upon it.
959  */
960 static inline int page_has_private(struct page *page)
961 {
962 	return !!(page->flags & PAGE_FLAGS_PRIVATE);
963 }
964 
965 static inline bool folio_has_private(struct folio *folio)
966 {
967 	return page_has_private(&folio->page);
968 }
969 
970 #undef PF_ANY
971 #undef PF_HEAD
972 #undef PF_ONLY_HEAD
973 #undef PF_NO_TAIL
974 #undef PF_NO_COMPOUND
975 #undef PF_SECOND
976 #endif /* !__GENERATING_BOUNDS_H */
977 
978 #endif	/* PAGE_FLAGS_H */
979