1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Macros for manipulating and testing page->flags 4 */ 5 6 #ifndef PAGE_FLAGS_H 7 #define PAGE_FLAGS_H 8 9 #include <linux/types.h> 10 #include <linux/bug.h> 11 #include <linux/mmdebug.h> 12 #ifndef __GENERATING_BOUNDS_H 13 #include <linux/mm_types.h> 14 #include <generated/bounds.h> 15 #endif /* !__GENERATING_BOUNDS_H */ 16 17 /* 18 * Various page->flags bits: 19 * 20 * PG_reserved is set for special pages. The "struct page" of such a page 21 * should in general not be touched (e.g. set dirty) except by its owner. 22 * Pages marked as PG_reserved include: 23 * - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS, 24 * initrd, HW tables) 25 * - Pages reserved or allocated early during boot (before the page allocator 26 * was initialized). This includes (depending on the architecture) the 27 * initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much 28 * much more. Once (if ever) freed, PG_reserved is cleared and they will 29 * be given to the page allocator. 30 * - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying 31 * to read/write these pages might end badly. Don't touch! 32 * - The zero page(s) 33 * - Pages allocated in the context of kexec/kdump (loaded kernel image, 34 * control pages, vmcoreinfo) 35 * - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are 36 * not marked PG_reserved (as they might be in use by somebody else who does 37 * not respect the caching strategy). 38 * - MCA pages on ia64 39 * - Pages holding CPU notes for POWER Firmware Assisted Dump 40 * - Device memory (e.g. PMEM, DAX, HMM) 41 * Some PG_reserved pages will be excluded from the hibernation image. 42 * PG_reserved does in general not hinder anybody from dumping or swapping 43 * and is no longer required for remap_pfn_range(). ioremap might require it. 44 * Consequently, PG_reserved for a page mapped into user space can indicate 45 * the zero page, the vDSO, MMIO pages or device memory. 46 * 47 * The PG_private bitflag is set on pagecache pages if they contain filesystem 48 * specific data (which is normally at page->private). It can be used by 49 * private allocations for its own usage. 50 * 51 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O 52 * and cleared when writeback _starts_ or when read _completes_. PG_writeback 53 * is set before writeback starts and cleared when it finishes. 54 * 55 * PG_locked also pins a page in pagecache, and blocks truncation of the file 56 * while it is held. 57 * 58 * page_waitqueue(page) is a wait queue of all tasks waiting for the page 59 * to become unlocked. 60 * 61 * PG_swapbacked is set when a page uses swap as a backing storage. This are 62 * usually PageAnon or shmem pages but please note that even anonymous pages 63 * might lose their PG_swapbacked flag when they simply can be dropped (e.g. as 64 * a result of MADV_FREE). 65 * 66 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and 67 * file-backed pagecache (see mm/vmscan.c). 68 * 69 * PG_error is set to indicate that an I/O error occurred on this page. 70 * 71 * PG_arch_1 is an architecture specific page state bit. The generic code 72 * guarantees that this bit is cleared for a page when it first is entered into 73 * the page cache. 74 * 75 * PG_hwpoison indicates that a page got corrupted in hardware and contains 76 * data with incorrect ECC bits that triggered a machine check. Accessing is 77 * not safe since it may cause another machine check. Don't touch! 78 */ 79 80 /* 81 * Don't use the pageflags directly. Use the PageFoo macros. 82 * 83 * The page flags field is split into two parts, the main flags area 84 * which extends from the low bits upwards, and the fields area which 85 * extends from the high bits downwards. 86 * 87 * | FIELD | ... | FLAGS | 88 * N-1 ^ 0 89 * (NR_PAGEFLAGS) 90 * 91 * The fields area is reserved for fields mapping zone, node (for NUMA) and 92 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like 93 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP). 94 */ 95 enum pageflags { 96 PG_locked, /* Page is locked. Don't touch. */ 97 PG_writeback, /* Page is under writeback */ 98 PG_referenced, 99 PG_uptodate, 100 PG_dirty, 101 PG_lru, 102 PG_head, /* Must be in bit 6 */ 103 PG_waiters, /* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */ 104 PG_active, 105 PG_workingset, 106 PG_error, 107 PG_owner_priv_1, /* Owner use. If pagecache, fs may use*/ 108 PG_arch_1, 109 PG_reserved, 110 PG_private, /* If pagecache, has fs-private data */ 111 PG_private_2, /* If pagecache, has fs aux data */ 112 PG_mappedtodisk, /* Has blocks allocated on-disk */ 113 PG_reclaim, /* To be reclaimed asap */ 114 PG_swapbacked, /* Page is backed by RAM/swap */ 115 PG_unevictable, /* Page is "unevictable" */ 116 #ifdef CONFIG_MMU 117 PG_mlocked, /* Page is vma mlocked */ 118 #endif 119 #ifdef CONFIG_ARCH_USES_PG_UNCACHED 120 PG_uncached, /* Page has been mapped as uncached */ 121 #endif 122 #ifdef CONFIG_MEMORY_FAILURE 123 PG_hwpoison, /* hardware poisoned page. Don't touch */ 124 #endif 125 #if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT) 126 PG_young, 127 PG_idle, 128 #endif 129 #ifdef CONFIG_ARCH_USES_PG_ARCH_X 130 PG_arch_2, 131 PG_arch_3, 132 #endif 133 __NR_PAGEFLAGS, 134 135 PG_readahead = PG_reclaim, 136 137 /* 138 * Depending on the way an anonymous folio can be mapped into a page 139 * table (e.g., single PMD/PUD/CONT of the head page vs. PTE-mapped 140 * THP), PG_anon_exclusive may be set only for the head page or for 141 * tail pages of an anonymous folio. For now, we only expect it to be 142 * set on tail pages for PTE-mapped THP. 143 */ 144 PG_anon_exclusive = PG_mappedtodisk, 145 146 /* Filesystems */ 147 PG_checked = PG_owner_priv_1, 148 149 /* SwapBacked */ 150 PG_swapcache = PG_owner_priv_1, /* Swap page: swp_entry_t in private */ 151 152 /* Two page bits are conscripted by FS-Cache to maintain local caching 153 * state. These bits are set on pages belonging to the netfs's inodes 154 * when those inodes are being locally cached. 155 */ 156 PG_fscache = PG_private_2, /* page backed by cache */ 157 158 /* XEN */ 159 /* Pinned in Xen as a read-only pagetable page. */ 160 PG_pinned = PG_owner_priv_1, 161 /* Pinned as part of domain save (see xen_mm_pin_all()). */ 162 PG_savepinned = PG_dirty, 163 /* Has a grant mapping of another (foreign) domain's page. */ 164 PG_foreign = PG_owner_priv_1, 165 /* Remapped by swiotlb-xen. */ 166 PG_xen_remapped = PG_owner_priv_1, 167 168 /* non-lru isolated movable page */ 169 PG_isolated = PG_reclaim, 170 171 /* Only valid for buddy pages. Used to track pages that are reported */ 172 PG_reported = PG_uptodate, 173 174 #ifdef CONFIG_MEMORY_HOTPLUG 175 /* For self-hosted memmap pages */ 176 PG_vmemmap_self_hosted = PG_owner_priv_1, 177 #endif 178 179 /* 180 * Flags only valid for compound pages. Stored in first tail page's 181 * flags word. Cannot use the first 8 flags or any flag marked as 182 * PF_ANY. 183 */ 184 185 /* At least one page in this folio has the hwpoison flag set */ 186 PG_has_hwpoisoned = PG_error, 187 PG_large_rmappable = PG_workingset, /* anon or file-backed */ 188 }; 189 190 #define PAGEFLAGS_MASK ((1UL << NR_PAGEFLAGS) - 1) 191 192 #ifndef __GENERATING_BOUNDS_H 193 194 #ifdef CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP 195 DECLARE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key); 196 197 /* 198 * Return the real head page struct iff the @page is a fake head page, otherwise 199 * return the @page itself. See Documentation/mm/vmemmap_dedup.rst. 200 */ 201 static __always_inline const struct page *page_fixed_fake_head(const struct page *page) 202 { 203 if (!static_branch_unlikely(&hugetlb_optimize_vmemmap_key)) 204 return page; 205 206 /* 207 * Only addresses aligned with PAGE_SIZE of struct page may be fake head 208 * struct page. The alignment check aims to avoid access the fields ( 209 * e.g. compound_head) of the @page[1]. It can avoid touch a (possibly) 210 * cold cacheline in some cases. 211 */ 212 if (IS_ALIGNED((unsigned long)page, PAGE_SIZE) && 213 test_bit(PG_head, &page->flags)) { 214 /* 215 * We can safely access the field of the @page[1] with PG_head 216 * because the @page is a compound page composed with at least 217 * two contiguous pages. 218 */ 219 unsigned long head = READ_ONCE(page[1].compound_head); 220 221 if (likely(head & 1)) 222 return (const struct page *)(head - 1); 223 } 224 return page; 225 } 226 #else 227 static inline const struct page *page_fixed_fake_head(const struct page *page) 228 { 229 return page; 230 } 231 #endif 232 233 static __always_inline int page_is_fake_head(const struct page *page) 234 { 235 return page_fixed_fake_head(page) != page; 236 } 237 238 static inline unsigned long _compound_head(const struct page *page) 239 { 240 unsigned long head = READ_ONCE(page->compound_head); 241 242 if (unlikely(head & 1)) 243 return head - 1; 244 return (unsigned long)page_fixed_fake_head(page); 245 } 246 247 #define compound_head(page) ((typeof(page))_compound_head(page)) 248 249 /** 250 * page_folio - Converts from page to folio. 251 * @p: The page. 252 * 253 * Every page is part of a folio. This function cannot be called on a 254 * NULL pointer. 255 * 256 * Context: No reference, nor lock is required on @page. If the caller 257 * does not hold a reference, this call may race with a folio split, so 258 * it should re-check the folio still contains this page after gaining 259 * a reference on the folio. 260 * Return: The folio which contains this page. 261 */ 262 #define page_folio(p) (_Generic((p), \ 263 const struct page *: (const struct folio *)_compound_head(p), \ 264 struct page *: (struct folio *)_compound_head(p))) 265 266 /** 267 * folio_page - Return a page from a folio. 268 * @folio: The folio. 269 * @n: The page number to return. 270 * 271 * @n is relative to the start of the folio. This function does not 272 * check that the page number lies within @folio; the caller is presumed 273 * to have a reference to the page. 274 */ 275 #define folio_page(folio, n) nth_page(&(folio)->page, n) 276 277 static __always_inline int PageTail(const struct page *page) 278 { 279 return READ_ONCE(page->compound_head) & 1 || page_is_fake_head(page); 280 } 281 282 static __always_inline int PageCompound(const struct page *page) 283 { 284 return test_bit(PG_head, &page->flags) || 285 READ_ONCE(page->compound_head) & 1; 286 } 287 288 #define PAGE_POISON_PATTERN -1l 289 static inline int PagePoisoned(const struct page *page) 290 { 291 return READ_ONCE(page->flags) == PAGE_POISON_PATTERN; 292 } 293 294 #ifdef CONFIG_DEBUG_VM 295 void page_init_poison(struct page *page, size_t size); 296 #else 297 static inline void page_init_poison(struct page *page, size_t size) 298 { 299 } 300 #endif 301 302 static const unsigned long *const_folio_flags(const struct folio *folio, 303 unsigned n) 304 { 305 const struct page *page = &folio->page; 306 307 VM_BUG_ON_PGFLAGS(PageTail(page), page); 308 VM_BUG_ON_PGFLAGS(n > 0 && !test_bit(PG_head, &page->flags), page); 309 return &page[n].flags; 310 } 311 312 static unsigned long *folio_flags(struct folio *folio, unsigned n) 313 { 314 struct page *page = &folio->page; 315 316 VM_BUG_ON_PGFLAGS(PageTail(page), page); 317 VM_BUG_ON_PGFLAGS(n > 0 && !test_bit(PG_head, &page->flags), page); 318 return &page[n].flags; 319 } 320 321 /* 322 * Page flags policies wrt compound pages 323 * 324 * PF_POISONED_CHECK 325 * check if this struct page poisoned/uninitialized 326 * 327 * PF_ANY: 328 * the page flag is relevant for small, head and tail pages. 329 * 330 * PF_HEAD: 331 * for compound page all operations related to the page flag applied to 332 * head page. 333 * 334 * PF_NO_TAIL: 335 * modifications of the page flag must be done on small or head pages, 336 * checks can be done on tail pages too. 337 * 338 * PF_NO_COMPOUND: 339 * the page flag is not relevant for compound pages. 340 * 341 * PF_SECOND: 342 * the page flag is stored in the first tail page. 343 */ 344 #define PF_POISONED_CHECK(page) ({ \ 345 VM_BUG_ON_PGFLAGS(PagePoisoned(page), page); \ 346 page; }) 347 #define PF_ANY(page, enforce) PF_POISONED_CHECK(page) 348 #define PF_HEAD(page, enforce) PF_POISONED_CHECK(compound_head(page)) 349 #define PF_NO_TAIL(page, enforce) ({ \ 350 VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page); \ 351 PF_POISONED_CHECK(compound_head(page)); }) 352 #define PF_NO_COMPOUND(page, enforce) ({ \ 353 VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \ 354 PF_POISONED_CHECK(page); }) 355 #define PF_SECOND(page, enforce) ({ \ 356 VM_BUG_ON_PGFLAGS(!PageHead(page), page); \ 357 PF_POISONED_CHECK(&page[1]); }) 358 359 /* Which page is the flag stored in */ 360 #define FOLIO_PF_ANY 0 361 #define FOLIO_PF_HEAD 0 362 #define FOLIO_PF_NO_TAIL 0 363 #define FOLIO_PF_NO_COMPOUND 0 364 #define FOLIO_PF_SECOND 1 365 366 #define FOLIO_HEAD_PAGE 0 367 #define FOLIO_SECOND_PAGE 1 368 369 /* 370 * Macros to create function definitions for page flags 371 */ 372 #define FOLIO_TEST_FLAG(name, page) \ 373 static __always_inline bool folio_test_##name(const struct folio *folio) \ 374 { return test_bit(PG_##name, const_folio_flags(folio, page)); } 375 376 #define FOLIO_SET_FLAG(name, page) \ 377 static __always_inline void folio_set_##name(struct folio *folio) \ 378 { set_bit(PG_##name, folio_flags(folio, page)); } 379 380 #define FOLIO_CLEAR_FLAG(name, page) \ 381 static __always_inline void folio_clear_##name(struct folio *folio) \ 382 { clear_bit(PG_##name, folio_flags(folio, page)); } 383 384 #define __FOLIO_SET_FLAG(name, page) \ 385 static __always_inline void __folio_set_##name(struct folio *folio) \ 386 { __set_bit(PG_##name, folio_flags(folio, page)); } 387 388 #define __FOLIO_CLEAR_FLAG(name, page) \ 389 static __always_inline void __folio_clear_##name(struct folio *folio) \ 390 { __clear_bit(PG_##name, folio_flags(folio, page)); } 391 392 #define FOLIO_TEST_SET_FLAG(name, page) \ 393 static __always_inline bool folio_test_set_##name(struct folio *folio) \ 394 { return test_and_set_bit(PG_##name, folio_flags(folio, page)); } 395 396 #define FOLIO_TEST_CLEAR_FLAG(name, page) \ 397 static __always_inline bool folio_test_clear_##name(struct folio *folio) \ 398 { return test_and_clear_bit(PG_##name, folio_flags(folio, page)); } 399 400 #define FOLIO_FLAG(name, page) \ 401 FOLIO_TEST_FLAG(name, page) \ 402 FOLIO_SET_FLAG(name, page) \ 403 FOLIO_CLEAR_FLAG(name, page) 404 405 #define TESTPAGEFLAG(uname, lname, policy) \ 406 FOLIO_TEST_FLAG(lname, FOLIO_##policy) \ 407 static __always_inline int Page##uname(const struct page *page) \ 408 { return test_bit(PG_##lname, &policy(page, 0)->flags); } 409 410 #define SETPAGEFLAG(uname, lname, policy) \ 411 FOLIO_SET_FLAG(lname, FOLIO_##policy) \ 412 static __always_inline void SetPage##uname(struct page *page) \ 413 { set_bit(PG_##lname, &policy(page, 1)->flags); } 414 415 #define CLEARPAGEFLAG(uname, lname, policy) \ 416 FOLIO_CLEAR_FLAG(lname, FOLIO_##policy) \ 417 static __always_inline void ClearPage##uname(struct page *page) \ 418 { clear_bit(PG_##lname, &policy(page, 1)->flags); } 419 420 #define __SETPAGEFLAG(uname, lname, policy) \ 421 __FOLIO_SET_FLAG(lname, FOLIO_##policy) \ 422 static __always_inline void __SetPage##uname(struct page *page) \ 423 { __set_bit(PG_##lname, &policy(page, 1)->flags); } 424 425 #define __CLEARPAGEFLAG(uname, lname, policy) \ 426 __FOLIO_CLEAR_FLAG(lname, FOLIO_##policy) \ 427 static __always_inline void __ClearPage##uname(struct page *page) \ 428 { __clear_bit(PG_##lname, &policy(page, 1)->flags); } 429 430 #define TESTSETFLAG(uname, lname, policy) \ 431 FOLIO_TEST_SET_FLAG(lname, FOLIO_##policy) \ 432 static __always_inline int TestSetPage##uname(struct page *page) \ 433 { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); } 434 435 #define TESTCLEARFLAG(uname, lname, policy) \ 436 FOLIO_TEST_CLEAR_FLAG(lname, FOLIO_##policy) \ 437 static __always_inline int TestClearPage##uname(struct page *page) \ 438 { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); } 439 440 #define PAGEFLAG(uname, lname, policy) \ 441 TESTPAGEFLAG(uname, lname, policy) \ 442 SETPAGEFLAG(uname, lname, policy) \ 443 CLEARPAGEFLAG(uname, lname, policy) 444 445 #define __PAGEFLAG(uname, lname, policy) \ 446 TESTPAGEFLAG(uname, lname, policy) \ 447 __SETPAGEFLAG(uname, lname, policy) \ 448 __CLEARPAGEFLAG(uname, lname, policy) 449 450 #define TESTSCFLAG(uname, lname, policy) \ 451 TESTSETFLAG(uname, lname, policy) \ 452 TESTCLEARFLAG(uname, lname, policy) 453 454 #define FOLIO_TEST_FLAG_FALSE(name) \ 455 static inline bool folio_test_##name(const struct folio *folio) \ 456 { return false; } 457 #define FOLIO_SET_FLAG_NOOP(name) \ 458 static inline void folio_set_##name(struct folio *folio) { } 459 #define FOLIO_CLEAR_FLAG_NOOP(name) \ 460 static inline void folio_clear_##name(struct folio *folio) { } 461 #define __FOLIO_SET_FLAG_NOOP(name) \ 462 static inline void __folio_set_##name(struct folio *folio) { } 463 #define __FOLIO_CLEAR_FLAG_NOOP(name) \ 464 static inline void __folio_clear_##name(struct folio *folio) { } 465 #define FOLIO_TEST_SET_FLAG_FALSE(name) \ 466 static inline bool folio_test_set_##name(struct folio *folio) \ 467 { return false; } 468 #define FOLIO_TEST_CLEAR_FLAG_FALSE(name) \ 469 static inline bool folio_test_clear_##name(struct folio *folio) \ 470 { return false; } 471 472 #define FOLIO_FLAG_FALSE(name) \ 473 FOLIO_TEST_FLAG_FALSE(name) \ 474 FOLIO_SET_FLAG_NOOP(name) \ 475 FOLIO_CLEAR_FLAG_NOOP(name) 476 477 #define TESTPAGEFLAG_FALSE(uname, lname) \ 478 FOLIO_TEST_FLAG_FALSE(lname) \ 479 static inline int Page##uname(const struct page *page) { return 0; } 480 481 #define SETPAGEFLAG_NOOP(uname, lname) \ 482 FOLIO_SET_FLAG_NOOP(lname) \ 483 static inline void SetPage##uname(struct page *page) { } 484 485 #define CLEARPAGEFLAG_NOOP(uname, lname) \ 486 FOLIO_CLEAR_FLAG_NOOP(lname) \ 487 static inline void ClearPage##uname(struct page *page) { } 488 489 #define __CLEARPAGEFLAG_NOOP(uname, lname) \ 490 __FOLIO_CLEAR_FLAG_NOOP(lname) \ 491 static inline void __ClearPage##uname(struct page *page) { } 492 493 #define TESTSETFLAG_FALSE(uname, lname) \ 494 FOLIO_TEST_SET_FLAG_FALSE(lname) \ 495 static inline int TestSetPage##uname(struct page *page) { return 0; } 496 497 #define TESTCLEARFLAG_FALSE(uname, lname) \ 498 FOLIO_TEST_CLEAR_FLAG_FALSE(lname) \ 499 static inline int TestClearPage##uname(struct page *page) { return 0; } 500 501 #define PAGEFLAG_FALSE(uname, lname) TESTPAGEFLAG_FALSE(uname, lname) \ 502 SETPAGEFLAG_NOOP(uname, lname) CLEARPAGEFLAG_NOOP(uname, lname) 503 504 #define TESTSCFLAG_FALSE(uname, lname) \ 505 TESTSETFLAG_FALSE(uname, lname) TESTCLEARFLAG_FALSE(uname, lname) 506 507 __PAGEFLAG(Locked, locked, PF_NO_TAIL) 508 FOLIO_FLAG(waiters, FOLIO_HEAD_PAGE) 509 PAGEFLAG(Error, error, PF_NO_TAIL) TESTCLEARFLAG(Error, error, PF_NO_TAIL) 510 FOLIO_FLAG(referenced, FOLIO_HEAD_PAGE) 511 FOLIO_TEST_CLEAR_FLAG(referenced, FOLIO_HEAD_PAGE) 512 __FOLIO_SET_FLAG(referenced, FOLIO_HEAD_PAGE) 513 PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD) 514 __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD) 515 PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD) 516 TESTCLEARFLAG(LRU, lru, PF_HEAD) 517 PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD) 518 TESTCLEARFLAG(Active, active, PF_HEAD) 519 PAGEFLAG(Workingset, workingset, PF_HEAD) 520 TESTCLEARFLAG(Workingset, workingset, PF_HEAD) 521 PAGEFLAG(Checked, checked, PF_NO_COMPOUND) /* Used by some filesystems */ 522 523 /* Xen */ 524 PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND) 525 TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND) 526 PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND); 527 PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND); 528 PAGEFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND) 529 TESTCLEARFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND) 530 531 PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 532 __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 533 __SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 534 PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 535 __CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 536 __SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 537 538 /* 539 * Private page markings that may be used by the filesystem that owns the page 540 * for its own purposes. 541 * - PG_private and PG_private_2 cause release_folio() and co to be invoked 542 */ 543 PAGEFLAG(Private, private, PF_ANY) 544 PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY) 545 PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY) 546 TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY) 547 548 /* 549 * Only test-and-set exist for PG_writeback. The unconditional operators are 550 * risky: they bypass page accounting. 551 */ 552 TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL) 553 TESTSCFLAG(Writeback, writeback, PF_NO_TAIL) 554 PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL) 555 556 /* PG_readahead is only used for reads; PG_reclaim is only for writes */ 557 PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL) 558 TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL) 559 PAGEFLAG(Readahead, readahead, PF_NO_COMPOUND) 560 TESTCLEARFLAG(Readahead, readahead, PF_NO_COMPOUND) 561 562 #ifdef CONFIG_HIGHMEM 563 /* 564 * Must use a macro here due to header dependency issues. page_zone() is not 565 * available at this point. 566 */ 567 #define PageHighMem(__p) is_highmem_idx(page_zonenum(__p)) 568 #define folio_test_highmem(__f) is_highmem_idx(folio_zonenum(__f)) 569 #else 570 PAGEFLAG_FALSE(HighMem, highmem) 571 #endif 572 573 #ifdef CONFIG_SWAP 574 static __always_inline bool folio_test_swapcache(const struct folio *folio) 575 { 576 return folio_test_swapbacked(folio) && 577 test_bit(PG_swapcache, const_folio_flags(folio, 0)); 578 } 579 580 static __always_inline bool PageSwapCache(const struct page *page) 581 { 582 return folio_test_swapcache(page_folio(page)); 583 } 584 585 SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL) 586 CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL) 587 #else 588 PAGEFLAG_FALSE(SwapCache, swapcache) 589 #endif 590 591 PAGEFLAG(Unevictable, unevictable, PF_HEAD) 592 __CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD) 593 TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD) 594 595 #ifdef CONFIG_MMU 596 PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL) 597 __CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL) 598 TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL) 599 #else 600 PAGEFLAG_FALSE(Mlocked, mlocked) __CLEARPAGEFLAG_NOOP(Mlocked, mlocked) 601 TESTSCFLAG_FALSE(Mlocked, mlocked) 602 #endif 603 604 #ifdef CONFIG_ARCH_USES_PG_UNCACHED 605 PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND) 606 #else 607 PAGEFLAG_FALSE(Uncached, uncached) 608 #endif 609 610 #ifdef CONFIG_MEMORY_FAILURE 611 PAGEFLAG(HWPoison, hwpoison, PF_ANY) 612 TESTSCFLAG(HWPoison, hwpoison, PF_ANY) 613 #define __PG_HWPOISON (1UL << PG_hwpoison) 614 #else 615 PAGEFLAG_FALSE(HWPoison, hwpoison) 616 #define __PG_HWPOISON 0 617 #endif 618 619 #ifdef CONFIG_PAGE_IDLE_FLAG 620 #ifdef CONFIG_64BIT 621 FOLIO_TEST_FLAG(young, FOLIO_HEAD_PAGE) 622 FOLIO_SET_FLAG(young, FOLIO_HEAD_PAGE) 623 FOLIO_TEST_CLEAR_FLAG(young, FOLIO_HEAD_PAGE) 624 FOLIO_FLAG(idle, FOLIO_HEAD_PAGE) 625 #endif 626 /* See page_idle.h for !64BIT workaround */ 627 #else /* !CONFIG_PAGE_IDLE_FLAG */ 628 FOLIO_FLAG_FALSE(young) 629 FOLIO_TEST_CLEAR_FLAG_FALSE(young) 630 FOLIO_FLAG_FALSE(idle) 631 #endif 632 633 /* 634 * PageReported() is used to track reported free pages within the Buddy 635 * allocator. We can use the non-atomic version of the test and set 636 * operations as both should be shielded with the zone lock to prevent 637 * any possible races on the setting or clearing of the bit. 638 */ 639 __PAGEFLAG(Reported, reported, PF_NO_COMPOUND) 640 641 #ifdef CONFIG_MEMORY_HOTPLUG 642 PAGEFLAG(VmemmapSelfHosted, vmemmap_self_hosted, PF_ANY) 643 #else 644 PAGEFLAG_FALSE(VmemmapSelfHosted, vmemmap_self_hosted) 645 #endif 646 647 /* 648 * On an anonymous folio mapped into a user virtual memory area, 649 * folio->mapping points to its anon_vma, not to a struct address_space; 650 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 651 * 652 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 653 * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON 654 * bit; and then folio->mapping points, not to an anon_vma, but to a private 655 * structure which KSM associates with that merged page. See ksm.h. 656 * 657 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable 658 * page and then folio->mapping points to a struct movable_operations. 659 * 660 * Please note that, confusingly, "folio_mapping" refers to the inode 661 * address_space which maps the folio from disk; whereas "folio_mapped" 662 * refers to user virtual address space into which the folio is mapped. 663 * 664 * For slab pages, since slab reuses the bits in struct page to store its 665 * internal states, the folio->mapping does not exist as such, nor do 666 * these flags below. So in order to avoid testing non-existent bits, 667 * please make sure that folio_test_slab(folio) actually evaluates to 668 * false before calling the following functions (e.g., folio_test_anon). 669 * See mm/slab.h. 670 */ 671 #define PAGE_MAPPING_ANON 0x1 672 #define PAGE_MAPPING_MOVABLE 0x2 673 #define PAGE_MAPPING_KSM (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE) 674 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE) 675 676 /* 677 * Different with flags above, this flag is used only for fsdax mode. It 678 * indicates that this page->mapping is now under reflink case. 679 */ 680 #define PAGE_MAPPING_DAX_SHARED ((void *)0x1) 681 682 static __always_inline bool folio_mapping_flags(const struct folio *folio) 683 { 684 return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) != 0; 685 } 686 687 static __always_inline bool PageMappingFlags(const struct page *page) 688 { 689 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0; 690 } 691 692 static __always_inline bool folio_test_anon(const struct folio *folio) 693 { 694 return ((unsigned long)folio->mapping & PAGE_MAPPING_ANON) != 0; 695 } 696 697 static __always_inline bool PageAnon(const struct page *page) 698 { 699 return folio_test_anon(page_folio(page)); 700 } 701 702 static __always_inline bool __folio_test_movable(const struct folio *folio) 703 { 704 return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) == 705 PAGE_MAPPING_MOVABLE; 706 } 707 708 static __always_inline bool __PageMovable(const struct page *page) 709 { 710 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) == 711 PAGE_MAPPING_MOVABLE; 712 } 713 714 #ifdef CONFIG_KSM 715 /* 716 * A KSM page is one of those write-protected "shared pages" or "merged pages" 717 * which KSM maps into multiple mms, wherever identical anonymous page content 718 * is found in VM_MERGEABLE vmas. It's a PageAnon page, pointing not to any 719 * anon_vma, but to that page's node of the stable tree. 720 */ 721 static __always_inline bool folio_test_ksm(const struct folio *folio) 722 { 723 return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) == 724 PAGE_MAPPING_KSM; 725 } 726 727 static __always_inline bool PageKsm(const struct page *page) 728 { 729 return folio_test_ksm(page_folio(page)); 730 } 731 #else 732 TESTPAGEFLAG_FALSE(Ksm, ksm) 733 #endif 734 735 u64 stable_page_flags(const struct page *page); 736 737 /** 738 * folio_xor_flags_has_waiters - Change some folio flags. 739 * @folio: The folio. 740 * @mask: Bits set in this word will be changed. 741 * 742 * This must only be used for flags which are changed with the folio 743 * lock held. For example, it is unsafe to use for PG_dirty as that 744 * can be set without the folio lock held. It can also only be used 745 * on flags which are in the range 0-6 as some of the implementations 746 * only affect those bits. 747 * 748 * Return: Whether there are tasks waiting on the folio. 749 */ 750 static inline bool folio_xor_flags_has_waiters(struct folio *folio, 751 unsigned long mask) 752 { 753 return xor_unlock_is_negative_byte(mask, folio_flags(folio, 0)); 754 } 755 756 /** 757 * folio_test_uptodate - Is this folio up to date? 758 * @folio: The folio. 759 * 760 * The uptodate flag is set on a folio when every byte in the folio is 761 * at least as new as the corresponding bytes on storage. Anonymous 762 * and CoW folios are always uptodate. If the folio is not uptodate, 763 * some of the bytes in it may be; see the is_partially_uptodate() 764 * address_space operation. 765 */ 766 static inline bool folio_test_uptodate(const struct folio *folio) 767 { 768 bool ret = test_bit(PG_uptodate, const_folio_flags(folio, 0)); 769 /* 770 * Must ensure that the data we read out of the folio is loaded 771 * _after_ we've loaded folio->flags to check the uptodate bit. 772 * We can skip the barrier if the folio is not uptodate, because 773 * we wouldn't be reading anything from it. 774 * 775 * See folio_mark_uptodate() for the other side of the story. 776 */ 777 if (ret) 778 smp_rmb(); 779 780 return ret; 781 } 782 783 static inline bool PageUptodate(const struct page *page) 784 { 785 return folio_test_uptodate(page_folio(page)); 786 } 787 788 static __always_inline void __folio_mark_uptodate(struct folio *folio) 789 { 790 smp_wmb(); 791 __set_bit(PG_uptodate, folio_flags(folio, 0)); 792 } 793 794 static __always_inline void folio_mark_uptodate(struct folio *folio) 795 { 796 /* 797 * Memory barrier must be issued before setting the PG_uptodate bit, 798 * so that all previous stores issued in order to bring the folio 799 * uptodate are actually visible before folio_test_uptodate becomes true. 800 */ 801 smp_wmb(); 802 set_bit(PG_uptodate, folio_flags(folio, 0)); 803 } 804 805 static __always_inline void __SetPageUptodate(struct page *page) 806 { 807 __folio_mark_uptodate((struct folio *)page); 808 } 809 810 static __always_inline void SetPageUptodate(struct page *page) 811 { 812 folio_mark_uptodate((struct folio *)page); 813 } 814 815 CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL) 816 817 void __folio_start_writeback(struct folio *folio, bool keep_write); 818 void set_page_writeback(struct page *page); 819 820 #define folio_start_writeback(folio) \ 821 __folio_start_writeback(folio, false) 822 #define folio_start_writeback_keepwrite(folio) \ 823 __folio_start_writeback(folio, true) 824 825 static __always_inline bool folio_test_head(const struct folio *folio) 826 { 827 return test_bit(PG_head, const_folio_flags(folio, FOLIO_PF_ANY)); 828 } 829 830 static __always_inline int PageHead(const struct page *page) 831 { 832 PF_POISONED_CHECK(page); 833 return test_bit(PG_head, &page->flags) && !page_is_fake_head(page); 834 } 835 836 __SETPAGEFLAG(Head, head, PF_ANY) 837 __CLEARPAGEFLAG(Head, head, PF_ANY) 838 CLEARPAGEFLAG(Head, head, PF_ANY) 839 840 /** 841 * folio_test_large() - Does this folio contain more than one page? 842 * @folio: The folio to test. 843 * 844 * Return: True if the folio is larger than one page. 845 */ 846 static inline bool folio_test_large(const struct folio *folio) 847 { 848 return folio_test_head(folio); 849 } 850 851 static __always_inline void set_compound_head(struct page *page, struct page *head) 852 { 853 WRITE_ONCE(page->compound_head, (unsigned long)head + 1); 854 } 855 856 static __always_inline void clear_compound_head(struct page *page) 857 { 858 WRITE_ONCE(page->compound_head, 0); 859 } 860 861 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 862 static inline void ClearPageCompound(struct page *page) 863 { 864 BUG_ON(!PageHead(page)); 865 ClearPageHead(page); 866 } 867 FOLIO_FLAG(large_rmappable, FOLIO_SECOND_PAGE) 868 #else 869 FOLIO_FLAG_FALSE(large_rmappable) 870 #endif 871 872 #define PG_head_mask ((1UL << PG_head)) 873 874 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 875 /* 876 * PageHuge() only returns true for hugetlbfs pages, but not for 877 * normal or transparent huge pages. 878 * 879 * PageTransHuge() returns true for both transparent huge and 880 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be 881 * called only in the core VM paths where hugetlbfs pages can't exist. 882 */ 883 static inline int PageTransHuge(const struct page *page) 884 { 885 VM_BUG_ON_PAGE(PageTail(page), page); 886 return PageHead(page); 887 } 888 889 /* 890 * PageTransCompound returns true for both transparent huge pages 891 * and hugetlbfs pages, so it should only be called when it's known 892 * that hugetlbfs pages aren't involved. 893 */ 894 static inline int PageTransCompound(const struct page *page) 895 { 896 return PageCompound(page); 897 } 898 899 /* 900 * PageTransTail returns true for both transparent huge pages 901 * and hugetlbfs pages, so it should only be called when it's known 902 * that hugetlbfs pages aren't involved. 903 */ 904 static inline int PageTransTail(const struct page *page) 905 { 906 return PageTail(page); 907 } 908 #else 909 TESTPAGEFLAG_FALSE(TransHuge, transhuge) 910 TESTPAGEFLAG_FALSE(TransCompound, transcompound) 911 TESTPAGEFLAG_FALSE(TransCompoundMap, transcompoundmap) 912 TESTPAGEFLAG_FALSE(TransTail, transtail) 913 #endif 914 915 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 916 /* 917 * PageHasHWPoisoned indicates that at least one subpage is hwpoisoned in the 918 * compound page. 919 * 920 * This flag is set by hwpoison handler. Cleared by THP split or free page. 921 */ 922 PAGEFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND) 923 TESTSCFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND) 924 #else 925 PAGEFLAG_FALSE(HasHWPoisoned, has_hwpoisoned) 926 TESTSCFLAG_FALSE(HasHWPoisoned, has_hwpoisoned) 927 #endif 928 929 /* 930 * For pages that are never mapped to userspace, 931 * page_type may be used. Because it is initialised to -1, we invert the 932 * sense of the bit, so __SetPageFoo *clears* the bit used for PageFoo, and 933 * __ClearPageFoo *sets* the bit used for PageFoo. We reserve a few high and 934 * low bits so that an underflow or overflow of _mapcount won't be 935 * mistaken for a page type value. 936 */ 937 938 enum pagetype { 939 PG_buddy = 0x40000000, 940 PG_offline = 0x20000000, 941 PG_table = 0x10000000, 942 PG_guard = 0x08000000, 943 PG_hugetlb = 0x04000000, 944 PG_slab = 0x02000000, 945 PG_zsmalloc = 0x01000000, 946 947 PAGE_TYPE_BASE = 0x80000000, 948 949 /* 950 * Reserve 0xffff0000 - 0xfffffffe to catch _mapcount underflows and 951 * allow owners that set a type to reuse the lower 16 bit for their own 952 * purposes. 953 */ 954 PAGE_MAPCOUNT_RESERVE = ~0x0000ffff, 955 }; 956 957 #define PageType(page, flag) \ 958 ((READ_ONCE(page->page_type) & (PAGE_TYPE_BASE | flag)) == PAGE_TYPE_BASE) 959 #define folio_test_type(folio, flag) \ 960 ((READ_ONCE(folio->page.page_type) & (PAGE_TYPE_BASE | flag)) == PAGE_TYPE_BASE) 961 962 static inline int page_type_has_type(unsigned int page_type) 963 { 964 return (int)page_type < PAGE_MAPCOUNT_RESERVE; 965 } 966 967 static inline int page_has_type(const struct page *page) 968 { 969 return page_type_has_type(READ_ONCE(page->page_type)); 970 } 971 972 #define FOLIO_TYPE_OPS(lname, fname) \ 973 static __always_inline bool folio_test_##fname(const struct folio *folio)\ 974 { \ 975 return folio_test_type(folio, PG_##lname); \ 976 } \ 977 static __always_inline void __folio_set_##fname(struct folio *folio) \ 978 { \ 979 VM_BUG_ON_FOLIO(!folio_test_type(folio, 0), folio); \ 980 folio->page.page_type &= ~PG_##lname; \ 981 } \ 982 static __always_inline void __folio_clear_##fname(struct folio *folio) \ 983 { \ 984 VM_BUG_ON_FOLIO(!folio_test_##fname(folio), folio); \ 985 folio->page.page_type |= PG_##lname; \ 986 } 987 988 #define PAGE_TYPE_OPS(uname, lname, fname) \ 989 FOLIO_TYPE_OPS(lname, fname) \ 990 static __always_inline int Page##uname(const struct page *page) \ 991 { \ 992 return PageType(page, PG_##lname); \ 993 } \ 994 static __always_inline void __SetPage##uname(struct page *page) \ 995 { \ 996 VM_BUG_ON_PAGE(!PageType(page, 0), page); \ 997 page->page_type &= ~PG_##lname; \ 998 } \ 999 static __always_inline void __ClearPage##uname(struct page *page) \ 1000 { \ 1001 VM_BUG_ON_PAGE(!Page##uname(page), page); \ 1002 page->page_type |= PG_##lname; \ 1003 } 1004 1005 /* 1006 * PageBuddy() indicates that the page is free and in the buddy system 1007 * (see mm/page_alloc.c). 1008 */ 1009 PAGE_TYPE_OPS(Buddy, buddy, buddy) 1010 1011 /* 1012 * PageOffline() indicates that the page is logically offline although the 1013 * containing section is online. (e.g. inflated in a balloon driver or 1014 * not onlined when onlining the section). 1015 * The content of these pages is effectively stale. Such pages should not 1016 * be touched (read/write/dump/save) except by their owner. 1017 * 1018 * When a memory block gets onlined, all pages are initialized with a 1019 * refcount of 1 and PageOffline(). generic_online_page() will 1020 * take care of clearing PageOffline(). 1021 * 1022 * If a driver wants to allow to offline unmovable PageOffline() pages without 1023 * putting them back to the buddy, it can do so via the memory notifier by 1024 * decrementing the reference count in MEM_GOING_OFFLINE and incrementing the 1025 * reference count in MEM_CANCEL_OFFLINE. When offlining, the PageOffline() 1026 * pages (now with a reference count of zero) are treated like free (unmanaged) 1027 * pages, allowing the containing memory block to get offlined. A driver that 1028 * relies on this feature is aware that re-onlining the memory block will 1029 * require not giving them to the buddy via generic_online_page(). 1030 * 1031 * Memory offlining code will not adjust the managed page count for any 1032 * PageOffline() pages, treating them like they were never exposed to the 1033 * buddy using generic_online_page(). 1034 * 1035 * There are drivers that mark a page PageOffline() and expect there won't be 1036 * any further access to page content. PFN walkers that read content of random 1037 * pages should check PageOffline() and synchronize with such drivers using 1038 * page_offline_freeze()/page_offline_thaw(). 1039 */ 1040 PAGE_TYPE_OPS(Offline, offline, offline) 1041 1042 extern void page_offline_freeze(void); 1043 extern void page_offline_thaw(void); 1044 extern void page_offline_begin(void); 1045 extern void page_offline_end(void); 1046 1047 /* 1048 * Marks pages in use as page tables. 1049 */ 1050 PAGE_TYPE_OPS(Table, table, pgtable) 1051 1052 /* 1053 * Marks guardpages used with debug_pagealloc. 1054 */ 1055 PAGE_TYPE_OPS(Guard, guard, guard) 1056 1057 FOLIO_TYPE_OPS(slab, slab) 1058 1059 /** 1060 * PageSlab - Determine if the page belongs to the slab allocator 1061 * @page: The page to test. 1062 * 1063 * Context: Any context. 1064 * Return: True for slab pages, false for any other kind of page. 1065 */ 1066 static inline bool PageSlab(const struct page *page) 1067 { 1068 return folio_test_slab(page_folio(page)); 1069 } 1070 1071 #ifdef CONFIG_HUGETLB_PAGE 1072 FOLIO_TYPE_OPS(hugetlb, hugetlb) 1073 #else 1074 FOLIO_TEST_FLAG_FALSE(hugetlb) 1075 #endif 1076 1077 PAGE_TYPE_OPS(Zsmalloc, zsmalloc, zsmalloc) 1078 1079 /** 1080 * PageHuge - Determine if the page belongs to hugetlbfs 1081 * @page: The page to test. 1082 * 1083 * Context: Any context. 1084 * Return: True for hugetlbfs pages, false for anon pages or pages 1085 * belonging to other filesystems. 1086 */ 1087 static inline bool PageHuge(const struct page *page) 1088 { 1089 return folio_test_hugetlb(page_folio(page)); 1090 } 1091 1092 /* 1093 * Check if a page is currently marked HWPoisoned. Note that this check is 1094 * best effort only and inherently racy: there is no way to synchronize with 1095 * failing hardware. 1096 */ 1097 static inline bool is_page_hwpoison(const struct page *page) 1098 { 1099 const struct folio *folio; 1100 1101 if (PageHWPoison(page)) 1102 return true; 1103 folio = page_folio(page); 1104 return folio_test_hugetlb(folio) && PageHWPoison(&folio->page); 1105 } 1106 1107 bool is_free_buddy_page(const struct page *page); 1108 1109 PAGEFLAG(Isolated, isolated, PF_ANY); 1110 1111 static __always_inline int PageAnonExclusive(const struct page *page) 1112 { 1113 VM_BUG_ON_PGFLAGS(!PageAnon(page), page); 1114 /* 1115 * HugeTLB stores this information on the head page; THP keeps it per 1116 * page 1117 */ 1118 if (PageHuge(page)) 1119 page = compound_head(page); 1120 return test_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags); 1121 } 1122 1123 static __always_inline void SetPageAnonExclusive(struct page *page) 1124 { 1125 VM_BUG_ON_PGFLAGS(!PageAnon(page) || PageKsm(page), page); 1126 VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page); 1127 set_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags); 1128 } 1129 1130 static __always_inline void ClearPageAnonExclusive(struct page *page) 1131 { 1132 VM_BUG_ON_PGFLAGS(!PageAnon(page) || PageKsm(page), page); 1133 VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page); 1134 clear_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags); 1135 } 1136 1137 static __always_inline void __ClearPageAnonExclusive(struct page *page) 1138 { 1139 VM_BUG_ON_PGFLAGS(!PageAnon(page), page); 1140 VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page); 1141 __clear_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags); 1142 } 1143 1144 #ifdef CONFIG_MMU 1145 #define __PG_MLOCKED (1UL << PG_mlocked) 1146 #else 1147 #define __PG_MLOCKED 0 1148 #endif 1149 1150 /* 1151 * Flags checked when a page is freed. Pages being freed should not have 1152 * these flags set. If they are, there is a problem. 1153 */ 1154 #define PAGE_FLAGS_CHECK_AT_FREE \ 1155 (1UL << PG_lru | 1UL << PG_locked | \ 1156 1UL << PG_private | 1UL << PG_private_2 | \ 1157 1UL << PG_writeback | 1UL << PG_reserved | \ 1158 1UL << PG_active | \ 1159 1UL << PG_unevictable | __PG_MLOCKED | LRU_GEN_MASK) 1160 1161 /* 1162 * Flags checked when a page is prepped for return by the page allocator. 1163 * Pages being prepped should not have these flags set. If they are set, 1164 * there has been a kernel bug or struct page corruption. 1165 * 1166 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's 1167 * alloc-free cycle to prevent from reusing the page. 1168 */ 1169 #define PAGE_FLAGS_CHECK_AT_PREP \ 1170 ((PAGEFLAGS_MASK & ~__PG_HWPOISON) | LRU_GEN_MASK | LRU_REFS_MASK) 1171 1172 /* 1173 * Flags stored in the second page of a compound page. They may overlap 1174 * the CHECK_AT_FREE flags above, so need to be cleared. 1175 */ 1176 #define PAGE_FLAGS_SECOND \ 1177 (0xffUL /* order */ | 1UL << PG_has_hwpoisoned | \ 1178 1UL << PG_large_rmappable) 1179 1180 #define PAGE_FLAGS_PRIVATE \ 1181 (1UL << PG_private | 1UL << PG_private_2) 1182 /** 1183 * page_has_private - Determine if page has private stuff 1184 * @page: The page to be checked 1185 * 1186 * Determine if a page has private stuff, indicating that release routines 1187 * should be invoked upon it. 1188 */ 1189 static inline int page_has_private(const struct page *page) 1190 { 1191 return !!(page->flags & PAGE_FLAGS_PRIVATE); 1192 } 1193 1194 static inline bool folio_has_private(const struct folio *folio) 1195 { 1196 return page_has_private(&folio->page); 1197 } 1198 1199 #undef PF_ANY 1200 #undef PF_HEAD 1201 #undef PF_NO_TAIL 1202 #undef PF_NO_COMPOUND 1203 #undef PF_SECOND 1204 #endif /* !__GENERATING_BOUNDS_H */ 1205 1206 #endif /* PAGE_FLAGS_H */ 1207