1 /* 2 * Macros for manipulating and testing page->flags 3 */ 4 5 #ifndef PAGE_FLAGS_H 6 #define PAGE_FLAGS_H 7 8 #include <linux/types.h> 9 #include <linux/bug.h> 10 #include <linux/mmdebug.h> 11 #ifndef __GENERATING_BOUNDS_H 12 #include <linux/mm_types.h> 13 #include <generated/bounds.h> 14 #endif /* !__GENERATING_BOUNDS_H */ 15 16 /* 17 * Various page->flags bits: 18 * 19 * PG_reserved is set for special pages, which can never be swapped out. Some 20 * of them might not even exist (eg empty_bad_page)... 21 * 22 * The PG_private bitflag is set on pagecache pages if they contain filesystem 23 * specific data (which is normally at page->private). It can be used by 24 * private allocations for its own usage. 25 * 26 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O 27 * and cleared when writeback _starts_ or when read _completes_. PG_writeback 28 * is set before writeback starts and cleared when it finishes. 29 * 30 * PG_locked also pins a page in pagecache, and blocks truncation of the file 31 * while it is held. 32 * 33 * page_waitqueue(page) is a wait queue of all tasks waiting for the page 34 * to become unlocked. 35 * 36 * PG_uptodate tells whether the page's contents is valid. When a read 37 * completes, the page becomes uptodate, unless a disk I/O error happened. 38 * 39 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and 40 * file-backed pagecache (see mm/vmscan.c). 41 * 42 * PG_error is set to indicate that an I/O error occurred on this page. 43 * 44 * PG_arch_1 is an architecture specific page state bit. The generic code 45 * guarantees that this bit is cleared for a page when it first is entered into 46 * the page cache. 47 * 48 * PG_highmem pages are not permanently mapped into the kernel virtual address 49 * space, they need to be kmapped separately for doing IO on the pages. The 50 * struct page (these bits with information) are always mapped into kernel 51 * address space... 52 * 53 * PG_hwpoison indicates that a page got corrupted in hardware and contains 54 * data with incorrect ECC bits that triggered a machine check. Accessing is 55 * not safe since it may cause another machine check. Don't touch! 56 */ 57 58 /* 59 * Don't use the *_dontuse flags. Use the macros. Otherwise you'll break 60 * locked- and dirty-page accounting. 61 * 62 * The page flags field is split into two parts, the main flags area 63 * which extends from the low bits upwards, and the fields area which 64 * extends from the high bits downwards. 65 * 66 * | FIELD | ... | FLAGS | 67 * N-1 ^ 0 68 * (NR_PAGEFLAGS) 69 * 70 * The fields area is reserved for fields mapping zone, node (for NUMA) and 71 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like 72 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP). 73 */ 74 enum pageflags { 75 PG_locked, /* Page is locked. Don't touch. */ 76 PG_error, 77 PG_referenced, 78 PG_uptodate, 79 PG_dirty, 80 PG_lru, 81 PG_active, 82 PG_slab, 83 PG_owner_priv_1, /* Owner use. If pagecache, fs may use*/ 84 PG_arch_1, 85 PG_reserved, 86 PG_private, /* If pagecache, has fs-private data */ 87 PG_private_2, /* If pagecache, has fs aux data */ 88 PG_writeback, /* Page is under writeback */ 89 PG_head, /* A head page */ 90 PG_swapcache, /* Swap page: swp_entry_t in private */ 91 PG_mappedtodisk, /* Has blocks allocated on-disk */ 92 PG_reclaim, /* To be reclaimed asap */ 93 PG_swapbacked, /* Page is backed by RAM/swap */ 94 PG_unevictable, /* Page is "unevictable" */ 95 #ifdef CONFIG_MMU 96 PG_mlocked, /* Page is vma mlocked */ 97 #endif 98 #ifdef CONFIG_ARCH_USES_PG_UNCACHED 99 PG_uncached, /* Page has been mapped as uncached */ 100 #endif 101 #ifdef CONFIG_MEMORY_FAILURE 102 PG_hwpoison, /* hardware poisoned page. Don't touch */ 103 #endif 104 #if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT) 105 PG_young, 106 PG_idle, 107 #endif 108 __NR_PAGEFLAGS, 109 110 /* Filesystems */ 111 PG_checked = PG_owner_priv_1, 112 113 /* Two page bits are conscripted by FS-Cache to maintain local caching 114 * state. These bits are set on pages belonging to the netfs's inodes 115 * when those inodes are being locally cached. 116 */ 117 PG_fscache = PG_private_2, /* page backed by cache */ 118 119 /* XEN */ 120 /* Pinned in Xen as a read-only pagetable page. */ 121 PG_pinned = PG_owner_priv_1, 122 /* Pinned as part of domain save (see xen_mm_pin_all()). */ 123 PG_savepinned = PG_dirty, 124 /* Has a grant mapping of another (foreign) domain's page. */ 125 PG_foreign = PG_owner_priv_1, 126 127 /* SLOB */ 128 PG_slob_free = PG_private, 129 130 /* Compound pages. Stored in first tail page's flags */ 131 PG_double_map = PG_private_2, 132 }; 133 134 #ifndef __GENERATING_BOUNDS_H 135 136 struct page; /* forward declaration */ 137 138 static inline struct page *compound_head(struct page *page) 139 { 140 unsigned long head = READ_ONCE(page->compound_head); 141 142 if (unlikely(head & 1)) 143 return (struct page *) (head - 1); 144 return page; 145 } 146 147 static __always_inline int PageTail(struct page *page) 148 { 149 return READ_ONCE(page->compound_head) & 1; 150 } 151 152 static __always_inline int PageCompound(struct page *page) 153 { 154 return test_bit(PG_head, &page->flags) || PageTail(page); 155 } 156 157 /* 158 * Page flags policies wrt compound pages 159 * 160 * PF_ANY: 161 * the page flag is relevant for small, head and tail pages. 162 * 163 * PF_HEAD: 164 * for compound page all operations related to the page flag applied to 165 * head page. 166 * 167 * PF_NO_TAIL: 168 * modifications of the page flag must be done on small or head pages, 169 * checks can be done on tail pages too. 170 * 171 * PF_NO_COMPOUND: 172 * the page flag is not relevant for compound pages. 173 */ 174 #define PF_ANY(page, enforce) page 175 #define PF_HEAD(page, enforce) compound_head(page) 176 #define PF_NO_TAIL(page, enforce) ({ \ 177 VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page); \ 178 compound_head(page);}) 179 #define PF_NO_COMPOUND(page, enforce) ({ \ 180 VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \ 181 page;}) 182 183 /* 184 * Macros to create function definitions for page flags 185 */ 186 #define TESTPAGEFLAG(uname, lname, policy) \ 187 static __always_inline int Page##uname(struct page *page) \ 188 { return test_bit(PG_##lname, &policy(page, 0)->flags); } 189 190 #define SETPAGEFLAG(uname, lname, policy) \ 191 static __always_inline void SetPage##uname(struct page *page) \ 192 { set_bit(PG_##lname, &policy(page, 1)->flags); } 193 194 #define CLEARPAGEFLAG(uname, lname, policy) \ 195 static __always_inline void ClearPage##uname(struct page *page) \ 196 { clear_bit(PG_##lname, &policy(page, 1)->flags); } 197 198 #define __SETPAGEFLAG(uname, lname, policy) \ 199 static __always_inline void __SetPage##uname(struct page *page) \ 200 { __set_bit(PG_##lname, &policy(page, 1)->flags); } 201 202 #define __CLEARPAGEFLAG(uname, lname, policy) \ 203 static __always_inline void __ClearPage##uname(struct page *page) \ 204 { __clear_bit(PG_##lname, &policy(page, 1)->flags); } 205 206 #define TESTSETFLAG(uname, lname, policy) \ 207 static __always_inline int TestSetPage##uname(struct page *page) \ 208 { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); } 209 210 #define TESTCLEARFLAG(uname, lname, policy) \ 211 static __always_inline int TestClearPage##uname(struct page *page) \ 212 { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); } 213 214 #define PAGEFLAG(uname, lname, policy) \ 215 TESTPAGEFLAG(uname, lname, policy) \ 216 SETPAGEFLAG(uname, lname, policy) \ 217 CLEARPAGEFLAG(uname, lname, policy) 218 219 #define __PAGEFLAG(uname, lname, policy) \ 220 TESTPAGEFLAG(uname, lname, policy) \ 221 __SETPAGEFLAG(uname, lname, policy) \ 222 __CLEARPAGEFLAG(uname, lname, policy) 223 224 #define TESTSCFLAG(uname, lname, policy) \ 225 TESTSETFLAG(uname, lname, policy) \ 226 TESTCLEARFLAG(uname, lname, policy) 227 228 #define TESTPAGEFLAG_FALSE(uname) \ 229 static inline int Page##uname(const struct page *page) { return 0; } 230 231 #define SETPAGEFLAG_NOOP(uname) \ 232 static inline void SetPage##uname(struct page *page) { } 233 234 #define CLEARPAGEFLAG_NOOP(uname) \ 235 static inline void ClearPage##uname(struct page *page) { } 236 237 #define __CLEARPAGEFLAG_NOOP(uname) \ 238 static inline void __ClearPage##uname(struct page *page) { } 239 240 #define TESTSETFLAG_FALSE(uname) \ 241 static inline int TestSetPage##uname(struct page *page) { return 0; } 242 243 #define TESTCLEARFLAG_FALSE(uname) \ 244 static inline int TestClearPage##uname(struct page *page) { return 0; } 245 246 #define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname) \ 247 SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname) 248 249 #define TESTSCFLAG_FALSE(uname) \ 250 TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname) 251 252 __PAGEFLAG(Locked, locked, PF_NO_TAIL) 253 PAGEFLAG(Error, error, PF_NO_COMPOUND) TESTCLEARFLAG(Error, error, PF_NO_COMPOUND) 254 PAGEFLAG(Referenced, referenced, PF_HEAD) 255 TESTCLEARFLAG(Referenced, referenced, PF_HEAD) 256 __SETPAGEFLAG(Referenced, referenced, PF_HEAD) 257 PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD) 258 __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD) 259 PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD) 260 PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD) 261 TESTCLEARFLAG(Active, active, PF_HEAD) 262 __PAGEFLAG(Slab, slab, PF_NO_TAIL) 263 __PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL) 264 PAGEFLAG(Checked, checked, PF_NO_COMPOUND) /* Used by some filesystems */ 265 266 /* Xen */ 267 PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND) 268 TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND) 269 PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND); 270 PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND); 271 272 PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 273 __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 274 PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 275 __CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 276 __SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 277 278 /* 279 * Private page markings that may be used by the filesystem that owns the page 280 * for its own purposes. 281 * - PG_private and PG_private_2 cause releasepage() and co to be invoked 282 */ 283 PAGEFLAG(Private, private, PF_ANY) __SETPAGEFLAG(Private, private, PF_ANY) 284 __CLEARPAGEFLAG(Private, private, PF_ANY) 285 PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY) 286 PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY) 287 TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY) 288 289 /* 290 * Only test-and-set exist for PG_writeback. The unconditional operators are 291 * risky: they bypass page accounting. 292 */ 293 TESTPAGEFLAG(Writeback, writeback, PF_NO_COMPOUND) 294 TESTSCFLAG(Writeback, writeback, PF_NO_COMPOUND) 295 PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_COMPOUND) 296 297 /* PG_readahead is only used for reads; PG_reclaim is only for writes */ 298 PAGEFLAG(Reclaim, reclaim, PF_NO_COMPOUND) 299 TESTCLEARFLAG(Reclaim, reclaim, PF_NO_COMPOUND) 300 PAGEFLAG(Readahead, reclaim, PF_NO_COMPOUND) 301 TESTCLEARFLAG(Readahead, reclaim, PF_NO_COMPOUND) 302 303 #ifdef CONFIG_HIGHMEM 304 /* 305 * Must use a macro here due to header dependency issues. page_zone() is not 306 * available at this point. 307 */ 308 #define PageHighMem(__p) is_highmem_idx(page_zonenum(__p)) 309 #else 310 PAGEFLAG_FALSE(HighMem) 311 #endif 312 313 #ifdef CONFIG_SWAP 314 PAGEFLAG(SwapCache, swapcache, PF_NO_COMPOUND) 315 #else 316 PAGEFLAG_FALSE(SwapCache) 317 #endif 318 319 PAGEFLAG(Unevictable, unevictable, PF_HEAD) 320 __CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD) 321 TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD) 322 323 #ifdef CONFIG_MMU 324 PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL) 325 __CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL) 326 TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL) 327 #else 328 PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked) 329 TESTSCFLAG_FALSE(Mlocked) 330 #endif 331 332 #ifdef CONFIG_ARCH_USES_PG_UNCACHED 333 PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND) 334 #else 335 PAGEFLAG_FALSE(Uncached) 336 #endif 337 338 #ifdef CONFIG_MEMORY_FAILURE 339 PAGEFLAG(HWPoison, hwpoison, PF_ANY) 340 TESTSCFLAG(HWPoison, hwpoison, PF_ANY) 341 #define __PG_HWPOISON (1UL << PG_hwpoison) 342 #else 343 PAGEFLAG_FALSE(HWPoison) 344 #define __PG_HWPOISON 0 345 #endif 346 347 #if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT) 348 TESTPAGEFLAG(Young, young, PF_ANY) 349 SETPAGEFLAG(Young, young, PF_ANY) 350 TESTCLEARFLAG(Young, young, PF_ANY) 351 PAGEFLAG(Idle, idle, PF_ANY) 352 #endif 353 354 /* 355 * On an anonymous page mapped into a user virtual memory area, 356 * page->mapping points to its anon_vma, not to a struct address_space; 357 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 358 * 359 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 360 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit; 361 * and then page->mapping points, not to an anon_vma, but to a private 362 * structure which KSM associates with that merged page. See ksm.h. 363 * 364 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used. 365 * 366 * Please note that, confusingly, "page_mapping" refers to the inode 367 * address_space which maps the page from disk; whereas "page_mapped" 368 * refers to user virtual address space into which the page is mapped. 369 */ 370 #define PAGE_MAPPING_ANON 1 371 #define PAGE_MAPPING_KSM 2 372 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM) 373 374 static __always_inline int PageAnonHead(struct page *page) 375 { 376 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 377 } 378 379 static __always_inline int PageAnon(struct page *page) 380 { 381 page = compound_head(page); 382 return PageAnonHead(page); 383 } 384 385 #ifdef CONFIG_KSM 386 /* 387 * A KSM page is one of those write-protected "shared pages" or "merged pages" 388 * which KSM maps into multiple mms, wherever identical anonymous page content 389 * is found in VM_MERGEABLE vmas. It's a PageAnon page, pointing not to any 390 * anon_vma, but to that page's node of the stable tree. 391 */ 392 static __always_inline int PageKsm(struct page *page) 393 { 394 page = compound_head(page); 395 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) == 396 (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM); 397 } 398 #else 399 TESTPAGEFLAG_FALSE(Ksm) 400 #endif 401 402 u64 stable_page_flags(struct page *page); 403 404 static inline int PageUptodate(struct page *page) 405 { 406 int ret; 407 page = compound_head(page); 408 ret = test_bit(PG_uptodate, &(page)->flags); 409 /* 410 * Must ensure that the data we read out of the page is loaded 411 * _after_ we've loaded page->flags to check for PageUptodate. 412 * We can skip the barrier if the page is not uptodate, because 413 * we wouldn't be reading anything from it. 414 * 415 * See SetPageUptodate() for the other side of the story. 416 */ 417 if (ret) 418 smp_rmb(); 419 420 return ret; 421 } 422 423 static __always_inline void __SetPageUptodate(struct page *page) 424 { 425 VM_BUG_ON_PAGE(PageTail(page), page); 426 smp_wmb(); 427 __set_bit(PG_uptodate, &page->flags); 428 } 429 430 static __always_inline void SetPageUptodate(struct page *page) 431 { 432 VM_BUG_ON_PAGE(PageTail(page), page); 433 /* 434 * Memory barrier must be issued before setting the PG_uptodate bit, 435 * so that all previous stores issued in order to bring the page 436 * uptodate are actually visible before PageUptodate becomes true. 437 */ 438 smp_wmb(); 439 set_bit(PG_uptodate, &page->flags); 440 } 441 442 CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL) 443 444 int test_clear_page_writeback(struct page *page); 445 int __test_set_page_writeback(struct page *page, bool keep_write); 446 447 #define test_set_page_writeback(page) \ 448 __test_set_page_writeback(page, false) 449 #define test_set_page_writeback_keepwrite(page) \ 450 __test_set_page_writeback(page, true) 451 452 static inline void set_page_writeback(struct page *page) 453 { 454 test_set_page_writeback(page); 455 } 456 457 static inline void set_page_writeback_keepwrite(struct page *page) 458 { 459 test_set_page_writeback_keepwrite(page); 460 } 461 462 __PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY) 463 464 static __always_inline void set_compound_head(struct page *page, struct page *head) 465 { 466 WRITE_ONCE(page->compound_head, (unsigned long)head + 1); 467 } 468 469 static __always_inline void clear_compound_head(struct page *page) 470 { 471 WRITE_ONCE(page->compound_head, 0); 472 } 473 474 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 475 static inline void ClearPageCompound(struct page *page) 476 { 477 BUG_ON(!PageHead(page)); 478 ClearPageHead(page); 479 } 480 #endif 481 482 #define PG_head_mask ((1UL << PG_head)) 483 484 #ifdef CONFIG_HUGETLB_PAGE 485 int PageHuge(struct page *page); 486 int PageHeadHuge(struct page *page); 487 bool page_huge_active(struct page *page); 488 #else 489 TESTPAGEFLAG_FALSE(Huge) 490 TESTPAGEFLAG_FALSE(HeadHuge) 491 492 static inline bool page_huge_active(struct page *page) 493 { 494 return 0; 495 } 496 #endif 497 498 499 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 500 /* 501 * PageHuge() only returns true for hugetlbfs pages, but not for 502 * normal or transparent huge pages. 503 * 504 * PageTransHuge() returns true for both transparent huge and 505 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be 506 * called only in the core VM paths where hugetlbfs pages can't exist. 507 */ 508 static inline int PageTransHuge(struct page *page) 509 { 510 VM_BUG_ON_PAGE(PageTail(page), page); 511 return PageHead(page); 512 } 513 514 /* 515 * PageTransCompound returns true for both transparent huge pages 516 * and hugetlbfs pages, so it should only be called when it's known 517 * that hugetlbfs pages aren't involved. 518 */ 519 static inline int PageTransCompound(struct page *page) 520 { 521 return PageCompound(page); 522 } 523 524 /* 525 * PageTransCompoundMap is the same as PageTransCompound, but it also 526 * guarantees the primary MMU has the entire compound page mapped 527 * through pmd_trans_huge, which in turn guarantees the secondary MMUs 528 * can also map the entire compound page. This allows the secondary 529 * MMUs to call get_user_pages() only once for each compound page and 530 * to immediately map the entire compound page with a single secondary 531 * MMU fault. If there will be a pmd split later, the secondary MMUs 532 * will get an update through the MMU notifier invalidation through 533 * split_huge_pmd(). 534 * 535 * Unlike PageTransCompound, this is safe to be called only while 536 * split_huge_pmd() cannot run from under us, like if protected by the 537 * MMU notifier, otherwise it may result in page->_mapcount < 0 false 538 * positives. 539 */ 540 static inline int PageTransCompoundMap(struct page *page) 541 { 542 return PageTransCompound(page) && atomic_read(&page->_mapcount) < 0; 543 } 544 545 /* 546 * PageTransTail returns true for both transparent huge pages 547 * and hugetlbfs pages, so it should only be called when it's known 548 * that hugetlbfs pages aren't involved. 549 */ 550 static inline int PageTransTail(struct page *page) 551 { 552 return PageTail(page); 553 } 554 555 /* 556 * PageDoubleMap indicates that the compound page is mapped with PTEs as well 557 * as PMDs. 558 * 559 * This is required for optimization of rmap operations for THP: we can postpone 560 * per small page mapcount accounting (and its overhead from atomic operations) 561 * until the first PMD split. 562 * 563 * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up 564 * by one. This reference will go away with last compound_mapcount. 565 * 566 * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap(). 567 */ 568 static inline int PageDoubleMap(struct page *page) 569 { 570 return PageHead(page) && test_bit(PG_double_map, &page[1].flags); 571 } 572 573 static inline int TestSetPageDoubleMap(struct page *page) 574 { 575 VM_BUG_ON_PAGE(!PageHead(page), page); 576 return test_and_set_bit(PG_double_map, &page[1].flags); 577 } 578 579 static inline int TestClearPageDoubleMap(struct page *page) 580 { 581 VM_BUG_ON_PAGE(!PageHead(page), page); 582 return test_and_clear_bit(PG_double_map, &page[1].flags); 583 } 584 585 #else 586 TESTPAGEFLAG_FALSE(TransHuge) 587 TESTPAGEFLAG_FALSE(TransCompound) 588 TESTPAGEFLAG_FALSE(TransCompoundMap) 589 TESTPAGEFLAG_FALSE(TransTail) 590 TESTPAGEFLAG_FALSE(DoubleMap) 591 TESTSETFLAG_FALSE(DoubleMap) 592 TESTCLEARFLAG_FALSE(DoubleMap) 593 #endif 594 595 /* 596 * PageBuddy() indicate that the page is free and in the buddy system 597 * (see mm/page_alloc.c). 598 * 599 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to 600 * -2 so that an underflow of the page_mapcount() won't be mistaken 601 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very 602 * efficiently by most CPU architectures. 603 */ 604 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128) 605 606 static inline int PageBuddy(struct page *page) 607 { 608 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE; 609 } 610 611 static inline void __SetPageBuddy(struct page *page) 612 { 613 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page); 614 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE); 615 } 616 617 static inline void __ClearPageBuddy(struct page *page) 618 { 619 VM_BUG_ON_PAGE(!PageBuddy(page), page); 620 atomic_set(&page->_mapcount, -1); 621 } 622 623 extern bool is_free_buddy_page(struct page *page); 624 625 #define PAGE_BALLOON_MAPCOUNT_VALUE (-256) 626 627 static inline int PageBalloon(struct page *page) 628 { 629 return atomic_read(&page->_mapcount) == PAGE_BALLOON_MAPCOUNT_VALUE; 630 } 631 632 static inline void __SetPageBalloon(struct page *page) 633 { 634 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page); 635 atomic_set(&page->_mapcount, PAGE_BALLOON_MAPCOUNT_VALUE); 636 } 637 638 static inline void __ClearPageBalloon(struct page *page) 639 { 640 VM_BUG_ON_PAGE(!PageBalloon(page), page); 641 atomic_set(&page->_mapcount, -1); 642 } 643 644 /* 645 * If network-based swap is enabled, sl*b must keep track of whether pages 646 * were allocated from pfmemalloc reserves. 647 */ 648 static inline int PageSlabPfmemalloc(struct page *page) 649 { 650 VM_BUG_ON_PAGE(!PageSlab(page), page); 651 return PageActive(page); 652 } 653 654 static inline void SetPageSlabPfmemalloc(struct page *page) 655 { 656 VM_BUG_ON_PAGE(!PageSlab(page), page); 657 SetPageActive(page); 658 } 659 660 static inline void __ClearPageSlabPfmemalloc(struct page *page) 661 { 662 VM_BUG_ON_PAGE(!PageSlab(page), page); 663 __ClearPageActive(page); 664 } 665 666 static inline void ClearPageSlabPfmemalloc(struct page *page) 667 { 668 VM_BUG_ON_PAGE(!PageSlab(page), page); 669 ClearPageActive(page); 670 } 671 672 #ifdef CONFIG_MMU 673 #define __PG_MLOCKED (1UL << PG_mlocked) 674 #else 675 #define __PG_MLOCKED 0 676 #endif 677 678 /* 679 * Flags checked when a page is freed. Pages being freed should not have 680 * these flags set. It they are, there is a problem. 681 */ 682 #define PAGE_FLAGS_CHECK_AT_FREE \ 683 (1UL << PG_lru | 1UL << PG_locked | \ 684 1UL << PG_private | 1UL << PG_private_2 | \ 685 1UL << PG_writeback | 1UL << PG_reserved | \ 686 1UL << PG_slab | 1UL << PG_swapcache | 1UL << PG_active | \ 687 1UL << PG_unevictable | __PG_MLOCKED) 688 689 /* 690 * Flags checked when a page is prepped for return by the page allocator. 691 * Pages being prepped should not have these flags set. It they are set, 692 * there has been a kernel bug or struct page corruption. 693 * 694 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's 695 * alloc-free cycle to prevent from reusing the page. 696 */ 697 #define PAGE_FLAGS_CHECK_AT_PREP \ 698 (((1UL << NR_PAGEFLAGS) - 1) & ~__PG_HWPOISON) 699 700 #define PAGE_FLAGS_PRIVATE \ 701 (1UL << PG_private | 1UL << PG_private_2) 702 /** 703 * page_has_private - Determine if page has private stuff 704 * @page: The page to be checked 705 * 706 * Determine if a page has private stuff, indicating that release routines 707 * should be invoked upon it. 708 */ 709 static inline int page_has_private(struct page *page) 710 { 711 return !!(page->flags & PAGE_FLAGS_PRIVATE); 712 } 713 714 #undef PF_ANY 715 #undef PF_HEAD 716 #undef PF_NO_TAIL 717 #undef PF_NO_COMPOUND 718 #endif /* !__GENERATING_BOUNDS_H */ 719 720 #endif /* PAGE_FLAGS_H */ 721