1 /* 2 * Macros for manipulating and testing page->flags 3 */ 4 5 #ifndef PAGE_FLAGS_H 6 #define PAGE_FLAGS_H 7 8 #include <linux/types.h> 9 #include <linux/bug.h> 10 #include <linux/mmdebug.h> 11 #ifndef __GENERATING_BOUNDS_H 12 #include <linux/mm_types.h> 13 #include <generated/bounds.h> 14 #endif /* !__GENERATING_BOUNDS_H */ 15 16 /* 17 * Various page->flags bits: 18 * 19 * PG_reserved is set for special pages, which can never be swapped out. Some 20 * of them might not even exist (eg empty_bad_page)... 21 * 22 * The PG_private bitflag is set on pagecache pages if they contain filesystem 23 * specific data (which is normally at page->private). It can be used by 24 * private allocations for its own usage. 25 * 26 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O 27 * and cleared when writeback _starts_ or when read _completes_. PG_writeback 28 * is set before writeback starts and cleared when it finishes. 29 * 30 * PG_locked also pins a page in pagecache, and blocks truncation of the file 31 * while it is held. 32 * 33 * page_waitqueue(page) is a wait queue of all tasks waiting for the page 34 * to become unlocked. 35 * 36 * PG_uptodate tells whether the page's contents is valid. When a read 37 * completes, the page becomes uptodate, unless a disk I/O error happened. 38 * 39 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and 40 * file-backed pagecache (see mm/vmscan.c). 41 * 42 * PG_error is set to indicate that an I/O error occurred on this page. 43 * 44 * PG_arch_1 is an architecture specific page state bit. The generic code 45 * guarantees that this bit is cleared for a page when it first is entered into 46 * the page cache. 47 * 48 * PG_highmem pages are not permanently mapped into the kernel virtual address 49 * space, they need to be kmapped separately for doing IO on the pages. The 50 * struct page (these bits with information) are always mapped into kernel 51 * address space... 52 * 53 * PG_hwpoison indicates that a page got corrupted in hardware and contains 54 * data with incorrect ECC bits that triggered a machine check. Accessing is 55 * not safe since it may cause another machine check. Don't touch! 56 */ 57 58 /* 59 * Don't use the *_dontuse flags. Use the macros. Otherwise you'll break 60 * locked- and dirty-page accounting. 61 * 62 * The page flags field is split into two parts, the main flags area 63 * which extends from the low bits upwards, and the fields area which 64 * extends from the high bits downwards. 65 * 66 * | FIELD | ... | FLAGS | 67 * N-1 ^ 0 68 * (NR_PAGEFLAGS) 69 * 70 * The fields area is reserved for fields mapping zone, node (for NUMA) and 71 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like 72 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP). 73 */ 74 enum pageflags { 75 PG_locked, /* Page is locked. Don't touch. */ 76 PG_waiters, /* Page has waiters, check its waitqueue */ 77 PG_error, 78 PG_referenced, 79 PG_uptodate, 80 PG_dirty, 81 PG_lru, 82 PG_active, 83 PG_slab, 84 PG_owner_priv_1, /* Owner use. If pagecache, fs may use*/ 85 PG_arch_1, 86 PG_reserved, 87 PG_private, /* If pagecache, has fs-private data */ 88 PG_private_2, /* If pagecache, has fs aux data */ 89 PG_writeback, /* Page is under writeback */ 90 PG_head, /* A head page */ 91 PG_mappedtodisk, /* Has blocks allocated on-disk */ 92 PG_reclaim, /* To be reclaimed asap */ 93 PG_swapbacked, /* Page is backed by RAM/swap */ 94 PG_unevictable, /* Page is "unevictable" */ 95 #ifdef CONFIG_MMU 96 PG_mlocked, /* Page is vma mlocked */ 97 #endif 98 #ifdef CONFIG_ARCH_USES_PG_UNCACHED 99 PG_uncached, /* Page has been mapped as uncached */ 100 #endif 101 #ifdef CONFIG_MEMORY_FAILURE 102 PG_hwpoison, /* hardware poisoned page. Don't touch */ 103 #endif 104 #if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT) 105 PG_young, 106 PG_idle, 107 #endif 108 __NR_PAGEFLAGS, 109 110 /* Filesystems */ 111 PG_checked = PG_owner_priv_1, 112 113 /* SwapBacked */ 114 PG_swapcache = PG_owner_priv_1, /* Swap page: swp_entry_t in private */ 115 116 /* Two page bits are conscripted by FS-Cache to maintain local caching 117 * state. These bits are set on pages belonging to the netfs's inodes 118 * when those inodes are being locally cached. 119 */ 120 PG_fscache = PG_private_2, /* page backed by cache */ 121 122 /* XEN */ 123 /* Pinned in Xen as a read-only pagetable page. */ 124 PG_pinned = PG_owner_priv_1, 125 /* Pinned as part of domain save (see xen_mm_pin_all()). */ 126 PG_savepinned = PG_dirty, 127 /* Has a grant mapping of another (foreign) domain's page. */ 128 PG_foreign = PG_owner_priv_1, 129 130 /* SLOB */ 131 PG_slob_free = PG_private, 132 133 /* Compound pages. Stored in first tail page's flags */ 134 PG_double_map = PG_private_2, 135 136 /* non-lru isolated movable page */ 137 PG_isolated = PG_reclaim, 138 }; 139 140 #ifndef __GENERATING_BOUNDS_H 141 142 struct page; /* forward declaration */ 143 144 static inline struct page *compound_head(struct page *page) 145 { 146 unsigned long head = READ_ONCE(page->compound_head); 147 148 if (unlikely(head & 1)) 149 return (struct page *) (head - 1); 150 return page; 151 } 152 153 static __always_inline int PageTail(struct page *page) 154 { 155 return READ_ONCE(page->compound_head) & 1; 156 } 157 158 static __always_inline int PageCompound(struct page *page) 159 { 160 return test_bit(PG_head, &page->flags) || PageTail(page); 161 } 162 163 /* 164 * Page flags policies wrt compound pages 165 * 166 * PF_ANY: 167 * the page flag is relevant for small, head and tail pages. 168 * 169 * PF_HEAD: 170 * for compound page all operations related to the page flag applied to 171 * head page. 172 * 173 * PF_ONLY_HEAD: 174 * for compound page, callers only ever operate on the head page. 175 * 176 * PF_NO_TAIL: 177 * modifications of the page flag must be done on small or head pages, 178 * checks can be done on tail pages too. 179 * 180 * PF_NO_COMPOUND: 181 * the page flag is not relevant for compound pages. 182 */ 183 #define PF_ANY(page, enforce) page 184 #define PF_HEAD(page, enforce) compound_head(page) 185 #define PF_ONLY_HEAD(page, enforce) ({ \ 186 VM_BUG_ON_PGFLAGS(PageTail(page), page); \ 187 page;}) 188 #define PF_NO_TAIL(page, enforce) ({ \ 189 VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page); \ 190 compound_head(page);}) 191 #define PF_NO_COMPOUND(page, enforce) ({ \ 192 VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \ 193 page;}) 194 195 /* 196 * Macros to create function definitions for page flags 197 */ 198 #define TESTPAGEFLAG(uname, lname, policy) \ 199 static __always_inline int Page##uname(struct page *page) \ 200 { return test_bit(PG_##lname, &policy(page, 0)->flags); } 201 202 #define SETPAGEFLAG(uname, lname, policy) \ 203 static __always_inline void SetPage##uname(struct page *page) \ 204 { set_bit(PG_##lname, &policy(page, 1)->flags); } 205 206 #define CLEARPAGEFLAG(uname, lname, policy) \ 207 static __always_inline void ClearPage##uname(struct page *page) \ 208 { clear_bit(PG_##lname, &policy(page, 1)->flags); } 209 210 #define __SETPAGEFLAG(uname, lname, policy) \ 211 static __always_inline void __SetPage##uname(struct page *page) \ 212 { __set_bit(PG_##lname, &policy(page, 1)->flags); } 213 214 #define __CLEARPAGEFLAG(uname, lname, policy) \ 215 static __always_inline void __ClearPage##uname(struct page *page) \ 216 { __clear_bit(PG_##lname, &policy(page, 1)->flags); } 217 218 #define TESTSETFLAG(uname, lname, policy) \ 219 static __always_inline int TestSetPage##uname(struct page *page) \ 220 { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); } 221 222 #define TESTCLEARFLAG(uname, lname, policy) \ 223 static __always_inline int TestClearPage##uname(struct page *page) \ 224 { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); } 225 226 #define PAGEFLAG(uname, lname, policy) \ 227 TESTPAGEFLAG(uname, lname, policy) \ 228 SETPAGEFLAG(uname, lname, policy) \ 229 CLEARPAGEFLAG(uname, lname, policy) 230 231 #define __PAGEFLAG(uname, lname, policy) \ 232 TESTPAGEFLAG(uname, lname, policy) \ 233 __SETPAGEFLAG(uname, lname, policy) \ 234 __CLEARPAGEFLAG(uname, lname, policy) 235 236 #define TESTSCFLAG(uname, lname, policy) \ 237 TESTSETFLAG(uname, lname, policy) \ 238 TESTCLEARFLAG(uname, lname, policy) 239 240 #define TESTPAGEFLAG_FALSE(uname) \ 241 static inline int Page##uname(const struct page *page) { return 0; } 242 243 #define SETPAGEFLAG_NOOP(uname) \ 244 static inline void SetPage##uname(struct page *page) { } 245 246 #define CLEARPAGEFLAG_NOOP(uname) \ 247 static inline void ClearPage##uname(struct page *page) { } 248 249 #define __CLEARPAGEFLAG_NOOP(uname) \ 250 static inline void __ClearPage##uname(struct page *page) { } 251 252 #define TESTSETFLAG_FALSE(uname) \ 253 static inline int TestSetPage##uname(struct page *page) { return 0; } 254 255 #define TESTCLEARFLAG_FALSE(uname) \ 256 static inline int TestClearPage##uname(struct page *page) { return 0; } 257 258 #define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname) \ 259 SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname) 260 261 #define TESTSCFLAG_FALSE(uname) \ 262 TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname) 263 264 __PAGEFLAG(Locked, locked, PF_NO_TAIL) 265 PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) __CLEARPAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) 266 PAGEFLAG(Error, error, PF_NO_COMPOUND) TESTCLEARFLAG(Error, error, PF_NO_COMPOUND) 267 PAGEFLAG(Referenced, referenced, PF_HEAD) 268 TESTCLEARFLAG(Referenced, referenced, PF_HEAD) 269 __SETPAGEFLAG(Referenced, referenced, PF_HEAD) 270 PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD) 271 __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD) 272 PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD) 273 PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD) 274 TESTCLEARFLAG(Active, active, PF_HEAD) 275 __PAGEFLAG(Slab, slab, PF_NO_TAIL) 276 __PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL) 277 PAGEFLAG(Checked, checked, PF_NO_COMPOUND) /* Used by some filesystems */ 278 279 /* Xen */ 280 PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND) 281 TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND) 282 PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND); 283 PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND); 284 285 PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 286 __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 287 PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 288 __CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 289 __SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 290 291 /* 292 * Private page markings that may be used by the filesystem that owns the page 293 * for its own purposes. 294 * - PG_private and PG_private_2 cause releasepage() and co to be invoked 295 */ 296 PAGEFLAG(Private, private, PF_ANY) __SETPAGEFLAG(Private, private, PF_ANY) 297 __CLEARPAGEFLAG(Private, private, PF_ANY) 298 PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY) 299 PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY) 300 TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY) 301 302 /* 303 * Only test-and-set exist for PG_writeback. The unconditional operators are 304 * risky: they bypass page accounting. 305 */ 306 TESTPAGEFLAG(Writeback, writeback, PF_NO_COMPOUND) 307 TESTSCFLAG(Writeback, writeback, PF_NO_COMPOUND) 308 PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL) 309 310 /* PG_readahead is only used for reads; PG_reclaim is only for writes */ 311 PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL) 312 TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL) 313 PAGEFLAG(Readahead, reclaim, PF_NO_COMPOUND) 314 TESTCLEARFLAG(Readahead, reclaim, PF_NO_COMPOUND) 315 316 #ifdef CONFIG_HIGHMEM 317 /* 318 * Must use a macro here due to header dependency issues. page_zone() is not 319 * available at this point. 320 */ 321 #define PageHighMem(__p) is_highmem_idx(page_zonenum(__p)) 322 #else 323 PAGEFLAG_FALSE(HighMem) 324 #endif 325 326 #ifdef CONFIG_SWAP 327 static __always_inline int PageSwapCache(struct page *page) 328 { 329 return PageSwapBacked(page) && test_bit(PG_swapcache, &page->flags); 330 331 } 332 SETPAGEFLAG(SwapCache, swapcache, PF_NO_COMPOUND) 333 CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_COMPOUND) 334 #else 335 PAGEFLAG_FALSE(SwapCache) 336 #endif 337 338 PAGEFLAG(Unevictable, unevictable, PF_HEAD) 339 __CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD) 340 TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD) 341 342 #ifdef CONFIG_MMU 343 PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL) 344 __CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL) 345 TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL) 346 #else 347 PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked) 348 TESTSCFLAG_FALSE(Mlocked) 349 #endif 350 351 #ifdef CONFIG_ARCH_USES_PG_UNCACHED 352 PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND) 353 #else 354 PAGEFLAG_FALSE(Uncached) 355 #endif 356 357 #ifdef CONFIG_MEMORY_FAILURE 358 PAGEFLAG(HWPoison, hwpoison, PF_ANY) 359 TESTSCFLAG(HWPoison, hwpoison, PF_ANY) 360 #define __PG_HWPOISON (1UL << PG_hwpoison) 361 #else 362 PAGEFLAG_FALSE(HWPoison) 363 #define __PG_HWPOISON 0 364 #endif 365 366 #if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT) 367 TESTPAGEFLAG(Young, young, PF_ANY) 368 SETPAGEFLAG(Young, young, PF_ANY) 369 TESTCLEARFLAG(Young, young, PF_ANY) 370 PAGEFLAG(Idle, idle, PF_ANY) 371 #endif 372 373 /* 374 * On an anonymous page mapped into a user virtual memory area, 375 * page->mapping points to its anon_vma, not to a struct address_space; 376 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 377 * 378 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 379 * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON 380 * bit; and then page->mapping points, not to an anon_vma, but to a private 381 * structure which KSM associates with that merged page. See ksm.h. 382 * 383 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable 384 * page and then page->mapping points a struct address_space. 385 * 386 * Please note that, confusingly, "page_mapping" refers to the inode 387 * address_space which maps the page from disk; whereas "page_mapped" 388 * refers to user virtual address space into which the page is mapped. 389 */ 390 #define PAGE_MAPPING_ANON 0x1 391 #define PAGE_MAPPING_MOVABLE 0x2 392 #define PAGE_MAPPING_KSM (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE) 393 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE) 394 395 static __always_inline int PageMappingFlags(struct page *page) 396 { 397 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0; 398 } 399 400 static __always_inline int PageAnon(struct page *page) 401 { 402 page = compound_head(page); 403 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 404 } 405 406 static __always_inline int __PageMovable(struct page *page) 407 { 408 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) == 409 PAGE_MAPPING_MOVABLE; 410 } 411 412 #ifdef CONFIG_KSM 413 /* 414 * A KSM page is one of those write-protected "shared pages" or "merged pages" 415 * which KSM maps into multiple mms, wherever identical anonymous page content 416 * is found in VM_MERGEABLE vmas. It's a PageAnon page, pointing not to any 417 * anon_vma, but to that page's node of the stable tree. 418 */ 419 static __always_inline int PageKsm(struct page *page) 420 { 421 page = compound_head(page); 422 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) == 423 PAGE_MAPPING_KSM; 424 } 425 #else 426 TESTPAGEFLAG_FALSE(Ksm) 427 #endif 428 429 u64 stable_page_flags(struct page *page); 430 431 static inline int PageUptodate(struct page *page) 432 { 433 int ret; 434 page = compound_head(page); 435 ret = test_bit(PG_uptodate, &(page)->flags); 436 /* 437 * Must ensure that the data we read out of the page is loaded 438 * _after_ we've loaded page->flags to check for PageUptodate. 439 * We can skip the barrier if the page is not uptodate, because 440 * we wouldn't be reading anything from it. 441 * 442 * See SetPageUptodate() for the other side of the story. 443 */ 444 if (ret) 445 smp_rmb(); 446 447 return ret; 448 } 449 450 static __always_inline void __SetPageUptodate(struct page *page) 451 { 452 VM_BUG_ON_PAGE(PageTail(page), page); 453 smp_wmb(); 454 __set_bit(PG_uptodate, &page->flags); 455 } 456 457 static __always_inline void SetPageUptodate(struct page *page) 458 { 459 VM_BUG_ON_PAGE(PageTail(page), page); 460 /* 461 * Memory barrier must be issued before setting the PG_uptodate bit, 462 * so that all previous stores issued in order to bring the page 463 * uptodate are actually visible before PageUptodate becomes true. 464 */ 465 smp_wmb(); 466 set_bit(PG_uptodate, &page->flags); 467 } 468 469 CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL) 470 471 int test_clear_page_writeback(struct page *page); 472 int __test_set_page_writeback(struct page *page, bool keep_write); 473 474 #define test_set_page_writeback(page) \ 475 __test_set_page_writeback(page, false) 476 #define test_set_page_writeback_keepwrite(page) \ 477 __test_set_page_writeback(page, true) 478 479 static inline void set_page_writeback(struct page *page) 480 { 481 test_set_page_writeback(page); 482 } 483 484 static inline void set_page_writeback_keepwrite(struct page *page) 485 { 486 test_set_page_writeback_keepwrite(page); 487 } 488 489 __PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY) 490 491 static __always_inline void set_compound_head(struct page *page, struct page *head) 492 { 493 WRITE_ONCE(page->compound_head, (unsigned long)head + 1); 494 } 495 496 static __always_inline void clear_compound_head(struct page *page) 497 { 498 WRITE_ONCE(page->compound_head, 0); 499 } 500 501 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 502 static inline void ClearPageCompound(struct page *page) 503 { 504 BUG_ON(!PageHead(page)); 505 ClearPageHead(page); 506 } 507 #endif 508 509 #define PG_head_mask ((1UL << PG_head)) 510 511 #ifdef CONFIG_HUGETLB_PAGE 512 int PageHuge(struct page *page); 513 int PageHeadHuge(struct page *page); 514 bool page_huge_active(struct page *page); 515 #else 516 TESTPAGEFLAG_FALSE(Huge) 517 TESTPAGEFLAG_FALSE(HeadHuge) 518 519 static inline bool page_huge_active(struct page *page) 520 { 521 return 0; 522 } 523 #endif 524 525 526 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 527 /* 528 * PageHuge() only returns true for hugetlbfs pages, but not for 529 * normal or transparent huge pages. 530 * 531 * PageTransHuge() returns true for both transparent huge and 532 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be 533 * called only in the core VM paths where hugetlbfs pages can't exist. 534 */ 535 static inline int PageTransHuge(struct page *page) 536 { 537 VM_BUG_ON_PAGE(PageTail(page), page); 538 return PageHead(page); 539 } 540 541 /* 542 * PageTransCompound returns true for both transparent huge pages 543 * and hugetlbfs pages, so it should only be called when it's known 544 * that hugetlbfs pages aren't involved. 545 */ 546 static inline int PageTransCompound(struct page *page) 547 { 548 return PageCompound(page); 549 } 550 551 /* 552 * PageTransCompoundMap is the same as PageTransCompound, but it also 553 * guarantees the primary MMU has the entire compound page mapped 554 * through pmd_trans_huge, which in turn guarantees the secondary MMUs 555 * can also map the entire compound page. This allows the secondary 556 * MMUs to call get_user_pages() only once for each compound page and 557 * to immediately map the entire compound page with a single secondary 558 * MMU fault. If there will be a pmd split later, the secondary MMUs 559 * will get an update through the MMU notifier invalidation through 560 * split_huge_pmd(). 561 * 562 * Unlike PageTransCompound, this is safe to be called only while 563 * split_huge_pmd() cannot run from under us, like if protected by the 564 * MMU notifier, otherwise it may result in page->_mapcount < 0 false 565 * positives. 566 */ 567 static inline int PageTransCompoundMap(struct page *page) 568 { 569 return PageTransCompound(page) && atomic_read(&page->_mapcount) < 0; 570 } 571 572 /* 573 * PageTransTail returns true for both transparent huge pages 574 * and hugetlbfs pages, so it should only be called when it's known 575 * that hugetlbfs pages aren't involved. 576 */ 577 static inline int PageTransTail(struct page *page) 578 { 579 return PageTail(page); 580 } 581 582 /* 583 * PageDoubleMap indicates that the compound page is mapped with PTEs as well 584 * as PMDs. 585 * 586 * This is required for optimization of rmap operations for THP: we can postpone 587 * per small page mapcount accounting (and its overhead from atomic operations) 588 * until the first PMD split. 589 * 590 * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up 591 * by one. This reference will go away with last compound_mapcount. 592 * 593 * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap(). 594 */ 595 static inline int PageDoubleMap(struct page *page) 596 { 597 return PageHead(page) && test_bit(PG_double_map, &page[1].flags); 598 } 599 600 static inline void SetPageDoubleMap(struct page *page) 601 { 602 VM_BUG_ON_PAGE(!PageHead(page), page); 603 set_bit(PG_double_map, &page[1].flags); 604 } 605 606 static inline void ClearPageDoubleMap(struct page *page) 607 { 608 VM_BUG_ON_PAGE(!PageHead(page), page); 609 clear_bit(PG_double_map, &page[1].flags); 610 } 611 static inline int TestSetPageDoubleMap(struct page *page) 612 { 613 VM_BUG_ON_PAGE(!PageHead(page), page); 614 return test_and_set_bit(PG_double_map, &page[1].flags); 615 } 616 617 static inline int TestClearPageDoubleMap(struct page *page) 618 { 619 VM_BUG_ON_PAGE(!PageHead(page), page); 620 return test_and_clear_bit(PG_double_map, &page[1].flags); 621 } 622 623 #else 624 TESTPAGEFLAG_FALSE(TransHuge) 625 TESTPAGEFLAG_FALSE(TransCompound) 626 TESTPAGEFLAG_FALSE(TransCompoundMap) 627 TESTPAGEFLAG_FALSE(TransTail) 628 PAGEFLAG_FALSE(DoubleMap) 629 TESTSETFLAG_FALSE(DoubleMap) 630 TESTCLEARFLAG_FALSE(DoubleMap) 631 #endif 632 633 /* 634 * For pages that are never mapped to userspace, page->mapcount may be 635 * used for storing extra information about page type. Any value used 636 * for this purpose must be <= -2, but it's better start not too close 637 * to -2 so that an underflow of the page_mapcount() won't be mistaken 638 * for a special page. 639 */ 640 #define PAGE_MAPCOUNT_OPS(uname, lname) \ 641 static __always_inline int Page##uname(struct page *page) \ 642 { \ 643 return atomic_read(&page->_mapcount) == \ 644 PAGE_##lname##_MAPCOUNT_VALUE; \ 645 } \ 646 static __always_inline void __SetPage##uname(struct page *page) \ 647 { \ 648 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page); \ 649 atomic_set(&page->_mapcount, PAGE_##lname##_MAPCOUNT_VALUE); \ 650 } \ 651 static __always_inline void __ClearPage##uname(struct page *page) \ 652 { \ 653 VM_BUG_ON_PAGE(!Page##uname(page), page); \ 654 atomic_set(&page->_mapcount, -1); \ 655 } 656 657 /* 658 * PageBuddy() indicate that the page is free and in the buddy system 659 * (see mm/page_alloc.c). 660 */ 661 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128) 662 PAGE_MAPCOUNT_OPS(Buddy, BUDDY) 663 664 /* 665 * PageBalloon() is set on pages that are on the balloon page list 666 * (see mm/balloon_compaction.c). 667 */ 668 #define PAGE_BALLOON_MAPCOUNT_VALUE (-256) 669 PAGE_MAPCOUNT_OPS(Balloon, BALLOON) 670 671 /* 672 * If kmemcg is enabled, the buddy allocator will set PageKmemcg() on 673 * pages allocated with __GFP_ACCOUNT. It gets cleared on page free. 674 */ 675 #define PAGE_KMEMCG_MAPCOUNT_VALUE (-512) 676 PAGE_MAPCOUNT_OPS(Kmemcg, KMEMCG) 677 678 extern bool is_free_buddy_page(struct page *page); 679 680 __PAGEFLAG(Isolated, isolated, PF_ANY); 681 682 /* 683 * If network-based swap is enabled, sl*b must keep track of whether pages 684 * were allocated from pfmemalloc reserves. 685 */ 686 static inline int PageSlabPfmemalloc(struct page *page) 687 { 688 VM_BUG_ON_PAGE(!PageSlab(page), page); 689 return PageActive(page); 690 } 691 692 static inline void SetPageSlabPfmemalloc(struct page *page) 693 { 694 VM_BUG_ON_PAGE(!PageSlab(page), page); 695 SetPageActive(page); 696 } 697 698 static inline void __ClearPageSlabPfmemalloc(struct page *page) 699 { 700 VM_BUG_ON_PAGE(!PageSlab(page), page); 701 __ClearPageActive(page); 702 } 703 704 static inline void ClearPageSlabPfmemalloc(struct page *page) 705 { 706 VM_BUG_ON_PAGE(!PageSlab(page), page); 707 ClearPageActive(page); 708 } 709 710 #ifdef CONFIG_MMU 711 #define __PG_MLOCKED (1UL << PG_mlocked) 712 #else 713 #define __PG_MLOCKED 0 714 #endif 715 716 /* 717 * Flags checked when a page is freed. Pages being freed should not have 718 * these flags set. It they are, there is a problem. 719 */ 720 #define PAGE_FLAGS_CHECK_AT_FREE \ 721 (1UL << PG_lru | 1UL << PG_locked | \ 722 1UL << PG_private | 1UL << PG_private_2 | \ 723 1UL << PG_writeback | 1UL << PG_reserved | \ 724 1UL << PG_slab | 1UL << PG_active | \ 725 1UL << PG_unevictable | __PG_MLOCKED) 726 727 /* 728 * Flags checked when a page is prepped for return by the page allocator. 729 * Pages being prepped should not have these flags set. It they are set, 730 * there has been a kernel bug or struct page corruption. 731 * 732 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's 733 * alloc-free cycle to prevent from reusing the page. 734 */ 735 #define PAGE_FLAGS_CHECK_AT_PREP \ 736 (((1UL << NR_PAGEFLAGS) - 1) & ~__PG_HWPOISON) 737 738 #define PAGE_FLAGS_PRIVATE \ 739 (1UL << PG_private | 1UL << PG_private_2) 740 /** 741 * page_has_private - Determine if page has private stuff 742 * @page: The page to be checked 743 * 744 * Determine if a page has private stuff, indicating that release routines 745 * should be invoked upon it. 746 */ 747 static inline int page_has_private(struct page *page) 748 { 749 return !!(page->flags & PAGE_FLAGS_PRIVATE); 750 } 751 752 #undef PF_ANY 753 #undef PF_HEAD 754 #undef PF_ONLY_HEAD 755 #undef PF_NO_TAIL 756 #undef PF_NO_COMPOUND 757 #endif /* !__GENERATING_BOUNDS_H */ 758 759 #endif /* PAGE_FLAGS_H */ 760