xref: /linux-6.15/include/linux/page-flags.h (revision 99fc11bb)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Macros for manipulating and testing page->flags
4  */
5 
6 #ifndef PAGE_FLAGS_H
7 #define PAGE_FLAGS_H
8 
9 #include <linux/types.h>
10 #include <linux/bug.h>
11 #include <linux/mmdebug.h>
12 #ifndef __GENERATING_BOUNDS_H
13 #include <linux/mm_types.h>
14 #include <generated/bounds.h>
15 #endif /* !__GENERATING_BOUNDS_H */
16 
17 /*
18  * Various page->flags bits:
19  *
20  * PG_reserved is set for special pages. The "struct page" of such a page
21  * should in general not be touched (e.g. set dirty) except by its owner.
22  * Pages marked as PG_reserved include:
23  * - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS,
24  *   initrd, HW tables)
25  * - Pages reserved or allocated early during boot (before the page allocator
26  *   was initialized). This includes (depending on the architecture) the
27  *   initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much
28  *   much more. Once (if ever) freed, PG_reserved is cleared and they will
29  *   be given to the page allocator.
30  * - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying
31  *   to read/write these pages might end badly. Don't touch!
32  * - The zero page(s)
33  * - Pages not added to the page allocator when onlining a section because
34  *   they were excluded via the online_page_callback() or because they are
35  *   PG_hwpoison.
36  * - Pages allocated in the context of kexec/kdump (loaded kernel image,
37  *   control pages, vmcoreinfo)
38  * - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are
39  *   not marked PG_reserved (as they might be in use by somebody else who does
40  *   not respect the caching strategy).
41  * - Pages part of an offline section (struct pages of offline sections should
42  *   not be trusted as they will be initialized when first onlined).
43  * - MCA pages on ia64
44  * - Pages holding CPU notes for POWER Firmware Assisted Dump
45  * - Device memory (e.g. PMEM, DAX, HMM)
46  * Some PG_reserved pages will be excluded from the hibernation image.
47  * PG_reserved does in general not hinder anybody from dumping or swapping
48  * and is no longer required for remap_pfn_range(). ioremap might require it.
49  * Consequently, PG_reserved for a page mapped into user space can indicate
50  * the zero page, the vDSO, MMIO pages or device memory.
51  *
52  * The PG_private bitflag is set on pagecache pages if they contain filesystem
53  * specific data (which is normally at page->private). It can be used by
54  * private allocations for its own usage.
55  *
56  * During initiation of disk I/O, PG_locked is set. This bit is set before I/O
57  * and cleared when writeback _starts_ or when read _completes_. PG_writeback
58  * is set before writeback starts and cleared when it finishes.
59  *
60  * PG_locked also pins a page in pagecache, and blocks truncation of the file
61  * while it is held.
62  *
63  * page_waitqueue(page) is a wait queue of all tasks waiting for the page
64  * to become unlocked.
65  *
66  * PG_swapbacked is set when a page uses swap as a backing storage.  This are
67  * usually PageAnon or shmem pages but please note that even anonymous pages
68  * might lose their PG_swapbacked flag when they simply can be dropped (e.g. as
69  * a result of MADV_FREE).
70  *
71  * PG_referenced, PG_reclaim are used for page reclaim for anonymous and
72  * file-backed pagecache (see mm/vmscan.c).
73  *
74  * PG_error is set to indicate that an I/O error occurred on this page.
75  *
76  * PG_arch_1 is an architecture specific page state bit.  The generic code
77  * guarantees that this bit is cleared for a page when it first is entered into
78  * the page cache.
79  *
80  * PG_hwpoison indicates that a page got corrupted in hardware and contains
81  * data with incorrect ECC bits that triggered a machine check. Accessing is
82  * not safe since it may cause another machine check. Don't touch!
83  */
84 
85 /*
86  * Don't use the pageflags directly.  Use the PageFoo macros.
87  *
88  * The page flags field is split into two parts, the main flags area
89  * which extends from the low bits upwards, and the fields area which
90  * extends from the high bits downwards.
91  *
92  *  | FIELD | ... | FLAGS |
93  *  N-1           ^       0
94  *               (NR_PAGEFLAGS)
95  *
96  * The fields area is reserved for fields mapping zone, node (for NUMA) and
97  * SPARSEMEM section (for variants of SPARSEMEM that require section ids like
98  * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
99  */
100 enum pageflags {
101 	PG_locked,		/* Page is locked. Don't touch. */
102 	PG_referenced,
103 	PG_uptodate,
104 	PG_dirty,
105 	PG_lru,
106 	PG_active,
107 	PG_workingset,
108 	PG_waiters,		/* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */
109 	PG_error,
110 	PG_slab,
111 	PG_owner_priv_1,	/* Owner use. If pagecache, fs may use*/
112 	PG_arch_1,
113 	PG_reserved,
114 	PG_private,		/* If pagecache, has fs-private data */
115 	PG_private_2,		/* If pagecache, has fs aux data */
116 	PG_writeback,		/* Page is under writeback */
117 	PG_head,		/* A head page */
118 	PG_mappedtodisk,	/* Has blocks allocated on-disk */
119 	PG_reclaim,		/* To be reclaimed asap */
120 	PG_swapbacked,		/* Page is backed by RAM/swap */
121 	PG_unevictable,		/* Page is "unevictable"  */
122 #ifdef CONFIG_MMU
123 	PG_mlocked,		/* Page is vma mlocked */
124 #endif
125 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
126 	PG_uncached,		/* Page has been mapped as uncached */
127 #endif
128 #ifdef CONFIG_MEMORY_FAILURE
129 	PG_hwpoison,		/* hardware poisoned page. Don't touch */
130 #endif
131 #if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT)
132 	PG_young,
133 	PG_idle,
134 #endif
135 #ifdef CONFIG_64BIT
136 	PG_arch_2,
137 #endif
138 #ifdef CONFIG_KASAN_HW_TAGS
139 	PG_skip_kasan_poison,
140 #endif
141 	__NR_PAGEFLAGS,
142 
143 	PG_readahead = PG_reclaim,
144 
145 	/* Filesystems */
146 	PG_checked = PG_owner_priv_1,
147 
148 	/* SwapBacked */
149 	PG_swapcache = PG_owner_priv_1,	/* Swap page: swp_entry_t in private */
150 
151 	/* Two page bits are conscripted by FS-Cache to maintain local caching
152 	 * state.  These bits are set on pages belonging to the netfs's inodes
153 	 * when those inodes are being locally cached.
154 	 */
155 	PG_fscache = PG_private_2,	/* page backed by cache */
156 
157 	/* XEN */
158 	/* Pinned in Xen as a read-only pagetable page. */
159 	PG_pinned = PG_owner_priv_1,
160 	/* Pinned as part of domain save (see xen_mm_pin_all()). */
161 	PG_savepinned = PG_dirty,
162 	/* Has a grant mapping of another (foreign) domain's page. */
163 	PG_foreign = PG_owner_priv_1,
164 	/* Remapped by swiotlb-xen. */
165 	PG_xen_remapped = PG_owner_priv_1,
166 
167 	/* SLOB */
168 	PG_slob_free = PG_private,
169 
170 	/* Compound pages. Stored in first tail page's flags */
171 	PG_double_map = PG_workingset,
172 
173 #ifdef CONFIG_MEMORY_FAILURE
174 	/*
175 	 * Compound pages. Stored in first tail page's flags.
176 	 * Indicates that at least one subpage is hwpoisoned in the
177 	 * THP.
178 	 */
179 	PG_has_hwpoisoned = PG_mappedtodisk,
180 #endif
181 
182 	/* non-lru isolated movable page */
183 	PG_isolated = PG_reclaim,
184 
185 	/* Only valid for buddy pages. Used to track pages that are reported */
186 	PG_reported = PG_uptodate,
187 };
188 
189 #define PAGEFLAGS_MASK		((1UL << NR_PAGEFLAGS) - 1)
190 
191 #ifndef __GENERATING_BOUNDS_H
192 
193 static inline unsigned long _compound_head(const struct page *page)
194 {
195 	unsigned long head = READ_ONCE(page->compound_head);
196 
197 	if (unlikely(head & 1))
198 		return head - 1;
199 	return (unsigned long)page;
200 }
201 
202 #define compound_head(page)	((typeof(page))_compound_head(page))
203 
204 /**
205  * page_folio - Converts from page to folio.
206  * @p: The page.
207  *
208  * Every page is part of a folio.  This function cannot be called on a
209  * NULL pointer.
210  *
211  * Context: No reference, nor lock is required on @page.  If the caller
212  * does not hold a reference, this call may race with a folio split, so
213  * it should re-check the folio still contains this page after gaining
214  * a reference on the folio.
215  * Return: The folio which contains this page.
216  */
217 #define page_folio(p)		(_Generic((p),				\
218 	const struct page *:	(const struct folio *)_compound_head(p), \
219 	struct page *:		(struct folio *)_compound_head(p)))
220 
221 /**
222  * folio_page - Return a page from a folio.
223  * @folio: The folio.
224  * @n: The page number to return.
225  *
226  * @n is relative to the start of the folio.  This function does not
227  * check that the page number lies within @folio; the caller is presumed
228  * to have a reference to the page.
229  */
230 #define folio_page(folio, n)	nth_page(&(folio)->page, n)
231 
232 static __always_inline int PageTail(struct page *page)
233 {
234 	return READ_ONCE(page->compound_head) & 1;
235 }
236 
237 static __always_inline int PageCompound(struct page *page)
238 {
239 	return test_bit(PG_head, &page->flags) || PageTail(page);
240 }
241 
242 #define	PAGE_POISON_PATTERN	-1l
243 static inline int PagePoisoned(const struct page *page)
244 {
245 	return READ_ONCE(page->flags) == PAGE_POISON_PATTERN;
246 }
247 
248 #ifdef CONFIG_DEBUG_VM
249 void page_init_poison(struct page *page, size_t size);
250 #else
251 static inline void page_init_poison(struct page *page, size_t size)
252 {
253 }
254 #endif
255 
256 static unsigned long *folio_flags(struct folio *folio, unsigned n)
257 {
258 	struct page *page = &folio->page;
259 
260 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
261 	VM_BUG_ON_PGFLAGS(n > 0 && !test_bit(PG_head, &page->flags), page);
262 	return &page[n].flags;
263 }
264 
265 /*
266  * Page flags policies wrt compound pages
267  *
268  * PF_POISONED_CHECK
269  *     check if this struct page poisoned/uninitialized
270  *
271  * PF_ANY:
272  *     the page flag is relevant for small, head and tail pages.
273  *
274  * PF_HEAD:
275  *     for compound page all operations related to the page flag applied to
276  *     head page.
277  *
278  * PF_ONLY_HEAD:
279  *     for compound page, callers only ever operate on the head page.
280  *
281  * PF_NO_TAIL:
282  *     modifications of the page flag must be done on small or head pages,
283  *     checks can be done on tail pages too.
284  *
285  * PF_NO_COMPOUND:
286  *     the page flag is not relevant for compound pages.
287  *
288  * PF_SECOND:
289  *     the page flag is stored in the first tail page.
290  */
291 #define PF_POISONED_CHECK(page) ({					\
292 		VM_BUG_ON_PGFLAGS(PagePoisoned(page), page);		\
293 		page; })
294 #define PF_ANY(page, enforce)	PF_POISONED_CHECK(page)
295 #define PF_HEAD(page, enforce)	PF_POISONED_CHECK(compound_head(page))
296 #define PF_ONLY_HEAD(page, enforce) ({					\
297 		VM_BUG_ON_PGFLAGS(PageTail(page), page);		\
298 		PF_POISONED_CHECK(page); })
299 #define PF_NO_TAIL(page, enforce) ({					\
300 		VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page);	\
301 		PF_POISONED_CHECK(compound_head(page)); })
302 #define PF_NO_COMPOUND(page, enforce) ({				\
303 		VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page);	\
304 		PF_POISONED_CHECK(page); })
305 #define PF_SECOND(page, enforce) ({					\
306 		VM_BUG_ON_PGFLAGS(!PageHead(page), page);		\
307 		PF_POISONED_CHECK(&page[1]); })
308 
309 /* Which page is the flag stored in */
310 #define FOLIO_PF_ANY		0
311 #define FOLIO_PF_HEAD		0
312 #define FOLIO_PF_ONLY_HEAD	0
313 #define FOLIO_PF_NO_TAIL	0
314 #define FOLIO_PF_NO_COMPOUND	0
315 #define FOLIO_PF_SECOND		1
316 
317 /*
318  * Macros to create function definitions for page flags
319  */
320 #define TESTPAGEFLAG(uname, lname, policy)				\
321 static __always_inline bool folio_test_##lname(struct folio *folio)	\
322 { return test_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }	\
323 static __always_inline int Page##uname(struct page *page)		\
324 { return test_bit(PG_##lname, &policy(page, 0)->flags); }
325 
326 #define SETPAGEFLAG(uname, lname, policy)				\
327 static __always_inline							\
328 void folio_set_##lname(struct folio *folio)				\
329 { set_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }		\
330 static __always_inline void SetPage##uname(struct page *page)		\
331 { set_bit(PG_##lname, &policy(page, 1)->flags); }
332 
333 #define CLEARPAGEFLAG(uname, lname, policy)				\
334 static __always_inline							\
335 void folio_clear_##lname(struct folio *folio)				\
336 { clear_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }		\
337 static __always_inline void ClearPage##uname(struct page *page)		\
338 { clear_bit(PG_##lname, &policy(page, 1)->flags); }
339 
340 #define __SETPAGEFLAG(uname, lname, policy)				\
341 static __always_inline							\
342 void __folio_set_##lname(struct folio *folio)				\
343 { __set_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }		\
344 static __always_inline void __SetPage##uname(struct page *page)		\
345 { __set_bit(PG_##lname, &policy(page, 1)->flags); }
346 
347 #define __CLEARPAGEFLAG(uname, lname, policy)				\
348 static __always_inline							\
349 void __folio_clear_##lname(struct folio *folio)				\
350 { __clear_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }	\
351 static __always_inline void __ClearPage##uname(struct page *page)	\
352 { __clear_bit(PG_##lname, &policy(page, 1)->flags); }
353 
354 #define TESTSETFLAG(uname, lname, policy)				\
355 static __always_inline							\
356 bool folio_test_set_##lname(struct folio *folio)			\
357 { return test_and_set_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \
358 static __always_inline int TestSetPage##uname(struct page *page)	\
359 { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); }
360 
361 #define TESTCLEARFLAG(uname, lname, policy)				\
362 static __always_inline							\
363 bool folio_test_clear_##lname(struct folio *folio)			\
364 { return test_and_clear_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \
365 static __always_inline int TestClearPage##uname(struct page *page)	\
366 { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); }
367 
368 #define PAGEFLAG(uname, lname, policy)					\
369 	TESTPAGEFLAG(uname, lname, policy)				\
370 	SETPAGEFLAG(uname, lname, policy)				\
371 	CLEARPAGEFLAG(uname, lname, policy)
372 
373 #define __PAGEFLAG(uname, lname, policy)				\
374 	TESTPAGEFLAG(uname, lname, policy)				\
375 	__SETPAGEFLAG(uname, lname, policy)				\
376 	__CLEARPAGEFLAG(uname, lname, policy)
377 
378 #define TESTSCFLAG(uname, lname, policy)				\
379 	TESTSETFLAG(uname, lname, policy)				\
380 	TESTCLEARFLAG(uname, lname, policy)
381 
382 #define TESTPAGEFLAG_FALSE(uname, lname)				\
383 static inline bool folio_test_##lname(const struct folio *folio) { return 0; } \
384 static inline int Page##uname(const struct page *page) { return 0; }
385 
386 #define SETPAGEFLAG_NOOP(uname, lname)					\
387 static inline void folio_set_##lname(struct folio *folio) { }		\
388 static inline void SetPage##uname(struct page *page) {  }
389 
390 #define CLEARPAGEFLAG_NOOP(uname, lname)				\
391 static inline void folio_clear_##lname(struct folio *folio) { }		\
392 static inline void ClearPage##uname(struct page *page) {  }
393 
394 #define __CLEARPAGEFLAG_NOOP(uname, lname)				\
395 static inline void __folio_clear_##lname(struct folio *folio) { }	\
396 static inline void __ClearPage##uname(struct page *page) {  }
397 
398 #define TESTSETFLAG_FALSE(uname, lname)					\
399 static inline bool folio_test_set_##lname(struct folio *folio)		\
400 { return 0; }								\
401 static inline int TestSetPage##uname(struct page *page) { return 0; }
402 
403 #define TESTCLEARFLAG_FALSE(uname, lname)				\
404 static inline bool folio_test_clear_##lname(struct folio *folio)	\
405 { return 0; }								\
406 static inline int TestClearPage##uname(struct page *page) { return 0; }
407 
408 #define PAGEFLAG_FALSE(uname, lname) TESTPAGEFLAG_FALSE(uname, lname)	\
409 	SETPAGEFLAG_NOOP(uname, lname) CLEARPAGEFLAG_NOOP(uname, lname)
410 
411 #define TESTSCFLAG_FALSE(uname, lname)					\
412 	TESTSETFLAG_FALSE(uname, lname) TESTCLEARFLAG_FALSE(uname, lname)
413 
414 __PAGEFLAG(Locked, locked, PF_NO_TAIL)
415 PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) __CLEARPAGEFLAG(Waiters, waiters, PF_ONLY_HEAD)
416 PAGEFLAG(Error, error, PF_NO_TAIL) TESTCLEARFLAG(Error, error, PF_NO_TAIL)
417 PAGEFLAG(Referenced, referenced, PF_HEAD)
418 	TESTCLEARFLAG(Referenced, referenced, PF_HEAD)
419 	__SETPAGEFLAG(Referenced, referenced, PF_HEAD)
420 PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD)
421 	__CLEARPAGEFLAG(Dirty, dirty, PF_HEAD)
422 PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD)
423 	TESTCLEARFLAG(LRU, lru, PF_HEAD)
424 PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD)
425 	TESTCLEARFLAG(Active, active, PF_HEAD)
426 PAGEFLAG(Workingset, workingset, PF_HEAD)
427 	TESTCLEARFLAG(Workingset, workingset, PF_HEAD)
428 __PAGEFLAG(Slab, slab, PF_NO_TAIL)
429 __PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL)
430 PAGEFLAG(Checked, checked, PF_NO_COMPOUND)	   /* Used by some filesystems */
431 
432 /* Xen */
433 PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND)
434 	TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND)
435 PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND);
436 PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND);
437 PAGEFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
438 	TESTCLEARFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
439 
440 PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
441 	__CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
442 	__SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
443 PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
444 	__CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
445 	__SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
446 
447 /*
448  * Private page markings that may be used by the filesystem that owns the page
449  * for its own purposes.
450  * - PG_private and PG_private_2 cause releasepage() and co to be invoked
451  */
452 PAGEFLAG(Private, private, PF_ANY)
453 PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY)
454 PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
455 	TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
456 
457 /*
458  * Only test-and-set exist for PG_writeback.  The unconditional operators are
459  * risky: they bypass page accounting.
460  */
461 TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL)
462 	TESTSCFLAG(Writeback, writeback, PF_NO_TAIL)
463 PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL)
464 
465 /* PG_readahead is only used for reads; PG_reclaim is only for writes */
466 PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL)
467 	TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL)
468 PAGEFLAG(Readahead, readahead, PF_NO_COMPOUND)
469 	TESTCLEARFLAG(Readahead, readahead, PF_NO_COMPOUND)
470 
471 #ifdef CONFIG_HIGHMEM
472 /*
473  * Must use a macro here due to header dependency issues. page_zone() is not
474  * available at this point.
475  */
476 #define PageHighMem(__p) is_highmem_idx(page_zonenum(__p))
477 #else
478 PAGEFLAG_FALSE(HighMem, highmem)
479 #endif
480 
481 #ifdef CONFIG_SWAP
482 static __always_inline bool folio_test_swapcache(struct folio *folio)
483 {
484 	return folio_test_swapbacked(folio) &&
485 			test_bit(PG_swapcache, folio_flags(folio, 0));
486 }
487 
488 static __always_inline bool PageSwapCache(struct page *page)
489 {
490 	return folio_test_swapcache(page_folio(page));
491 }
492 
493 SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
494 CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
495 #else
496 PAGEFLAG_FALSE(SwapCache, swapcache)
497 #endif
498 
499 PAGEFLAG(Unevictable, unevictable, PF_HEAD)
500 	__CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD)
501 	TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD)
502 
503 #ifdef CONFIG_MMU
504 PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
505 	__CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
506 	TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL)
507 #else
508 PAGEFLAG_FALSE(Mlocked, mlocked) __CLEARPAGEFLAG_NOOP(Mlocked, mlocked)
509 	TESTSCFLAG_FALSE(Mlocked, mlocked)
510 #endif
511 
512 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
513 PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND)
514 #else
515 PAGEFLAG_FALSE(Uncached, uncached)
516 #endif
517 
518 #ifdef CONFIG_MEMORY_FAILURE
519 PAGEFLAG(HWPoison, hwpoison, PF_ANY)
520 TESTSCFLAG(HWPoison, hwpoison, PF_ANY)
521 #define __PG_HWPOISON (1UL << PG_hwpoison)
522 extern bool take_page_off_buddy(struct page *page);
523 #else
524 PAGEFLAG_FALSE(HWPoison, hwpoison)
525 #define __PG_HWPOISON 0
526 #endif
527 
528 #if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT)
529 TESTPAGEFLAG(Young, young, PF_ANY)
530 SETPAGEFLAG(Young, young, PF_ANY)
531 TESTCLEARFLAG(Young, young, PF_ANY)
532 PAGEFLAG(Idle, idle, PF_ANY)
533 #endif
534 
535 #ifdef CONFIG_KASAN_HW_TAGS
536 PAGEFLAG(SkipKASanPoison, skip_kasan_poison, PF_HEAD)
537 #else
538 PAGEFLAG_FALSE(SkipKASanPoison, skip_kasan_poison)
539 #endif
540 
541 /*
542  * PageReported() is used to track reported free pages within the Buddy
543  * allocator. We can use the non-atomic version of the test and set
544  * operations as both should be shielded with the zone lock to prevent
545  * any possible races on the setting or clearing of the bit.
546  */
547 __PAGEFLAG(Reported, reported, PF_NO_COMPOUND)
548 
549 /*
550  * On an anonymous page mapped into a user virtual memory area,
551  * page->mapping points to its anon_vma, not to a struct address_space;
552  * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
553  *
554  * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
555  * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON
556  * bit; and then page->mapping points, not to an anon_vma, but to a private
557  * structure which KSM associates with that merged page.  See ksm.h.
558  *
559  * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable
560  * page and then page->mapping points a struct address_space.
561  *
562  * Please note that, confusingly, "page_mapping" refers to the inode
563  * address_space which maps the page from disk; whereas "page_mapped"
564  * refers to user virtual address space into which the page is mapped.
565  */
566 #define PAGE_MAPPING_ANON	0x1
567 #define PAGE_MAPPING_MOVABLE	0x2
568 #define PAGE_MAPPING_KSM	(PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
569 #define PAGE_MAPPING_FLAGS	(PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
570 
571 static __always_inline int PageMappingFlags(struct page *page)
572 {
573 	return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0;
574 }
575 
576 static __always_inline bool folio_test_anon(struct folio *folio)
577 {
578 	return ((unsigned long)folio->mapping & PAGE_MAPPING_ANON) != 0;
579 }
580 
581 static __always_inline bool PageAnon(struct page *page)
582 {
583 	return folio_test_anon(page_folio(page));
584 }
585 
586 static __always_inline int __PageMovable(struct page *page)
587 {
588 	return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
589 				PAGE_MAPPING_MOVABLE;
590 }
591 
592 #ifdef CONFIG_KSM
593 /*
594  * A KSM page is one of those write-protected "shared pages" or "merged pages"
595  * which KSM maps into multiple mms, wherever identical anonymous page content
596  * is found in VM_MERGEABLE vmas.  It's a PageAnon page, pointing not to any
597  * anon_vma, but to that page's node of the stable tree.
598  */
599 static __always_inline bool folio_test_ksm(struct folio *folio)
600 {
601 	return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) ==
602 				PAGE_MAPPING_KSM;
603 }
604 
605 static __always_inline bool PageKsm(struct page *page)
606 {
607 	return folio_test_ksm(page_folio(page));
608 }
609 #else
610 TESTPAGEFLAG_FALSE(Ksm, ksm)
611 #endif
612 
613 u64 stable_page_flags(struct page *page);
614 
615 /**
616  * folio_test_uptodate - Is this folio up to date?
617  * @folio: The folio.
618  *
619  * The uptodate flag is set on a folio when every byte in the folio is
620  * at least as new as the corresponding bytes on storage.  Anonymous
621  * and CoW folios are always uptodate.  If the folio is not uptodate,
622  * some of the bytes in it may be; see the is_partially_uptodate()
623  * address_space operation.
624  */
625 static inline bool folio_test_uptodate(struct folio *folio)
626 {
627 	bool ret = test_bit(PG_uptodate, folio_flags(folio, 0));
628 	/*
629 	 * Must ensure that the data we read out of the folio is loaded
630 	 * _after_ we've loaded folio->flags to check the uptodate bit.
631 	 * We can skip the barrier if the folio is not uptodate, because
632 	 * we wouldn't be reading anything from it.
633 	 *
634 	 * See folio_mark_uptodate() for the other side of the story.
635 	 */
636 	if (ret)
637 		smp_rmb();
638 
639 	return ret;
640 }
641 
642 static inline int PageUptodate(struct page *page)
643 {
644 	return folio_test_uptodate(page_folio(page));
645 }
646 
647 static __always_inline void __folio_mark_uptodate(struct folio *folio)
648 {
649 	smp_wmb();
650 	__set_bit(PG_uptodate, folio_flags(folio, 0));
651 }
652 
653 static __always_inline void folio_mark_uptodate(struct folio *folio)
654 {
655 	/*
656 	 * Memory barrier must be issued before setting the PG_uptodate bit,
657 	 * so that all previous stores issued in order to bring the folio
658 	 * uptodate are actually visible before folio_test_uptodate becomes true.
659 	 */
660 	smp_wmb();
661 	set_bit(PG_uptodate, folio_flags(folio, 0));
662 }
663 
664 static __always_inline void __SetPageUptodate(struct page *page)
665 {
666 	__folio_mark_uptodate((struct folio *)page);
667 }
668 
669 static __always_inline void SetPageUptodate(struct page *page)
670 {
671 	folio_mark_uptodate((struct folio *)page);
672 }
673 
674 CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL)
675 
676 bool __folio_start_writeback(struct folio *folio, bool keep_write);
677 bool set_page_writeback(struct page *page);
678 
679 #define folio_start_writeback(folio)			\
680 	__folio_start_writeback(folio, false)
681 #define folio_start_writeback_keepwrite(folio)	\
682 	__folio_start_writeback(folio, true)
683 
684 static inline void set_page_writeback_keepwrite(struct page *page)
685 {
686 	folio_start_writeback_keepwrite(page_folio(page));
687 }
688 
689 static inline bool test_set_page_writeback(struct page *page)
690 {
691 	return set_page_writeback(page);
692 }
693 
694 __PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY)
695 
696 /**
697  * folio_test_large() - Does this folio contain more than one page?
698  * @folio: The folio to test.
699  *
700  * Return: True if the folio is larger than one page.
701  */
702 static inline bool folio_test_large(struct folio *folio)
703 {
704 	return folio_test_head(folio);
705 }
706 
707 static __always_inline void set_compound_head(struct page *page, struct page *head)
708 {
709 	WRITE_ONCE(page->compound_head, (unsigned long)head + 1);
710 }
711 
712 static __always_inline void clear_compound_head(struct page *page)
713 {
714 	WRITE_ONCE(page->compound_head, 0);
715 }
716 
717 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
718 static inline void ClearPageCompound(struct page *page)
719 {
720 	BUG_ON(!PageHead(page));
721 	ClearPageHead(page);
722 }
723 #endif
724 
725 #define PG_head_mask ((1UL << PG_head))
726 
727 #ifdef CONFIG_HUGETLB_PAGE
728 int PageHuge(struct page *page);
729 int PageHeadHuge(struct page *page);
730 static inline bool folio_test_hugetlb(struct folio *folio)
731 {
732 	return PageHeadHuge(&folio->page);
733 }
734 #else
735 TESTPAGEFLAG_FALSE(Huge, hugetlb)
736 TESTPAGEFLAG_FALSE(HeadHuge, headhuge)
737 #endif
738 
739 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
740 /*
741  * PageHuge() only returns true for hugetlbfs pages, but not for
742  * normal or transparent huge pages.
743  *
744  * PageTransHuge() returns true for both transparent huge and
745  * hugetlbfs pages, but not normal pages. PageTransHuge() can only be
746  * called only in the core VM paths where hugetlbfs pages can't exist.
747  */
748 static inline int PageTransHuge(struct page *page)
749 {
750 	VM_BUG_ON_PAGE(PageTail(page), page);
751 	return PageHead(page);
752 }
753 
754 static inline bool folio_test_transhuge(struct folio *folio)
755 {
756 	return folio_test_head(folio);
757 }
758 
759 /*
760  * PageTransCompound returns true for both transparent huge pages
761  * and hugetlbfs pages, so it should only be called when it's known
762  * that hugetlbfs pages aren't involved.
763  */
764 static inline int PageTransCompound(struct page *page)
765 {
766 	return PageCompound(page);
767 }
768 
769 /*
770  * PageTransTail returns true for both transparent huge pages
771  * and hugetlbfs pages, so it should only be called when it's known
772  * that hugetlbfs pages aren't involved.
773  */
774 static inline int PageTransTail(struct page *page)
775 {
776 	return PageTail(page);
777 }
778 
779 /*
780  * PageDoubleMap indicates that the compound page is mapped with PTEs as well
781  * as PMDs.
782  *
783  * This is required for optimization of rmap operations for THP: we can postpone
784  * per small page mapcount accounting (and its overhead from atomic operations)
785  * until the first PMD split.
786  *
787  * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up
788  * by one. This reference will go away with last compound_mapcount.
789  *
790  * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap().
791  */
792 PAGEFLAG(DoubleMap, double_map, PF_SECOND)
793 	TESTSCFLAG(DoubleMap, double_map, PF_SECOND)
794 #else
795 TESTPAGEFLAG_FALSE(TransHuge, transhuge)
796 TESTPAGEFLAG_FALSE(TransCompound, transcompound)
797 TESTPAGEFLAG_FALSE(TransCompoundMap, transcompoundmap)
798 TESTPAGEFLAG_FALSE(TransTail, transtail)
799 PAGEFLAG_FALSE(DoubleMap, double_map)
800 	TESTSCFLAG_FALSE(DoubleMap, double_map)
801 #endif
802 
803 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
804 /*
805  * PageHasHWPoisoned indicates that at least one subpage is hwpoisoned in the
806  * compound page.
807  *
808  * This flag is set by hwpoison handler.  Cleared by THP split or free page.
809  */
810 PAGEFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND)
811 	TESTSCFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND)
812 #else
813 PAGEFLAG_FALSE(HasHWPoisoned, has_hwpoisoned)
814 	TESTSCFLAG_FALSE(HasHWPoisoned, has_hwpoisoned)
815 #endif
816 
817 /*
818  * Check if a page is currently marked HWPoisoned. Note that this check is
819  * best effort only and inherently racy: there is no way to synchronize with
820  * failing hardware.
821  */
822 static inline bool is_page_hwpoison(struct page *page)
823 {
824 	if (PageHWPoison(page))
825 		return true;
826 	return PageHuge(page) && PageHWPoison(compound_head(page));
827 }
828 
829 /*
830  * For pages that are never mapped to userspace (and aren't PageSlab),
831  * page_type may be used.  Because it is initialised to -1, we invert the
832  * sense of the bit, so __SetPageFoo *clears* the bit used for PageFoo, and
833  * __ClearPageFoo *sets* the bit used for PageFoo.  We reserve a few high and
834  * low bits so that an underflow or overflow of page_mapcount() won't be
835  * mistaken for a page type value.
836  */
837 
838 #define PAGE_TYPE_BASE	0xf0000000
839 /* Reserve		0x0000007f to catch underflows of page_mapcount */
840 #define PAGE_MAPCOUNT_RESERVE	-128
841 #define PG_buddy	0x00000080
842 #define PG_offline	0x00000100
843 #define PG_table	0x00000200
844 #define PG_guard	0x00000400
845 
846 #define PageType(page, flag)						\
847 	((page->page_type & (PAGE_TYPE_BASE | flag)) == PAGE_TYPE_BASE)
848 
849 static inline int page_has_type(struct page *page)
850 {
851 	return (int)page->page_type < PAGE_MAPCOUNT_RESERVE;
852 }
853 
854 #define PAGE_TYPE_OPS(uname, lname)					\
855 static __always_inline int Page##uname(struct page *page)		\
856 {									\
857 	return PageType(page, PG_##lname);				\
858 }									\
859 static __always_inline void __SetPage##uname(struct page *page)		\
860 {									\
861 	VM_BUG_ON_PAGE(!PageType(page, 0), page);			\
862 	page->page_type &= ~PG_##lname;					\
863 }									\
864 static __always_inline void __ClearPage##uname(struct page *page)	\
865 {									\
866 	VM_BUG_ON_PAGE(!Page##uname(page), page);			\
867 	page->page_type |= PG_##lname;					\
868 }
869 
870 /*
871  * PageBuddy() indicates that the page is free and in the buddy system
872  * (see mm/page_alloc.c).
873  */
874 PAGE_TYPE_OPS(Buddy, buddy)
875 
876 /*
877  * PageOffline() indicates that the page is logically offline although the
878  * containing section is online. (e.g. inflated in a balloon driver or
879  * not onlined when onlining the section).
880  * The content of these pages is effectively stale. Such pages should not
881  * be touched (read/write/dump/save) except by their owner.
882  *
883  * If a driver wants to allow to offline unmovable PageOffline() pages without
884  * putting them back to the buddy, it can do so via the memory notifier by
885  * decrementing the reference count in MEM_GOING_OFFLINE and incrementing the
886  * reference count in MEM_CANCEL_OFFLINE. When offlining, the PageOffline()
887  * pages (now with a reference count of zero) are treated like free pages,
888  * allowing the containing memory block to get offlined. A driver that
889  * relies on this feature is aware that re-onlining the memory block will
890  * require to re-set the pages PageOffline() and not giving them to the
891  * buddy via online_page_callback_t.
892  *
893  * There are drivers that mark a page PageOffline() and expect there won't be
894  * any further access to page content. PFN walkers that read content of random
895  * pages should check PageOffline() and synchronize with such drivers using
896  * page_offline_freeze()/page_offline_thaw().
897  */
898 PAGE_TYPE_OPS(Offline, offline)
899 
900 extern void page_offline_freeze(void);
901 extern void page_offline_thaw(void);
902 extern void page_offline_begin(void);
903 extern void page_offline_end(void);
904 
905 /*
906  * Marks pages in use as page tables.
907  */
908 PAGE_TYPE_OPS(Table, table)
909 
910 /*
911  * Marks guardpages used with debug_pagealloc.
912  */
913 PAGE_TYPE_OPS(Guard, guard)
914 
915 extern bool is_free_buddy_page(struct page *page);
916 
917 __PAGEFLAG(Isolated, isolated, PF_ANY);
918 
919 /*
920  * If network-based swap is enabled, sl*b must keep track of whether pages
921  * were allocated from pfmemalloc reserves.
922  */
923 static inline int PageSlabPfmemalloc(struct page *page)
924 {
925 	VM_BUG_ON_PAGE(!PageSlab(page), page);
926 	return PageActive(page);
927 }
928 
929 /*
930  * A version of PageSlabPfmemalloc() for opportunistic checks where the page
931  * might have been freed under us and not be a PageSlab anymore.
932  */
933 static inline int __PageSlabPfmemalloc(struct page *page)
934 {
935 	return PageActive(page);
936 }
937 
938 static inline void SetPageSlabPfmemalloc(struct page *page)
939 {
940 	VM_BUG_ON_PAGE(!PageSlab(page), page);
941 	SetPageActive(page);
942 }
943 
944 static inline void __ClearPageSlabPfmemalloc(struct page *page)
945 {
946 	VM_BUG_ON_PAGE(!PageSlab(page), page);
947 	__ClearPageActive(page);
948 }
949 
950 static inline void ClearPageSlabPfmemalloc(struct page *page)
951 {
952 	VM_BUG_ON_PAGE(!PageSlab(page), page);
953 	ClearPageActive(page);
954 }
955 
956 #ifdef CONFIG_MMU
957 #define __PG_MLOCKED		(1UL << PG_mlocked)
958 #else
959 #define __PG_MLOCKED		0
960 #endif
961 
962 /*
963  * Flags checked when a page is freed.  Pages being freed should not have
964  * these flags set.  If they are, there is a problem.
965  */
966 #define PAGE_FLAGS_CHECK_AT_FREE				\
967 	(1UL << PG_lru		| 1UL << PG_locked	|	\
968 	 1UL << PG_private	| 1UL << PG_private_2	|	\
969 	 1UL << PG_writeback	| 1UL << PG_reserved	|	\
970 	 1UL << PG_slab		| 1UL << PG_active 	|	\
971 	 1UL << PG_unevictable	| __PG_MLOCKED)
972 
973 /*
974  * Flags checked when a page is prepped for return by the page allocator.
975  * Pages being prepped should not have these flags set.  If they are set,
976  * there has been a kernel bug or struct page corruption.
977  *
978  * __PG_HWPOISON is exceptional because it needs to be kept beyond page's
979  * alloc-free cycle to prevent from reusing the page.
980  */
981 #define PAGE_FLAGS_CHECK_AT_PREP	\
982 	(PAGEFLAGS_MASK & ~__PG_HWPOISON)
983 
984 #define PAGE_FLAGS_PRIVATE				\
985 	(1UL << PG_private | 1UL << PG_private_2)
986 /**
987  * page_has_private - Determine if page has private stuff
988  * @page: The page to be checked
989  *
990  * Determine if a page has private stuff, indicating that release routines
991  * should be invoked upon it.
992  */
993 static inline int page_has_private(struct page *page)
994 {
995 	return !!(page->flags & PAGE_FLAGS_PRIVATE);
996 }
997 
998 static inline bool folio_has_private(struct folio *folio)
999 {
1000 	return page_has_private(&folio->page);
1001 }
1002 
1003 #undef PF_ANY
1004 #undef PF_HEAD
1005 #undef PF_ONLY_HEAD
1006 #undef PF_NO_TAIL
1007 #undef PF_NO_COMPOUND
1008 #undef PF_SECOND
1009 #endif /* !__GENERATING_BOUNDS_H */
1010 
1011 #endif	/* PAGE_FLAGS_H */
1012