xref: /linux-6.15/include/linux/page-flags.h (revision 99f86bbd)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Macros for manipulating and testing page->flags
4  */
5 
6 #ifndef PAGE_FLAGS_H
7 #define PAGE_FLAGS_H
8 
9 #include <linux/types.h>
10 #include <linux/bug.h>
11 #include <linux/mmdebug.h>
12 #ifndef __GENERATING_BOUNDS_H
13 #include <linux/mm_types.h>
14 #include <generated/bounds.h>
15 #endif /* !__GENERATING_BOUNDS_H */
16 
17 /*
18  * Various page->flags bits:
19  *
20  * PG_reserved is set for special pages. The "struct page" of such a page
21  * should in general not be touched (e.g. set dirty) except by its owner.
22  * Pages marked as PG_reserved include:
23  * - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS,
24  *   initrd, HW tables)
25  * - Pages reserved or allocated early during boot (before the page allocator
26  *   was initialized). This includes (depending on the architecture) the
27  *   initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much
28  *   much more. Once (if ever) freed, PG_reserved is cleared and they will
29  *   be given to the page allocator.
30  * - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying
31  *   to read/write these pages might end badly. Don't touch!
32  * - The zero page(s)
33  * - Pages allocated in the context of kexec/kdump (loaded kernel image,
34  *   control pages, vmcoreinfo)
35  * - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are
36  *   not marked PG_reserved (as they might be in use by somebody else who does
37  *   not respect the caching strategy).
38  * - MCA pages on ia64
39  * - Pages holding CPU notes for POWER Firmware Assisted Dump
40  * - Device memory (e.g. PMEM, DAX, HMM)
41  * Some PG_reserved pages will be excluded from the hibernation image.
42  * PG_reserved does in general not hinder anybody from dumping or swapping
43  * and is no longer required for remap_pfn_range(). ioremap might require it.
44  * Consequently, PG_reserved for a page mapped into user space can indicate
45  * the zero page, the vDSO, MMIO pages or device memory.
46  *
47  * The PG_private bitflag is set on pagecache pages if they contain filesystem
48  * specific data (which is normally at page->private). It can be used by
49  * private allocations for its own usage.
50  *
51  * During initiation of disk I/O, PG_locked is set. This bit is set before I/O
52  * and cleared when writeback _starts_ or when read _completes_. PG_writeback
53  * is set before writeback starts and cleared when it finishes.
54  *
55  * PG_locked also pins a page in pagecache, and blocks truncation of the file
56  * while it is held.
57  *
58  * page_waitqueue(page) is a wait queue of all tasks waiting for the page
59  * to become unlocked.
60  *
61  * PG_swapbacked is set when a page uses swap as a backing storage.  This are
62  * usually PageAnon or shmem pages but please note that even anonymous pages
63  * might lose their PG_swapbacked flag when they simply can be dropped (e.g. as
64  * a result of MADV_FREE).
65  *
66  * PG_referenced, PG_reclaim are used for page reclaim for anonymous and
67  * file-backed pagecache (see mm/vmscan.c).
68  *
69  * PG_arch_1 is an architecture specific page state bit.  The generic code
70  * guarantees that this bit is cleared for a page when it first is entered into
71  * the page cache.
72  *
73  * PG_hwpoison indicates that a page got corrupted in hardware and contains
74  * data with incorrect ECC bits that triggered a machine check. Accessing is
75  * not safe since it may cause another machine check. Don't touch!
76  */
77 
78 /*
79  * Don't use the pageflags directly.  Use the PageFoo macros.
80  *
81  * The page flags field is split into two parts, the main flags area
82  * which extends from the low bits upwards, and the fields area which
83  * extends from the high bits downwards.
84  *
85  *  | FIELD | ... | FLAGS |
86  *  N-1           ^       0
87  *               (NR_PAGEFLAGS)
88  *
89  * The fields area is reserved for fields mapping zone, node (for NUMA) and
90  * SPARSEMEM section (for variants of SPARSEMEM that require section ids like
91  * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
92  */
93 enum pageflags {
94 	PG_locked,		/* Page is locked. Don't touch. */
95 	PG_writeback,		/* Page is under writeback */
96 	PG_referenced,
97 	PG_uptodate,
98 	PG_dirty,
99 	PG_lru,
100 	PG_head,		/* Must be in bit 6 */
101 	PG_waiters,		/* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */
102 	PG_active,
103 	PG_workingset,
104 	PG_owner_priv_1,	/* Owner use. If pagecache, fs may use*/
105 	PG_arch_1,
106 	PG_reserved,
107 	PG_private,		/* If pagecache, has fs-private data */
108 	PG_private_2,		/* If pagecache, has fs aux data */
109 	PG_mappedtodisk,	/* Has blocks allocated on-disk */
110 	PG_reclaim,		/* To be reclaimed asap */
111 	PG_swapbacked,		/* Page is backed by RAM/swap */
112 	PG_unevictable,		/* Page is "unevictable"  */
113 #ifdef CONFIG_MMU
114 	PG_mlocked,		/* Page is vma mlocked */
115 #endif
116 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
117 	PG_uncached,		/* Page has been mapped as uncached */
118 #endif
119 #ifdef CONFIG_MEMORY_FAILURE
120 	PG_hwpoison,		/* hardware poisoned page. Don't touch */
121 #endif
122 #if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT)
123 	PG_young,
124 	PG_idle,
125 #endif
126 #ifdef CONFIG_ARCH_USES_PG_ARCH_X
127 	PG_arch_2,
128 	PG_arch_3,
129 #endif
130 	__NR_PAGEFLAGS,
131 
132 	PG_readahead = PG_reclaim,
133 
134 	/*
135 	 * Depending on the way an anonymous folio can be mapped into a page
136 	 * table (e.g., single PMD/PUD/CONT of the head page vs. PTE-mapped
137 	 * THP), PG_anon_exclusive may be set only for the head page or for
138 	 * tail pages of an anonymous folio. For now, we only expect it to be
139 	 * set on tail pages for PTE-mapped THP.
140 	 */
141 	PG_anon_exclusive = PG_mappedtodisk,
142 
143 	/* Filesystems */
144 	PG_checked = PG_owner_priv_1,
145 
146 	/* SwapBacked */
147 	PG_swapcache = PG_owner_priv_1,	/* Swap page: swp_entry_t in private */
148 
149 	/* Two page bits are conscripted by FS-Cache to maintain local caching
150 	 * state.  These bits are set on pages belonging to the netfs's inodes
151 	 * when those inodes are being locally cached.
152 	 */
153 	PG_fscache = PG_private_2,	/* page backed by cache */
154 
155 	/* XEN */
156 	/* Pinned in Xen as a read-only pagetable page. */
157 	PG_pinned = PG_owner_priv_1,
158 	/* Pinned as part of domain save (see xen_mm_pin_all()). */
159 	PG_savepinned = PG_dirty,
160 	/* Has a grant mapping of another (foreign) domain's page. */
161 	PG_foreign = PG_owner_priv_1,
162 	/* Remapped by swiotlb-xen. */
163 	PG_xen_remapped = PG_owner_priv_1,
164 
165 	/* non-lru isolated movable page */
166 	PG_isolated = PG_reclaim,
167 
168 	/* Only valid for buddy pages. Used to track pages that are reported */
169 	PG_reported = PG_uptodate,
170 
171 #ifdef CONFIG_MEMORY_HOTPLUG
172 	/* For self-hosted memmap pages */
173 	PG_vmemmap_self_hosted = PG_owner_priv_1,
174 #endif
175 
176 	/*
177 	 * Flags only valid for compound pages.  Stored in first tail page's
178 	 * flags word.  Cannot use the first 8 flags or any flag marked as
179 	 * PF_ANY.
180 	 */
181 
182 	/* At least one page in this folio has the hwpoison flag set */
183 	PG_has_hwpoisoned = PG_active,
184 	PG_large_rmappable = PG_workingset, /* anon or file-backed */
185 };
186 
187 #define PAGEFLAGS_MASK		((1UL << NR_PAGEFLAGS) - 1)
188 
189 #ifndef __GENERATING_BOUNDS_H
190 
191 #ifdef CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP
192 DECLARE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key);
193 
194 /*
195  * Return the real head page struct iff the @page is a fake head page, otherwise
196  * return the @page itself. See Documentation/mm/vmemmap_dedup.rst.
197  */
198 static __always_inline const struct page *page_fixed_fake_head(const struct page *page)
199 {
200 	if (!static_branch_unlikely(&hugetlb_optimize_vmemmap_key))
201 		return page;
202 
203 	/*
204 	 * Only addresses aligned with PAGE_SIZE of struct page may be fake head
205 	 * struct page. The alignment check aims to avoid access the fields (
206 	 * e.g. compound_head) of the @page[1]. It can avoid touch a (possibly)
207 	 * cold cacheline in some cases.
208 	 */
209 	if (IS_ALIGNED((unsigned long)page, PAGE_SIZE) &&
210 	    test_bit(PG_head, &page->flags)) {
211 		/*
212 		 * We can safely access the field of the @page[1] with PG_head
213 		 * because the @page is a compound page composed with at least
214 		 * two contiguous pages.
215 		 */
216 		unsigned long head = READ_ONCE(page[1].compound_head);
217 
218 		if (likely(head & 1))
219 			return (const struct page *)(head - 1);
220 	}
221 	return page;
222 }
223 #else
224 static inline const struct page *page_fixed_fake_head(const struct page *page)
225 {
226 	return page;
227 }
228 #endif
229 
230 static __always_inline int page_is_fake_head(const struct page *page)
231 {
232 	return page_fixed_fake_head(page) != page;
233 }
234 
235 static __always_inline unsigned long _compound_head(const struct page *page)
236 {
237 	unsigned long head = READ_ONCE(page->compound_head);
238 
239 	if (unlikely(head & 1))
240 		return head - 1;
241 	return (unsigned long)page_fixed_fake_head(page);
242 }
243 
244 #define compound_head(page)	((typeof(page))_compound_head(page))
245 
246 /**
247  * page_folio - Converts from page to folio.
248  * @p: The page.
249  *
250  * Every page is part of a folio.  This function cannot be called on a
251  * NULL pointer.
252  *
253  * Context: No reference, nor lock is required on @page.  If the caller
254  * does not hold a reference, this call may race with a folio split, so
255  * it should re-check the folio still contains this page after gaining
256  * a reference on the folio.
257  * Return: The folio which contains this page.
258  */
259 #define page_folio(p)		(_Generic((p),				\
260 	const struct page *:	(const struct folio *)_compound_head(p), \
261 	struct page *:		(struct folio *)_compound_head(p)))
262 
263 /**
264  * folio_page - Return a page from a folio.
265  * @folio: The folio.
266  * @n: The page number to return.
267  *
268  * @n is relative to the start of the folio.  This function does not
269  * check that the page number lies within @folio; the caller is presumed
270  * to have a reference to the page.
271  */
272 #define folio_page(folio, n)	nth_page(&(folio)->page, n)
273 
274 static __always_inline int PageTail(const struct page *page)
275 {
276 	return READ_ONCE(page->compound_head) & 1 || page_is_fake_head(page);
277 }
278 
279 static __always_inline int PageCompound(const struct page *page)
280 {
281 	return test_bit(PG_head, &page->flags) ||
282 	       READ_ONCE(page->compound_head) & 1;
283 }
284 
285 #define	PAGE_POISON_PATTERN	-1l
286 static inline int PagePoisoned(const struct page *page)
287 {
288 	return READ_ONCE(page->flags) == PAGE_POISON_PATTERN;
289 }
290 
291 #ifdef CONFIG_DEBUG_VM
292 void page_init_poison(struct page *page, size_t size);
293 #else
294 static inline void page_init_poison(struct page *page, size_t size)
295 {
296 }
297 #endif
298 
299 static const unsigned long *const_folio_flags(const struct folio *folio,
300 		unsigned n)
301 {
302 	const struct page *page = &folio->page;
303 
304 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
305 	VM_BUG_ON_PGFLAGS(n > 0 && !test_bit(PG_head, &page->flags), page);
306 	return &page[n].flags;
307 }
308 
309 static unsigned long *folio_flags(struct folio *folio, unsigned n)
310 {
311 	struct page *page = &folio->page;
312 
313 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
314 	VM_BUG_ON_PGFLAGS(n > 0 && !test_bit(PG_head, &page->flags), page);
315 	return &page[n].flags;
316 }
317 
318 /*
319  * Page flags policies wrt compound pages
320  *
321  * PF_POISONED_CHECK
322  *     check if this struct page poisoned/uninitialized
323  *
324  * PF_ANY:
325  *     the page flag is relevant for small, head and tail pages.
326  *
327  * PF_HEAD:
328  *     for compound page all operations related to the page flag applied to
329  *     head page.
330  *
331  * PF_NO_TAIL:
332  *     modifications of the page flag must be done on small or head pages,
333  *     checks can be done on tail pages too.
334  *
335  * PF_NO_COMPOUND:
336  *     the page flag is not relevant for compound pages.
337  *
338  * PF_SECOND:
339  *     the page flag is stored in the first tail page.
340  */
341 #define PF_POISONED_CHECK(page) ({					\
342 		VM_BUG_ON_PGFLAGS(PagePoisoned(page), page);		\
343 		page; })
344 #define PF_ANY(page, enforce)	PF_POISONED_CHECK(page)
345 #define PF_HEAD(page, enforce)	PF_POISONED_CHECK(compound_head(page))
346 #define PF_NO_TAIL(page, enforce) ({					\
347 		VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page);	\
348 		PF_POISONED_CHECK(compound_head(page)); })
349 #define PF_NO_COMPOUND(page, enforce) ({				\
350 		VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page);	\
351 		PF_POISONED_CHECK(page); })
352 #define PF_SECOND(page, enforce) ({					\
353 		VM_BUG_ON_PGFLAGS(!PageHead(page), page);		\
354 		PF_POISONED_CHECK(&page[1]); })
355 
356 /* Which page is the flag stored in */
357 #define FOLIO_PF_ANY		0
358 #define FOLIO_PF_HEAD		0
359 #define FOLIO_PF_NO_TAIL	0
360 #define FOLIO_PF_NO_COMPOUND	0
361 #define FOLIO_PF_SECOND		1
362 
363 #define FOLIO_HEAD_PAGE		0
364 #define FOLIO_SECOND_PAGE	1
365 
366 /*
367  * Macros to create function definitions for page flags
368  */
369 #define FOLIO_TEST_FLAG(name, page)					\
370 static __always_inline bool folio_test_##name(const struct folio *folio) \
371 { return test_bit(PG_##name, const_folio_flags(folio, page)); }
372 
373 #define FOLIO_SET_FLAG(name, page)					\
374 static __always_inline void folio_set_##name(struct folio *folio)	\
375 { set_bit(PG_##name, folio_flags(folio, page)); }
376 
377 #define FOLIO_CLEAR_FLAG(name, page)					\
378 static __always_inline void folio_clear_##name(struct folio *folio)	\
379 { clear_bit(PG_##name, folio_flags(folio, page)); }
380 
381 #define __FOLIO_SET_FLAG(name, page)					\
382 static __always_inline void __folio_set_##name(struct folio *folio)	\
383 { __set_bit(PG_##name, folio_flags(folio, page)); }
384 
385 #define __FOLIO_CLEAR_FLAG(name, page)					\
386 static __always_inline void __folio_clear_##name(struct folio *folio)	\
387 { __clear_bit(PG_##name, folio_flags(folio, page)); }
388 
389 #define FOLIO_TEST_SET_FLAG(name, page)					\
390 static __always_inline bool folio_test_set_##name(struct folio *folio)	\
391 { return test_and_set_bit(PG_##name, folio_flags(folio, page)); }
392 
393 #define FOLIO_TEST_CLEAR_FLAG(name, page)				\
394 static __always_inline bool folio_test_clear_##name(struct folio *folio) \
395 { return test_and_clear_bit(PG_##name, folio_flags(folio, page)); }
396 
397 #define FOLIO_FLAG(name, page)						\
398 FOLIO_TEST_FLAG(name, page)						\
399 FOLIO_SET_FLAG(name, page)						\
400 FOLIO_CLEAR_FLAG(name, page)
401 
402 #define TESTPAGEFLAG(uname, lname, policy)				\
403 FOLIO_TEST_FLAG(lname, FOLIO_##policy)					\
404 static __always_inline int Page##uname(const struct page *page)		\
405 { return test_bit(PG_##lname, &policy(page, 0)->flags); }
406 
407 #define SETPAGEFLAG(uname, lname, policy)				\
408 FOLIO_SET_FLAG(lname, FOLIO_##policy)					\
409 static __always_inline void SetPage##uname(struct page *page)		\
410 { set_bit(PG_##lname, &policy(page, 1)->flags); }
411 
412 #define CLEARPAGEFLAG(uname, lname, policy)				\
413 FOLIO_CLEAR_FLAG(lname, FOLIO_##policy)					\
414 static __always_inline void ClearPage##uname(struct page *page)		\
415 { clear_bit(PG_##lname, &policy(page, 1)->flags); }
416 
417 #define __SETPAGEFLAG(uname, lname, policy)				\
418 __FOLIO_SET_FLAG(lname, FOLIO_##policy)					\
419 static __always_inline void __SetPage##uname(struct page *page)		\
420 { __set_bit(PG_##lname, &policy(page, 1)->flags); }
421 
422 #define __CLEARPAGEFLAG(uname, lname, policy)				\
423 __FOLIO_CLEAR_FLAG(lname, FOLIO_##policy)				\
424 static __always_inline void __ClearPage##uname(struct page *page)	\
425 { __clear_bit(PG_##lname, &policy(page, 1)->flags); }
426 
427 #define TESTSETFLAG(uname, lname, policy)				\
428 FOLIO_TEST_SET_FLAG(lname, FOLIO_##policy)				\
429 static __always_inline int TestSetPage##uname(struct page *page)	\
430 { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); }
431 
432 #define TESTCLEARFLAG(uname, lname, policy)				\
433 FOLIO_TEST_CLEAR_FLAG(lname, FOLIO_##policy)				\
434 static __always_inline int TestClearPage##uname(struct page *page)	\
435 { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); }
436 
437 #define PAGEFLAG(uname, lname, policy)					\
438 	TESTPAGEFLAG(uname, lname, policy)				\
439 	SETPAGEFLAG(uname, lname, policy)				\
440 	CLEARPAGEFLAG(uname, lname, policy)
441 
442 #define __PAGEFLAG(uname, lname, policy)				\
443 	TESTPAGEFLAG(uname, lname, policy)				\
444 	__SETPAGEFLAG(uname, lname, policy)				\
445 	__CLEARPAGEFLAG(uname, lname, policy)
446 
447 #define TESTSCFLAG(uname, lname, policy)				\
448 	TESTSETFLAG(uname, lname, policy)				\
449 	TESTCLEARFLAG(uname, lname, policy)
450 
451 #define FOLIO_TEST_FLAG_FALSE(name)					\
452 static inline bool folio_test_##name(const struct folio *folio)		\
453 { return false; }
454 #define FOLIO_SET_FLAG_NOOP(name)					\
455 static inline void folio_set_##name(struct folio *folio) { }
456 #define FOLIO_CLEAR_FLAG_NOOP(name)					\
457 static inline void folio_clear_##name(struct folio *folio) { }
458 #define __FOLIO_SET_FLAG_NOOP(name)					\
459 static inline void __folio_set_##name(struct folio *folio) { }
460 #define __FOLIO_CLEAR_FLAG_NOOP(name)					\
461 static inline void __folio_clear_##name(struct folio *folio) { }
462 #define FOLIO_TEST_SET_FLAG_FALSE(name)					\
463 static inline bool folio_test_set_##name(struct folio *folio)		\
464 { return false; }
465 #define FOLIO_TEST_CLEAR_FLAG_FALSE(name)				\
466 static inline bool folio_test_clear_##name(struct folio *folio)		\
467 { return false; }
468 
469 #define FOLIO_FLAG_FALSE(name)						\
470 FOLIO_TEST_FLAG_FALSE(name)						\
471 FOLIO_SET_FLAG_NOOP(name)						\
472 FOLIO_CLEAR_FLAG_NOOP(name)
473 
474 #define TESTPAGEFLAG_FALSE(uname, lname)				\
475 FOLIO_TEST_FLAG_FALSE(lname)						\
476 static inline int Page##uname(const struct page *page) { return 0; }
477 
478 #define SETPAGEFLAG_NOOP(uname, lname)					\
479 FOLIO_SET_FLAG_NOOP(lname)						\
480 static inline void SetPage##uname(struct page *page) {  }
481 
482 #define CLEARPAGEFLAG_NOOP(uname, lname)				\
483 FOLIO_CLEAR_FLAG_NOOP(lname)						\
484 static inline void ClearPage##uname(struct page *page) {  }
485 
486 #define __CLEARPAGEFLAG_NOOP(uname, lname)				\
487 __FOLIO_CLEAR_FLAG_NOOP(lname)						\
488 static inline void __ClearPage##uname(struct page *page) {  }
489 
490 #define TESTSETFLAG_FALSE(uname, lname)					\
491 FOLIO_TEST_SET_FLAG_FALSE(lname)					\
492 static inline int TestSetPage##uname(struct page *page) { return 0; }
493 
494 #define TESTCLEARFLAG_FALSE(uname, lname)				\
495 FOLIO_TEST_CLEAR_FLAG_FALSE(lname)					\
496 static inline int TestClearPage##uname(struct page *page) { return 0; }
497 
498 #define PAGEFLAG_FALSE(uname, lname) TESTPAGEFLAG_FALSE(uname, lname)	\
499 	SETPAGEFLAG_NOOP(uname, lname) CLEARPAGEFLAG_NOOP(uname, lname)
500 
501 #define TESTSCFLAG_FALSE(uname, lname)					\
502 	TESTSETFLAG_FALSE(uname, lname) TESTCLEARFLAG_FALSE(uname, lname)
503 
504 __PAGEFLAG(Locked, locked, PF_NO_TAIL)
505 FOLIO_FLAG(waiters, FOLIO_HEAD_PAGE)
506 FOLIO_FLAG(referenced, FOLIO_HEAD_PAGE)
507 	FOLIO_TEST_CLEAR_FLAG(referenced, FOLIO_HEAD_PAGE)
508 	__FOLIO_SET_FLAG(referenced, FOLIO_HEAD_PAGE)
509 PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD)
510 	__CLEARPAGEFLAG(Dirty, dirty, PF_HEAD)
511 PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD)
512 	TESTCLEARFLAG(LRU, lru, PF_HEAD)
513 FOLIO_FLAG(active, FOLIO_HEAD_PAGE)
514 	__FOLIO_CLEAR_FLAG(active, FOLIO_HEAD_PAGE)
515 	FOLIO_TEST_CLEAR_FLAG(active, FOLIO_HEAD_PAGE)
516 PAGEFLAG(Workingset, workingset, PF_HEAD)
517 	TESTCLEARFLAG(Workingset, workingset, PF_HEAD)
518 PAGEFLAG(Checked, checked, PF_NO_COMPOUND)	   /* Used by some filesystems */
519 
520 /* Xen */
521 PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND)
522 	TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND)
523 PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND);
524 PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND);
525 PAGEFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
526 	TESTCLEARFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
527 
528 PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
529 	__CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
530 	__SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
531 FOLIO_FLAG(swapbacked, FOLIO_HEAD_PAGE)
532 	__FOLIO_CLEAR_FLAG(swapbacked, FOLIO_HEAD_PAGE)
533 	__FOLIO_SET_FLAG(swapbacked, FOLIO_HEAD_PAGE)
534 
535 /*
536  * Private page markings that may be used by the filesystem that owns the page
537  * for its own purposes.
538  * - PG_private and PG_private_2 cause release_folio() and co to be invoked
539  */
540 PAGEFLAG(Private, private, PF_ANY)
541 PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY)
542 PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
543 	TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
544 
545 /*
546  * Only test-and-set exist for PG_writeback.  The unconditional operators are
547  * risky: they bypass page accounting.
548  */
549 TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL)
550 	TESTSCFLAG(Writeback, writeback, PF_NO_TAIL)
551 PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL)
552 
553 /* PG_readahead is only used for reads; PG_reclaim is only for writes */
554 PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL)
555 	TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL)
556 FOLIO_FLAG(readahead, FOLIO_HEAD_PAGE)
557 	FOLIO_TEST_CLEAR_FLAG(readahead, FOLIO_HEAD_PAGE)
558 
559 #ifdef CONFIG_HIGHMEM
560 /*
561  * Must use a macro here due to header dependency issues. page_zone() is not
562  * available at this point.
563  */
564 #define PageHighMem(__p) is_highmem_idx(page_zonenum(__p))
565 #define folio_test_highmem(__f)	is_highmem_idx(folio_zonenum(__f))
566 #else
567 PAGEFLAG_FALSE(HighMem, highmem)
568 #endif
569 
570 #ifdef CONFIG_SWAP
571 static __always_inline bool folio_test_swapcache(const struct folio *folio)
572 {
573 	return folio_test_swapbacked(folio) &&
574 			test_bit(PG_swapcache, const_folio_flags(folio, 0));
575 }
576 
577 FOLIO_SET_FLAG(swapcache, FOLIO_HEAD_PAGE)
578 FOLIO_CLEAR_FLAG(swapcache, FOLIO_HEAD_PAGE)
579 #else
580 FOLIO_FLAG_FALSE(swapcache)
581 #endif
582 
583 FOLIO_FLAG(unevictable, FOLIO_HEAD_PAGE)
584 	__FOLIO_CLEAR_FLAG(unevictable, FOLIO_HEAD_PAGE)
585 	FOLIO_TEST_CLEAR_FLAG(unevictable, FOLIO_HEAD_PAGE)
586 
587 #ifdef CONFIG_MMU
588 FOLIO_FLAG(mlocked, FOLIO_HEAD_PAGE)
589 	__FOLIO_CLEAR_FLAG(mlocked, FOLIO_HEAD_PAGE)
590 	FOLIO_TEST_CLEAR_FLAG(mlocked, FOLIO_HEAD_PAGE)
591 	FOLIO_TEST_SET_FLAG(mlocked, FOLIO_HEAD_PAGE)
592 #else
593 FOLIO_FLAG_FALSE(mlocked)
594 	__FOLIO_CLEAR_FLAG_NOOP(mlocked)
595 	FOLIO_TEST_CLEAR_FLAG_FALSE(mlocked)
596 	FOLIO_TEST_SET_FLAG_FALSE(mlocked)
597 #endif
598 
599 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
600 PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND)
601 #else
602 PAGEFLAG_FALSE(Uncached, uncached)
603 #endif
604 
605 #ifdef CONFIG_MEMORY_FAILURE
606 PAGEFLAG(HWPoison, hwpoison, PF_ANY)
607 TESTSCFLAG(HWPoison, hwpoison, PF_ANY)
608 #define __PG_HWPOISON (1UL << PG_hwpoison)
609 #else
610 PAGEFLAG_FALSE(HWPoison, hwpoison)
611 #define __PG_HWPOISON 0
612 #endif
613 
614 #ifdef CONFIG_PAGE_IDLE_FLAG
615 #ifdef CONFIG_64BIT
616 FOLIO_TEST_FLAG(young, FOLIO_HEAD_PAGE)
617 FOLIO_SET_FLAG(young, FOLIO_HEAD_PAGE)
618 FOLIO_TEST_CLEAR_FLAG(young, FOLIO_HEAD_PAGE)
619 FOLIO_FLAG(idle, FOLIO_HEAD_PAGE)
620 #endif
621 /* See page_idle.h for !64BIT workaround */
622 #else /* !CONFIG_PAGE_IDLE_FLAG */
623 FOLIO_FLAG_FALSE(young)
624 FOLIO_TEST_CLEAR_FLAG_FALSE(young)
625 FOLIO_FLAG_FALSE(idle)
626 #endif
627 
628 /*
629  * PageReported() is used to track reported free pages within the Buddy
630  * allocator. We can use the non-atomic version of the test and set
631  * operations as both should be shielded with the zone lock to prevent
632  * any possible races on the setting or clearing of the bit.
633  */
634 __PAGEFLAG(Reported, reported, PF_NO_COMPOUND)
635 
636 #ifdef CONFIG_MEMORY_HOTPLUG
637 PAGEFLAG(VmemmapSelfHosted, vmemmap_self_hosted, PF_ANY)
638 #else
639 PAGEFLAG_FALSE(VmemmapSelfHosted, vmemmap_self_hosted)
640 #endif
641 
642 /*
643  * On an anonymous folio mapped into a user virtual memory area,
644  * folio->mapping points to its anon_vma, not to a struct address_space;
645  * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
646  *
647  * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
648  * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON
649  * bit; and then folio->mapping points, not to an anon_vma, but to a private
650  * structure which KSM associates with that merged page.  See ksm.h.
651  *
652  * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable
653  * page and then folio->mapping points to a struct movable_operations.
654  *
655  * Please note that, confusingly, "folio_mapping" refers to the inode
656  * address_space which maps the folio from disk; whereas "folio_mapped"
657  * refers to user virtual address space into which the folio is mapped.
658  *
659  * For slab pages, since slab reuses the bits in struct page to store its
660  * internal states, the folio->mapping does not exist as such, nor do
661  * these flags below.  So in order to avoid testing non-existent bits,
662  * please make sure that folio_test_slab(folio) actually evaluates to
663  * false before calling the following functions (e.g., folio_test_anon).
664  * See mm/slab.h.
665  */
666 #define PAGE_MAPPING_ANON	0x1
667 #define PAGE_MAPPING_MOVABLE	0x2
668 #define PAGE_MAPPING_KSM	(PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
669 #define PAGE_MAPPING_FLAGS	(PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
670 
671 /*
672  * Different with flags above, this flag is used only for fsdax mode.  It
673  * indicates that this page->mapping is now under reflink case.
674  */
675 #define PAGE_MAPPING_DAX_SHARED	((void *)0x1)
676 
677 static __always_inline bool folio_mapping_flags(const struct folio *folio)
678 {
679 	return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) != 0;
680 }
681 
682 static __always_inline bool PageMappingFlags(const struct page *page)
683 {
684 	return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0;
685 }
686 
687 static __always_inline bool folio_test_anon(const struct folio *folio)
688 {
689 	return ((unsigned long)folio->mapping & PAGE_MAPPING_ANON) != 0;
690 }
691 
692 static __always_inline bool PageAnon(const struct page *page)
693 {
694 	return folio_test_anon(page_folio(page));
695 }
696 
697 static __always_inline bool __folio_test_movable(const struct folio *folio)
698 {
699 	return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) ==
700 			PAGE_MAPPING_MOVABLE;
701 }
702 
703 static __always_inline bool __PageMovable(const struct page *page)
704 {
705 	return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
706 				PAGE_MAPPING_MOVABLE;
707 }
708 
709 #ifdef CONFIG_KSM
710 /*
711  * A KSM page is one of those write-protected "shared pages" or "merged pages"
712  * which KSM maps into multiple mms, wherever identical anonymous page content
713  * is found in VM_MERGEABLE vmas.  It's a PageAnon page, pointing not to any
714  * anon_vma, but to that page's node of the stable tree.
715  */
716 static __always_inline bool folio_test_ksm(const struct folio *folio)
717 {
718 	return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) ==
719 				PAGE_MAPPING_KSM;
720 }
721 
722 static __always_inline bool PageKsm(const struct page *page)
723 {
724 	return folio_test_ksm(page_folio(page));
725 }
726 #else
727 TESTPAGEFLAG_FALSE(Ksm, ksm)
728 #endif
729 
730 u64 stable_page_flags(const struct page *page);
731 
732 /**
733  * folio_xor_flags_has_waiters - Change some folio flags.
734  * @folio: The folio.
735  * @mask: Bits set in this word will be changed.
736  *
737  * This must only be used for flags which are changed with the folio
738  * lock held.  For example, it is unsafe to use for PG_dirty as that
739  * can be set without the folio lock held.  It can also only be used
740  * on flags which are in the range 0-6 as some of the implementations
741  * only affect those bits.
742  *
743  * Return: Whether there are tasks waiting on the folio.
744  */
745 static inline bool folio_xor_flags_has_waiters(struct folio *folio,
746 		unsigned long mask)
747 {
748 	return xor_unlock_is_negative_byte(mask, folio_flags(folio, 0));
749 }
750 
751 /**
752  * folio_test_uptodate - Is this folio up to date?
753  * @folio: The folio.
754  *
755  * The uptodate flag is set on a folio when every byte in the folio is
756  * at least as new as the corresponding bytes on storage.  Anonymous
757  * and CoW folios are always uptodate.  If the folio is not uptodate,
758  * some of the bytes in it may be; see the is_partially_uptodate()
759  * address_space operation.
760  */
761 static inline bool folio_test_uptodate(const struct folio *folio)
762 {
763 	bool ret = test_bit(PG_uptodate, const_folio_flags(folio, 0));
764 	/*
765 	 * Must ensure that the data we read out of the folio is loaded
766 	 * _after_ we've loaded folio->flags to check the uptodate bit.
767 	 * We can skip the barrier if the folio is not uptodate, because
768 	 * we wouldn't be reading anything from it.
769 	 *
770 	 * See folio_mark_uptodate() for the other side of the story.
771 	 */
772 	if (ret)
773 		smp_rmb();
774 
775 	return ret;
776 }
777 
778 static inline bool PageUptodate(const struct page *page)
779 {
780 	return folio_test_uptodate(page_folio(page));
781 }
782 
783 static __always_inline void __folio_mark_uptodate(struct folio *folio)
784 {
785 	smp_wmb();
786 	__set_bit(PG_uptodate, folio_flags(folio, 0));
787 }
788 
789 static __always_inline void folio_mark_uptodate(struct folio *folio)
790 {
791 	/*
792 	 * Memory barrier must be issued before setting the PG_uptodate bit,
793 	 * so that all previous stores issued in order to bring the folio
794 	 * uptodate are actually visible before folio_test_uptodate becomes true.
795 	 */
796 	smp_wmb();
797 	set_bit(PG_uptodate, folio_flags(folio, 0));
798 }
799 
800 static __always_inline void __SetPageUptodate(struct page *page)
801 {
802 	__folio_mark_uptodate((struct folio *)page);
803 }
804 
805 static __always_inline void SetPageUptodate(struct page *page)
806 {
807 	folio_mark_uptodate((struct folio *)page);
808 }
809 
810 CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL)
811 
812 void __folio_start_writeback(struct folio *folio, bool keep_write);
813 void set_page_writeback(struct page *page);
814 
815 #define folio_start_writeback(folio)			\
816 	__folio_start_writeback(folio, false)
817 #define folio_start_writeback_keepwrite(folio)	\
818 	__folio_start_writeback(folio, true)
819 
820 static __always_inline bool folio_test_head(const struct folio *folio)
821 {
822 	return test_bit(PG_head, const_folio_flags(folio, FOLIO_PF_ANY));
823 }
824 
825 static __always_inline int PageHead(const struct page *page)
826 {
827 	PF_POISONED_CHECK(page);
828 	return test_bit(PG_head, &page->flags) && !page_is_fake_head(page);
829 }
830 
831 __SETPAGEFLAG(Head, head, PF_ANY)
832 __CLEARPAGEFLAG(Head, head, PF_ANY)
833 CLEARPAGEFLAG(Head, head, PF_ANY)
834 
835 /**
836  * folio_test_large() - Does this folio contain more than one page?
837  * @folio: The folio to test.
838  *
839  * Return: True if the folio is larger than one page.
840  */
841 static inline bool folio_test_large(const struct folio *folio)
842 {
843 	return folio_test_head(folio);
844 }
845 
846 static __always_inline void set_compound_head(struct page *page, struct page *head)
847 {
848 	WRITE_ONCE(page->compound_head, (unsigned long)head + 1);
849 }
850 
851 static __always_inline void clear_compound_head(struct page *page)
852 {
853 	WRITE_ONCE(page->compound_head, 0);
854 }
855 
856 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
857 static inline void ClearPageCompound(struct page *page)
858 {
859 	BUG_ON(!PageHead(page));
860 	ClearPageHead(page);
861 }
862 FOLIO_FLAG(large_rmappable, FOLIO_SECOND_PAGE)
863 #else
864 FOLIO_FLAG_FALSE(large_rmappable)
865 #endif
866 
867 #define PG_head_mask ((1UL << PG_head))
868 
869 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
870 /*
871  * PageHuge() only returns true for hugetlbfs pages, but not for
872  * normal or transparent huge pages.
873  *
874  * PageTransHuge() returns true for both transparent huge and
875  * hugetlbfs pages, but not normal pages. PageTransHuge() can only be
876  * called only in the core VM paths where hugetlbfs pages can't exist.
877  */
878 static inline int PageTransHuge(const struct page *page)
879 {
880 	VM_BUG_ON_PAGE(PageTail(page), page);
881 	return PageHead(page);
882 }
883 
884 /*
885  * PageTransCompound returns true for both transparent huge pages
886  * and hugetlbfs pages, so it should only be called when it's known
887  * that hugetlbfs pages aren't involved.
888  */
889 static inline int PageTransCompound(const struct page *page)
890 {
891 	return PageCompound(page);
892 }
893 
894 /*
895  * PageTransTail returns true for both transparent huge pages
896  * and hugetlbfs pages, so it should only be called when it's known
897  * that hugetlbfs pages aren't involved.
898  */
899 static inline int PageTransTail(const struct page *page)
900 {
901 	return PageTail(page);
902 }
903 #else
904 TESTPAGEFLAG_FALSE(TransHuge, transhuge)
905 TESTPAGEFLAG_FALSE(TransCompound, transcompound)
906 TESTPAGEFLAG_FALSE(TransCompoundMap, transcompoundmap)
907 TESTPAGEFLAG_FALSE(TransTail, transtail)
908 #endif
909 
910 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
911 /*
912  * PageHasHWPoisoned indicates that at least one subpage is hwpoisoned in the
913  * compound page.
914  *
915  * This flag is set by hwpoison handler.  Cleared by THP split or free page.
916  */
917 PAGEFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND)
918 	TESTSCFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND)
919 #else
920 PAGEFLAG_FALSE(HasHWPoisoned, has_hwpoisoned)
921 	TESTSCFLAG_FALSE(HasHWPoisoned, has_hwpoisoned)
922 #endif
923 
924 /*
925  * For pages that do not use mapcount, page_type may be used.
926  * The low 24 bits of pagetype may be used for your own purposes, as long
927  * as you are careful to not affect the top 8 bits.  The low bits of
928  * pagetype will be overwritten when you clear the page_type from the page.
929  */
930 enum pagetype {
931 	/* 0x00-0x7f are positive numbers, ie mapcount */
932 	/* Reserve 0x80-0xef for mapcount overflow. */
933 	PGTY_buddy	= 0xf0,
934 	PGTY_offline	= 0xf1,
935 	PGTY_table	= 0xf2,
936 	PGTY_guard	= 0xf3,
937 	PGTY_hugetlb	= 0xf4,
938 	PGTY_slab	= 0xf5,
939 	PGTY_zsmalloc	= 0xf6,
940 	PGTY_unaccepted	= 0xf7,
941 
942 	PGTY_mapcount_underflow = 0xff
943 };
944 
945 static inline bool page_type_has_type(int page_type)
946 {
947 	return page_type < (PGTY_mapcount_underflow << 24);
948 }
949 
950 /* This takes a mapcount which is one more than page->_mapcount */
951 static inline bool page_mapcount_is_type(unsigned int mapcount)
952 {
953 	return page_type_has_type(mapcount - 1);
954 }
955 
956 static inline bool page_has_type(const struct page *page)
957 {
958 	return page_mapcount_is_type(data_race(page->page_type));
959 }
960 
961 #define FOLIO_TYPE_OPS(lname, fname)					\
962 static __always_inline bool folio_test_##fname(const struct folio *folio) \
963 {									\
964 	return data_race(folio->page.page_type >> 24) == PGTY_##lname;	\
965 }									\
966 static __always_inline void __folio_set_##fname(struct folio *folio)	\
967 {									\
968 	VM_BUG_ON_FOLIO(data_race(folio->page.page_type) != UINT_MAX,	\
969 			folio);						\
970 	folio->page.page_type = (unsigned int)PGTY_##lname << 24;	\
971 }									\
972 static __always_inline void __folio_clear_##fname(struct folio *folio)	\
973 {									\
974 	VM_BUG_ON_FOLIO(!folio_test_##fname(folio), folio);		\
975 	folio->page.page_type = UINT_MAX;				\
976 }
977 
978 #define PAGE_TYPE_OPS(uname, lname, fname)				\
979 FOLIO_TYPE_OPS(lname, fname)						\
980 static __always_inline int Page##uname(const struct page *page)		\
981 {									\
982 	return data_race(page->page_type >> 24) == PGTY_##lname;	\
983 }									\
984 static __always_inline void __SetPage##uname(struct page *page)		\
985 {									\
986 	VM_BUG_ON_PAGE(data_race(page->page_type) != UINT_MAX, page);	\
987 	page->page_type = (unsigned int)PGTY_##lname << 24;		\
988 }									\
989 static __always_inline void __ClearPage##uname(struct page *page)	\
990 {									\
991 	VM_BUG_ON_PAGE(!Page##uname(page), page);			\
992 	page->page_type = UINT_MAX;					\
993 }
994 
995 /*
996  * PageBuddy() indicates that the page is free and in the buddy system
997  * (see mm/page_alloc.c).
998  */
999 PAGE_TYPE_OPS(Buddy, buddy, buddy)
1000 
1001 /*
1002  * PageOffline() indicates that the page is logically offline although the
1003  * containing section is online. (e.g. inflated in a balloon driver or
1004  * not onlined when onlining the section).
1005  * The content of these pages is effectively stale. Such pages should not
1006  * be touched (read/write/dump/save) except by their owner.
1007  *
1008  * When a memory block gets onlined, all pages are initialized with a
1009  * refcount of 1 and PageOffline(). generic_online_page() will
1010  * take care of clearing PageOffline().
1011  *
1012  * If a driver wants to allow to offline unmovable PageOffline() pages without
1013  * putting them back to the buddy, it can do so via the memory notifier by
1014  * decrementing the reference count in MEM_GOING_OFFLINE and incrementing the
1015  * reference count in MEM_CANCEL_OFFLINE. When offlining, the PageOffline()
1016  * pages (now with a reference count of zero) are treated like free (unmanaged)
1017  * pages, allowing the containing memory block to get offlined. A driver that
1018  * relies on this feature is aware that re-onlining the memory block will
1019  * require not giving them to the buddy via generic_online_page().
1020  *
1021  * Memory offlining code will not adjust the managed page count for any
1022  * PageOffline() pages, treating them like they were never exposed to the
1023  * buddy using generic_online_page().
1024  *
1025  * There are drivers that mark a page PageOffline() and expect there won't be
1026  * any further access to page content. PFN walkers that read content of random
1027  * pages should check PageOffline() and synchronize with such drivers using
1028  * page_offline_freeze()/page_offline_thaw().
1029  */
1030 PAGE_TYPE_OPS(Offline, offline, offline)
1031 
1032 extern void page_offline_freeze(void);
1033 extern void page_offline_thaw(void);
1034 extern void page_offline_begin(void);
1035 extern void page_offline_end(void);
1036 
1037 /*
1038  * Marks pages in use as page tables.
1039  */
1040 PAGE_TYPE_OPS(Table, table, pgtable)
1041 
1042 /*
1043  * Marks guardpages used with debug_pagealloc.
1044  */
1045 PAGE_TYPE_OPS(Guard, guard, guard)
1046 
1047 FOLIO_TYPE_OPS(slab, slab)
1048 
1049 /**
1050  * PageSlab - Determine if the page belongs to the slab allocator
1051  * @page: The page to test.
1052  *
1053  * Context: Any context.
1054  * Return: True for slab pages, false for any other kind of page.
1055  */
1056 static inline bool PageSlab(const struct page *page)
1057 {
1058 	return folio_test_slab(page_folio(page));
1059 }
1060 
1061 #ifdef CONFIG_HUGETLB_PAGE
1062 FOLIO_TYPE_OPS(hugetlb, hugetlb)
1063 #else
1064 FOLIO_TEST_FLAG_FALSE(hugetlb)
1065 #endif
1066 
1067 PAGE_TYPE_OPS(Zsmalloc, zsmalloc, zsmalloc)
1068 
1069 /*
1070  * Mark pages that has to be accepted before touched for the first time.
1071  *
1072  * Serialized with zone lock.
1073  */
1074 PAGE_TYPE_OPS(Unaccepted, unaccepted, unaccepted)
1075 
1076 /**
1077  * PageHuge - Determine if the page belongs to hugetlbfs
1078  * @page: The page to test.
1079  *
1080  * Context: Any context.
1081  * Return: True for hugetlbfs pages, false for anon pages or pages
1082  * belonging to other filesystems.
1083  */
1084 static inline bool PageHuge(const struct page *page)
1085 {
1086 	return folio_test_hugetlb(page_folio(page));
1087 }
1088 
1089 /*
1090  * Check if a page is currently marked HWPoisoned. Note that this check is
1091  * best effort only and inherently racy: there is no way to synchronize with
1092  * failing hardware.
1093  */
1094 static inline bool is_page_hwpoison(const struct page *page)
1095 {
1096 	const struct folio *folio;
1097 
1098 	if (PageHWPoison(page))
1099 		return true;
1100 	folio = page_folio(page);
1101 	return folio_test_hugetlb(folio) && PageHWPoison(&folio->page);
1102 }
1103 
1104 bool is_free_buddy_page(const struct page *page);
1105 
1106 PAGEFLAG(Isolated, isolated, PF_ANY);
1107 
1108 static __always_inline int PageAnonExclusive(const struct page *page)
1109 {
1110 	VM_BUG_ON_PGFLAGS(!PageAnon(page), page);
1111 	/*
1112 	 * HugeTLB stores this information on the head page; THP keeps it per
1113 	 * page
1114 	 */
1115 	if (PageHuge(page))
1116 		page = compound_head(page);
1117 	return test_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags);
1118 }
1119 
1120 static __always_inline void SetPageAnonExclusive(struct page *page)
1121 {
1122 	VM_BUG_ON_PGFLAGS(!PageAnon(page) || PageKsm(page), page);
1123 	VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page);
1124 	set_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags);
1125 }
1126 
1127 static __always_inline void ClearPageAnonExclusive(struct page *page)
1128 {
1129 	VM_BUG_ON_PGFLAGS(!PageAnon(page) || PageKsm(page), page);
1130 	VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page);
1131 	clear_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags);
1132 }
1133 
1134 static __always_inline void __ClearPageAnonExclusive(struct page *page)
1135 {
1136 	VM_BUG_ON_PGFLAGS(!PageAnon(page), page);
1137 	VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page);
1138 	__clear_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags);
1139 }
1140 
1141 #ifdef CONFIG_MMU
1142 #define __PG_MLOCKED		(1UL << PG_mlocked)
1143 #else
1144 #define __PG_MLOCKED		0
1145 #endif
1146 
1147 /*
1148  * Flags checked when a page is freed.  Pages being freed should not have
1149  * these flags set.  If they are, there is a problem.
1150  */
1151 #define PAGE_FLAGS_CHECK_AT_FREE				\
1152 	(1UL << PG_lru		| 1UL << PG_locked	|	\
1153 	 1UL << PG_private	| 1UL << PG_private_2	|	\
1154 	 1UL << PG_writeback	| 1UL << PG_reserved	|	\
1155 	 1UL << PG_active 	|				\
1156 	 1UL << PG_unevictable	| __PG_MLOCKED | LRU_GEN_MASK)
1157 
1158 /*
1159  * Flags checked when a page is prepped for return by the page allocator.
1160  * Pages being prepped should not have these flags set.  If they are set,
1161  * there has been a kernel bug or struct page corruption.
1162  *
1163  * __PG_HWPOISON is exceptional because it needs to be kept beyond page's
1164  * alloc-free cycle to prevent from reusing the page.
1165  */
1166 #define PAGE_FLAGS_CHECK_AT_PREP	\
1167 	((PAGEFLAGS_MASK & ~__PG_HWPOISON) | LRU_GEN_MASK | LRU_REFS_MASK)
1168 
1169 /*
1170  * Flags stored in the second page of a compound page.  They may overlap
1171  * the CHECK_AT_FREE flags above, so need to be cleared.
1172  */
1173 #define PAGE_FLAGS_SECOND						\
1174 	(0xffUL /* order */		| 1UL << PG_has_hwpoisoned |	\
1175 	 1UL << PG_large_rmappable)
1176 
1177 #define PAGE_FLAGS_PRIVATE				\
1178 	(1UL << PG_private | 1UL << PG_private_2)
1179 /**
1180  * page_has_private - Determine if page has private stuff
1181  * @page: The page to be checked
1182  *
1183  * Determine if a page has private stuff, indicating that release routines
1184  * should be invoked upon it.
1185  */
1186 static inline int page_has_private(const struct page *page)
1187 {
1188 	return !!(page->flags & PAGE_FLAGS_PRIVATE);
1189 }
1190 
1191 static inline bool folio_has_private(const struct folio *folio)
1192 {
1193 	return page_has_private(&folio->page);
1194 }
1195 
1196 #undef PF_ANY
1197 #undef PF_HEAD
1198 #undef PF_NO_TAIL
1199 #undef PF_NO_COMPOUND
1200 #undef PF_SECOND
1201 #endif /* !__GENERATING_BOUNDS_H */
1202 
1203 #endif	/* PAGE_FLAGS_H */
1204