1 /* 2 * Macros for manipulating and testing page->flags 3 */ 4 5 #ifndef PAGE_FLAGS_H 6 #define PAGE_FLAGS_H 7 8 #include <linux/types.h> 9 #include <linux/bug.h> 10 #include <linux/mmdebug.h> 11 #ifndef __GENERATING_BOUNDS_H 12 #include <linux/mm_types.h> 13 #include <generated/bounds.h> 14 #endif /* !__GENERATING_BOUNDS_H */ 15 16 /* 17 * Various page->flags bits: 18 * 19 * PG_reserved is set for special pages, which can never be swapped out. Some 20 * of them might not even exist (eg empty_bad_page)... 21 * 22 * The PG_private bitflag is set on pagecache pages if they contain filesystem 23 * specific data (which is normally at page->private). It can be used by 24 * private allocations for its own usage. 25 * 26 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O 27 * and cleared when writeback _starts_ or when read _completes_. PG_writeback 28 * is set before writeback starts and cleared when it finishes. 29 * 30 * PG_locked also pins a page in pagecache, and blocks truncation of the file 31 * while it is held. 32 * 33 * page_waitqueue(page) is a wait queue of all tasks waiting for the page 34 * to become unlocked. 35 * 36 * PG_uptodate tells whether the page's contents is valid. When a read 37 * completes, the page becomes uptodate, unless a disk I/O error happened. 38 * 39 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and 40 * file-backed pagecache (see mm/vmscan.c). 41 * 42 * PG_error is set to indicate that an I/O error occurred on this page. 43 * 44 * PG_arch_1 is an architecture specific page state bit. The generic code 45 * guarantees that this bit is cleared for a page when it first is entered into 46 * the page cache. 47 * 48 * PG_highmem pages are not permanently mapped into the kernel virtual address 49 * space, they need to be kmapped separately for doing IO on the pages. The 50 * struct page (these bits with information) are always mapped into kernel 51 * address space... 52 * 53 * PG_hwpoison indicates that a page got corrupted in hardware and contains 54 * data with incorrect ECC bits that triggered a machine check. Accessing is 55 * not safe since it may cause another machine check. Don't touch! 56 */ 57 58 /* 59 * Don't use the *_dontuse flags. Use the macros. Otherwise you'll break 60 * locked- and dirty-page accounting. 61 * 62 * The page flags field is split into two parts, the main flags area 63 * which extends from the low bits upwards, and the fields area which 64 * extends from the high bits downwards. 65 * 66 * | FIELD | ... | FLAGS | 67 * N-1 ^ 0 68 * (NR_PAGEFLAGS) 69 * 70 * The fields area is reserved for fields mapping zone, node (for NUMA) and 71 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like 72 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP). 73 */ 74 enum pageflags { 75 PG_locked, /* Page is locked. Don't touch. */ 76 PG_error, 77 PG_referenced, 78 PG_uptodate, 79 PG_dirty, 80 PG_lru, 81 PG_active, 82 PG_slab, 83 PG_owner_priv_1, /* Owner use. If pagecache, fs may use*/ 84 PG_arch_1, 85 PG_reserved, 86 PG_private, /* If pagecache, has fs-private data */ 87 PG_private_2, /* If pagecache, has fs aux data */ 88 PG_writeback, /* Page is under writeback */ 89 PG_head, /* A head page */ 90 PG_swapcache, /* Swap page: swp_entry_t in private */ 91 PG_mappedtodisk, /* Has blocks allocated on-disk */ 92 PG_reclaim, /* To be reclaimed asap */ 93 PG_swapbacked, /* Page is backed by RAM/swap */ 94 PG_unevictable, /* Page is "unevictable" */ 95 #ifdef CONFIG_MMU 96 PG_mlocked, /* Page is vma mlocked */ 97 #endif 98 #ifdef CONFIG_ARCH_USES_PG_UNCACHED 99 PG_uncached, /* Page has been mapped as uncached */ 100 #endif 101 #ifdef CONFIG_MEMORY_FAILURE 102 PG_hwpoison, /* hardware poisoned page. Don't touch */ 103 #endif 104 #if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT) 105 PG_young, 106 PG_idle, 107 #endif 108 __NR_PAGEFLAGS, 109 110 /* Filesystems */ 111 PG_checked = PG_owner_priv_1, 112 113 /* Two page bits are conscripted by FS-Cache to maintain local caching 114 * state. These bits are set on pages belonging to the netfs's inodes 115 * when those inodes are being locally cached. 116 */ 117 PG_fscache = PG_private_2, /* page backed by cache */ 118 119 /* XEN */ 120 /* Pinned in Xen as a read-only pagetable page. */ 121 PG_pinned = PG_owner_priv_1, 122 /* Pinned as part of domain save (see xen_mm_pin_all()). */ 123 PG_savepinned = PG_dirty, 124 /* Has a grant mapping of another (foreign) domain's page. */ 125 PG_foreign = PG_owner_priv_1, 126 127 /* SLOB */ 128 PG_slob_free = PG_private, 129 130 /* Compound pages. Stored in first tail page's flags */ 131 PG_double_map = PG_private_2, 132 133 /* non-lru isolated movable page */ 134 PG_isolated = PG_reclaim, 135 }; 136 137 #ifndef __GENERATING_BOUNDS_H 138 139 struct page; /* forward declaration */ 140 141 static inline struct page *compound_head(struct page *page) 142 { 143 unsigned long head = READ_ONCE(page->compound_head); 144 145 if (unlikely(head & 1)) 146 return (struct page *) (head - 1); 147 return page; 148 } 149 150 static __always_inline int PageTail(struct page *page) 151 { 152 return READ_ONCE(page->compound_head) & 1; 153 } 154 155 static __always_inline int PageCompound(struct page *page) 156 { 157 return test_bit(PG_head, &page->flags) || PageTail(page); 158 } 159 160 /* 161 * Page flags policies wrt compound pages 162 * 163 * PF_ANY: 164 * the page flag is relevant for small, head and tail pages. 165 * 166 * PF_HEAD: 167 * for compound page all operations related to the page flag applied to 168 * head page. 169 * 170 * PF_NO_TAIL: 171 * modifications of the page flag must be done on small or head pages, 172 * checks can be done on tail pages too. 173 * 174 * PF_NO_COMPOUND: 175 * the page flag is not relevant for compound pages. 176 */ 177 #define PF_ANY(page, enforce) page 178 #define PF_HEAD(page, enforce) compound_head(page) 179 #define PF_NO_TAIL(page, enforce) ({ \ 180 VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page); \ 181 compound_head(page);}) 182 #define PF_NO_COMPOUND(page, enforce) ({ \ 183 VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \ 184 page;}) 185 186 /* 187 * Macros to create function definitions for page flags 188 */ 189 #define TESTPAGEFLAG(uname, lname, policy) \ 190 static __always_inline int Page##uname(struct page *page) \ 191 { return test_bit(PG_##lname, &policy(page, 0)->flags); } 192 193 #define SETPAGEFLAG(uname, lname, policy) \ 194 static __always_inline void SetPage##uname(struct page *page) \ 195 { set_bit(PG_##lname, &policy(page, 1)->flags); } 196 197 #define CLEARPAGEFLAG(uname, lname, policy) \ 198 static __always_inline void ClearPage##uname(struct page *page) \ 199 { clear_bit(PG_##lname, &policy(page, 1)->flags); } 200 201 #define __SETPAGEFLAG(uname, lname, policy) \ 202 static __always_inline void __SetPage##uname(struct page *page) \ 203 { __set_bit(PG_##lname, &policy(page, 1)->flags); } 204 205 #define __CLEARPAGEFLAG(uname, lname, policy) \ 206 static __always_inline void __ClearPage##uname(struct page *page) \ 207 { __clear_bit(PG_##lname, &policy(page, 1)->flags); } 208 209 #define TESTSETFLAG(uname, lname, policy) \ 210 static __always_inline int TestSetPage##uname(struct page *page) \ 211 { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); } 212 213 #define TESTCLEARFLAG(uname, lname, policy) \ 214 static __always_inline int TestClearPage##uname(struct page *page) \ 215 { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); } 216 217 #define PAGEFLAG(uname, lname, policy) \ 218 TESTPAGEFLAG(uname, lname, policy) \ 219 SETPAGEFLAG(uname, lname, policy) \ 220 CLEARPAGEFLAG(uname, lname, policy) 221 222 #define __PAGEFLAG(uname, lname, policy) \ 223 TESTPAGEFLAG(uname, lname, policy) \ 224 __SETPAGEFLAG(uname, lname, policy) \ 225 __CLEARPAGEFLAG(uname, lname, policy) 226 227 #define TESTSCFLAG(uname, lname, policy) \ 228 TESTSETFLAG(uname, lname, policy) \ 229 TESTCLEARFLAG(uname, lname, policy) 230 231 #define TESTPAGEFLAG_FALSE(uname) \ 232 static inline int Page##uname(const struct page *page) { return 0; } 233 234 #define SETPAGEFLAG_NOOP(uname) \ 235 static inline void SetPage##uname(struct page *page) { } 236 237 #define CLEARPAGEFLAG_NOOP(uname) \ 238 static inline void ClearPage##uname(struct page *page) { } 239 240 #define __CLEARPAGEFLAG_NOOP(uname) \ 241 static inline void __ClearPage##uname(struct page *page) { } 242 243 #define TESTSETFLAG_FALSE(uname) \ 244 static inline int TestSetPage##uname(struct page *page) { return 0; } 245 246 #define TESTCLEARFLAG_FALSE(uname) \ 247 static inline int TestClearPage##uname(struct page *page) { return 0; } 248 249 #define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname) \ 250 SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname) 251 252 #define TESTSCFLAG_FALSE(uname) \ 253 TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname) 254 255 __PAGEFLAG(Locked, locked, PF_NO_TAIL) 256 PAGEFLAG(Error, error, PF_NO_COMPOUND) TESTCLEARFLAG(Error, error, PF_NO_COMPOUND) 257 PAGEFLAG(Referenced, referenced, PF_HEAD) 258 TESTCLEARFLAG(Referenced, referenced, PF_HEAD) 259 __SETPAGEFLAG(Referenced, referenced, PF_HEAD) 260 PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD) 261 __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD) 262 PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD) 263 PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD) 264 TESTCLEARFLAG(Active, active, PF_HEAD) 265 __PAGEFLAG(Slab, slab, PF_NO_TAIL) 266 __PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL) 267 PAGEFLAG(Checked, checked, PF_NO_COMPOUND) /* Used by some filesystems */ 268 269 /* Xen */ 270 PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND) 271 TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND) 272 PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND); 273 PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND); 274 275 PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 276 __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 277 PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 278 __CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 279 __SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 280 281 /* 282 * Private page markings that may be used by the filesystem that owns the page 283 * for its own purposes. 284 * - PG_private and PG_private_2 cause releasepage() and co to be invoked 285 */ 286 PAGEFLAG(Private, private, PF_ANY) __SETPAGEFLAG(Private, private, PF_ANY) 287 __CLEARPAGEFLAG(Private, private, PF_ANY) 288 PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY) 289 PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY) 290 TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY) 291 292 /* 293 * Only test-and-set exist for PG_writeback. The unconditional operators are 294 * risky: they bypass page accounting. 295 */ 296 TESTPAGEFLAG(Writeback, writeback, PF_NO_COMPOUND) 297 TESTSCFLAG(Writeback, writeback, PF_NO_COMPOUND) 298 PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL) 299 300 /* PG_readahead is only used for reads; PG_reclaim is only for writes */ 301 PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL) 302 TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL) 303 PAGEFLAG(Readahead, reclaim, PF_NO_COMPOUND) 304 TESTCLEARFLAG(Readahead, reclaim, PF_NO_COMPOUND) 305 306 #ifdef CONFIG_HIGHMEM 307 /* 308 * Must use a macro here due to header dependency issues. page_zone() is not 309 * available at this point. 310 */ 311 #define PageHighMem(__p) is_highmem_idx(page_zonenum(__p)) 312 #else 313 PAGEFLAG_FALSE(HighMem) 314 #endif 315 316 #ifdef CONFIG_SWAP 317 PAGEFLAG(SwapCache, swapcache, PF_NO_COMPOUND) 318 #else 319 PAGEFLAG_FALSE(SwapCache) 320 #endif 321 322 PAGEFLAG(Unevictable, unevictable, PF_HEAD) 323 __CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD) 324 TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD) 325 326 #ifdef CONFIG_MMU 327 PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL) 328 __CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL) 329 TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL) 330 #else 331 PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked) 332 TESTSCFLAG_FALSE(Mlocked) 333 #endif 334 335 #ifdef CONFIG_ARCH_USES_PG_UNCACHED 336 PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND) 337 #else 338 PAGEFLAG_FALSE(Uncached) 339 #endif 340 341 #ifdef CONFIG_MEMORY_FAILURE 342 PAGEFLAG(HWPoison, hwpoison, PF_ANY) 343 TESTSCFLAG(HWPoison, hwpoison, PF_ANY) 344 #define __PG_HWPOISON (1UL << PG_hwpoison) 345 #else 346 PAGEFLAG_FALSE(HWPoison) 347 #define __PG_HWPOISON 0 348 #endif 349 350 #if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT) 351 TESTPAGEFLAG(Young, young, PF_ANY) 352 SETPAGEFLAG(Young, young, PF_ANY) 353 TESTCLEARFLAG(Young, young, PF_ANY) 354 PAGEFLAG(Idle, idle, PF_ANY) 355 #endif 356 357 /* 358 * On an anonymous page mapped into a user virtual memory area, 359 * page->mapping points to its anon_vma, not to a struct address_space; 360 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 361 * 362 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 363 * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON 364 * bit; and then page->mapping points, not to an anon_vma, but to a private 365 * structure which KSM associates with that merged page. See ksm.h. 366 * 367 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable 368 * page and then page->mapping points a struct address_space. 369 * 370 * Please note that, confusingly, "page_mapping" refers to the inode 371 * address_space which maps the page from disk; whereas "page_mapped" 372 * refers to user virtual address space into which the page is mapped. 373 */ 374 #define PAGE_MAPPING_ANON 0x1 375 #define PAGE_MAPPING_MOVABLE 0x2 376 #define PAGE_MAPPING_KSM (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE) 377 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE) 378 379 static __always_inline int PageMappingFlags(struct page *page) 380 { 381 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0; 382 } 383 384 static __always_inline int PageAnon(struct page *page) 385 { 386 page = compound_head(page); 387 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 388 } 389 390 static __always_inline int __PageMovable(struct page *page) 391 { 392 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) == 393 PAGE_MAPPING_MOVABLE; 394 } 395 396 #ifdef CONFIG_KSM 397 /* 398 * A KSM page is one of those write-protected "shared pages" or "merged pages" 399 * which KSM maps into multiple mms, wherever identical anonymous page content 400 * is found in VM_MERGEABLE vmas. It's a PageAnon page, pointing not to any 401 * anon_vma, but to that page's node of the stable tree. 402 */ 403 static __always_inline int PageKsm(struct page *page) 404 { 405 page = compound_head(page); 406 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) == 407 PAGE_MAPPING_KSM; 408 } 409 #else 410 TESTPAGEFLAG_FALSE(Ksm) 411 #endif 412 413 u64 stable_page_flags(struct page *page); 414 415 static inline int PageUptodate(struct page *page) 416 { 417 int ret; 418 page = compound_head(page); 419 ret = test_bit(PG_uptodate, &(page)->flags); 420 /* 421 * Must ensure that the data we read out of the page is loaded 422 * _after_ we've loaded page->flags to check for PageUptodate. 423 * We can skip the barrier if the page is not uptodate, because 424 * we wouldn't be reading anything from it. 425 * 426 * See SetPageUptodate() for the other side of the story. 427 */ 428 if (ret) 429 smp_rmb(); 430 431 return ret; 432 } 433 434 static __always_inline void __SetPageUptodate(struct page *page) 435 { 436 VM_BUG_ON_PAGE(PageTail(page), page); 437 smp_wmb(); 438 __set_bit(PG_uptodate, &page->flags); 439 } 440 441 static __always_inline void SetPageUptodate(struct page *page) 442 { 443 VM_BUG_ON_PAGE(PageTail(page), page); 444 /* 445 * Memory barrier must be issued before setting the PG_uptodate bit, 446 * so that all previous stores issued in order to bring the page 447 * uptodate are actually visible before PageUptodate becomes true. 448 */ 449 smp_wmb(); 450 set_bit(PG_uptodate, &page->flags); 451 } 452 453 CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL) 454 455 int test_clear_page_writeback(struct page *page); 456 int __test_set_page_writeback(struct page *page, bool keep_write); 457 458 #define test_set_page_writeback(page) \ 459 __test_set_page_writeback(page, false) 460 #define test_set_page_writeback_keepwrite(page) \ 461 __test_set_page_writeback(page, true) 462 463 static inline void set_page_writeback(struct page *page) 464 { 465 test_set_page_writeback(page); 466 } 467 468 static inline void set_page_writeback_keepwrite(struct page *page) 469 { 470 test_set_page_writeback_keepwrite(page); 471 } 472 473 __PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY) 474 475 static __always_inline void set_compound_head(struct page *page, struct page *head) 476 { 477 WRITE_ONCE(page->compound_head, (unsigned long)head + 1); 478 } 479 480 static __always_inline void clear_compound_head(struct page *page) 481 { 482 WRITE_ONCE(page->compound_head, 0); 483 } 484 485 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 486 static inline void ClearPageCompound(struct page *page) 487 { 488 BUG_ON(!PageHead(page)); 489 ClearPageHead(page); 490 } 491 #endif 492 493 #define PG_head_mask ((1UL << PG_head)) 494 495 #ifdef CONFIG_HUGETLB_PAGE 496 int PageHuge(struct page *page); 497 int PageHeadHuge(struct page *page); 498 bool page_huge_active(struct page *page); 499 #else 500 TESTPAGEFLAG_FALSE(Huge) 501 TESTPAGEFLAG_FALSE(HeadHuge) 502 503 static inline bool page_huge_active(struct page *page) 504 { 505 return 0; 506 } 507 #endif 508 509 510 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 511 /* 512 * PageHuge() only returns true for hugetlbfs pages, but not for 513 * normal or transparent huge pages. 514 * 515 * PageTransHuge() returns true for both transparent huge and 516 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be 517 * called only in the core VM paths where hugetlbfs pages can't exist. 518 */ 519 static inline int PageTransHuge(struct page *page) 520 { 521 VM_BUG_ON_PAGE(PageTail(page), page); 522 return PageHead(page); 523 } 524 525 /* 526 * PageTransCompound returns true for both transparent huge pages 527 * and hugetlbfs pages, so it should only be called when it's known 528 * that hugetlbfs pages aren't involved. 529 */ 530 static inline int PageTransCompound(struct page *page) 531 { 532 return PageCompound(page); 533 } 534 535 /* 536 * PageTransCompoundMap is the same as PageTransCompound, but it also 537 * guarantees the primary MMU has the entire compound page mapped 538 * through pmd_trans_huge, which in turn guarantees the secondary MMUs 539 * can also map the entire compound page. This allows the secondary 540 * MMUs to call get_user_pages() only once for each compound page and 541 * to immediately map the entire compound page with a single secondary 542 * MMU fault. If there will be a pmd split later, the secondary MMUs 543 * will get an update through the MMU notifier invalidation through 544 * split_huge_pmd(). 545 * 546 * Unlike PageTransCompound, this is safe to be called only while 547 * split_huge_pmd() cannot run from under us, like if protected by the 548 * MMU notifier, otherwise it may result in page->_mapcount < 0 false 549 * positives. 550 */ 551 static inline int PageTransCompoundMap(struct page *page) 552 { 553 return PageTransCompound(page) && atomic_read(&page->_mapcount) < 0; 554 } 555 556 /* 557 * PageTransTail returns true for both transparent huge pages 558 * and hugetlbfs pages, so it should only be called when it's known 559 * that hugetlbfs pages aren't involved. 560 */ 561 static inline int PageTransTail(struct page *page) 562 { 563 return PageTail(page); 564 } 565 566 /* 567 * PageDoubleMap indicates that the compound page is mapped with PTEs as well 568 * as PMDs. 569 * 570 * This is required for optimization of rmap operations for THP: we can postpone 571 * per small page mapcount accounting (and its overhead from atomic operations) 572 * until the first PMD split. 573 * 574 * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up 575 * by one. This reference will go away with last compound_mapcount. 576 * 577 * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap(). 578 */ 579 static inline int PageDoubleMap(struct page *page) 580 { 581 return PageHead(page) && test_bit(PG_double_map, &page[1].flags); 582 } 583 584 static inline void SetPageDoubleMap(struct page *page) 585 { 586 VM_BUG_ON_PAGE(!PageHead(page), page); 587 set_bit(PG_double_map, &page[1].flags); 588 } 589 590 static inline void ClearPageDoubleMap(struct page *page) 591 { 592 VM_BUG_ON_PAGE(!PageHead(page), page); 593 clear_bit(PG_double_map, &page[1].flags); 594 } 595 static inline int TestSetPageDoubleMap(struct page *page) 596 { 597 VM_BUG_ON_PAGE(!PageHead(page), page); 598 return test_and_set_bit(PG_double_map, &page[1].flags); 599 } 600 601 static inline int TestClearPageDoubleMap(struct page *page) 602 { 603 VM_BUG_ON_PAGE(!PageHead(page), page); 604 return test_and_clear_bit(PG_double_map, &page[1].flags); 605 } 606 607 #else 608 TESTPAGEFLAG_FALSE(TransHuge) 609 TESTPAGEFLAG_FALSE(TransCompound) 610 TESTPAGEFLAG_FALSE(TransCompoundMap) 611 TESTPAGEFLAG_FALSE(TransTail) 612 PAGEFLAG_FALSE(DoubleMap) 613 TESTSETFLAG_FALSE(DoubleMap) 614 TESTCLEARFLAG_FALSE(DoubleMap) 615 #endif 616 617 /* 618 * For pages that are never mapped to userspace, page->mapcount may be 619 * used for storing extra information about page type. Any value used 620 * for this purpose must be <= -2, but it's better start not too close 621 * to -2 so that an underflow of the page_mapcount() won't be mistaken 622 * for a special page. 623 */ 624 #define PAGE_MAPCOUNT_OPS(uname, lname) \ 625 static __always_inline int Page##uname(struct page *page) \ 626 { \ 627 return atomic_read(&page->_mapcount) == \ 628 PAGE_##lname##_MAPCOUNT_VALUE; \ 629 } \ 630 static __always_inline void __SetPage##uname(struct page *page) \ 631 { \ 632 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page); \ 633 atomic_set(&page->_mapcount, PAGE_##lname##_MAPCOUNT_VALUE); \ 634 } \ 635 static __always_inline void __ClearPage##uname(struct page *page) \ 636 { \ 637 VM_BUG_ON_PAGE(!Page##uname(page), page); \ 638 atomic_set(&page->_mapcount, -1); \ 639 } 640 641 /* 642 * PageBuddy() indicate that the page is free and in the buddy system 643 * (see mm/page_alloc.c). 644 */ 645 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128) 646 PAGE_MAPCOUNT_OPS(Buddy, BUDDY) 647 648 /* 649 * PageBalloon() is set on pages that are on the balloon page list 650 * (see mm/balloon_compaction.c). 651 */ 652 #define PAGE_BALLOON_MAPCOUNT_VALUE (-256) 653 PAGE_MAPCOUNT_OPS(Balloon, BALLOON) 654 655 /* 656 * If kmemcg is enabled, the buddy allocator will set PageKmemcg() on 657 * pages allocated with __GFP_ACCOUNT. It gets cleared on page free. 658 */ 659 #define PAGE_KMEMCG_MAPCOUNT_VALUE (-512) 660 PAGE_MAPCOUNT_OPS(Kmemcg, KMEMCG) 661 662 extern bool is_free_buddy_page(struct page *page); 663 664 __PAGEFLAG(Isolated, isolated, PF_ANY); 665 666 /* 667 * If network-based swap is enabled, sl*b must keep track of whether pages 668 * were allocated from pfmemalloc reserves. 669 */ 670 static inline int PageSlabPfmemalloc(struct page *page) 671 { 672 VM_BUG_ON_PAGE(!PageSlab(page), page); 673 return PageActive(page); 674 } 675 676 static inline void SetPageSlabPfmemalloc(struct page *page) 677 { 678 VM_BUG_ON_PAGE(!PageSlab(page), page); 679 SetPageActive(page); 680 } 681 682 static inline void __ClearPageSlabPfmemalloc(struct page *page) 683 { 684 VM_BUG_ON_PAGE(!PageSlab(page), page); 685 __ClearPageActive(page); 686 } 687 688 static inline void ClearPageSlabPfmemalloc(struct page *page) 689 { 690 VM_BUG_ON_PAGE(!PageSlab(page), page); 691 ClearPageActive(page); 692 } 693 694 #ifdef CONFIG_MMU 695 #define __PG_MLOCKED (1UL << PG_mlocked) 696 #else 697 #define __PG_MLOCKED 0 698 #endif 699 700 /* 701 * Flags checked when a page is freed. Pages being freed should not have 702 * these flags set. It they are, there is a problem. 703 */ 704 #define PAGE_FLAGS_CHECK_AT_FREE \ 705 (1UL << PG_lru | 1UL << PG_locked | \ 706 1UL << PG_private | 1UL << PG_private_2 | \ 707 1UL << PG_writeback | 1UL << PG_reserved | \ 708 1UL << PG_slab | 1UL << PG_swapcache | 1UL << PG_active | \ 709 1UL << PG_unevictable | __PG_MLOCKED) 710 711 /* 712 * Flags checked when a page is prepped for return by the page allocator. 713 * Pages being prepped should not have these flags set. It they are set, 714 * there has been a kernel bug or struct page corruption. 715 * 716 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's 717 * alloc-free cycle to prevent from reusing the page. 718 */ 719 #define PAGE_FLAGS_CHECK_AT_PREP \ 720 (((1UL << NR_PAGEFLAGS) - 1) & ~__PG_HWPOISON) 721 722 #define PAGE_FLAGS_PRIVATE \ 723 (1UL << PG_private | 1UL << PG_private_2) 724 /** 725 * page_has_private - Determine if page has private stuff 726 * @page: The page to be checked 727 * 728 * Determine if a page has private stuff, indicating that release routines 729 * should be invoked upon it. 730 */ 731 static inline int page_has_private(struct page *page) 732 { 733 return !!(page->flags & PAGE_FLAGS_PRIVATE); 734 } 735 736 #undef PF_ANY 737 #undef PF_HEAD 738 #undef PF_NO_TAIL 739 #undef PF_NO_COMPOUND 740 #endif /* !__GENERATING_BOUNDS_H */ 741 742 #endif /* PAGE_FLAGS_H */ 743