xref: /linux-6.15/include/linux/page-flags.h (revision 66cd9d4e)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Macros for manipulating and testing page->flags
4  */
5 
6 #ifndef PAGE_FLAGS_H
7 #define PAGE_FLAGS_H
8 
9 #include <linux/types.h>
10 #include <linux/bug.h>
11 #include <linux/mmdebug.h>
12 #ifndef __GENERATING_BOUNDS_H
13 #include <linux/mm_types.h>
14 #include <generated/bounds.h>
15 #endif /* !__GENERATING_BOUNDS_H */
16 
17 /*
18  * Various page->flags bits:
19  *
20  * PG_reserved is set for special pages. The "struct page" of such a page
21  * should in general not be touched (e.g. set dirty) except by its owner.
22  * Pages marked as PG_reserved include:
23  * - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS,
24  *   initrd, HW tables)
25  * - Pages reserved or allocated early during boot (before the page allocator
26  *   was initialized). This includes (depending on the architecture) the
27  *   initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much
28  *   much more. Once (if ever) freed, PG_reserved is cleared and they will
29  *   be given to the page allocator.
30  * - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying
31  *   to read/write these pages might end badly. Don't touch!
32  * - The zero page(s)
33  * - Pages not added to the page allocator when onlining a section because
34  *   they were excluded via the online_page_callback() or because they are
35  *   PG_hwpoison.
36  * - Pages allocated in the context of kexec/kdump (loaded kernel image,
37  *   control pages, vmcoreinfo)
38  * - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are
39  *   not marked PG_reserved (as they might be in use by somebody else who does
40  *   not respect the caching strategy).
41  * - Pages part of an offline section (struct pages of offline sections should
42  *   not be trusted as they will be initialized when first onlined).
43  * - MCA pages on ia64
44  * - Pages holding CPU notes for POWER Firmware Assisted Dump
45  * - Device memory (e.g. PMEM, DAX, HMM)
46  * Some PG_reserved pages will be excluded from the hibernation image.
47  * PG_reserved does in general not hinder anybody from dumping or swapping
48  * and is no longer required for remap_pfn_range(). ioremap might require it.
49  * Consequently, PG_reserved for a page mapped into user space can indicate
50  * the zero page, the vDSO, MMIO pages or device memory.
51  *
52  * The PG_private bitflag is set on pagecache pages if they contain filesystem
53  * specific data (which is normally at page->private). It can be used by
54  * private allocations for its own usage.
55  *
56  * During initiation of disk I/O, PG_locked is set. This bit is set before I/O
57  * and cleared when writeback _starts_ or when read _completes_. PG_writeback
58  * is set before writeback starts and cleared when it finishes.
59  *
60  * PG_locked also pins a page in pagecache, and blocks truncation of the file
61  * while it is held.
62  *
63  * page_waitqueue(page) is a wait queue of all tasks waiting for the page
64  * to become unlocked.
65  *
66  * PG_swapbacked is set when a page uses swap as a backing storage.  This are
67  * usually PageAnon or shmem pages but please note that even anonymous pages
68  * might lose their PG_swapbacked flag when they simply can be dropped (e.g. as
69  * a result of MADV_FREE).
70  *
71  * PG_referenced, PG_reclaim are used for page reclaim for anonymous and
72  * file-backed pagecache (see mm/vmscan.c).
73  *
74  * PG_error is set to indicate that an I/O error occurred on this page.
75  *
76  * PG_arch_1 is an architecture specific page state bit.  The generic code
77  * guarantees that this bit is cleared for a page when it first is entered into
78  * the page cache.
79  *
80  * PG_hwpoison indicates that a page got corrupted in hardware and contains
81  * data with incorrect ECC bits that triggered a machine check. Accessing is
82  * not safe since it may cause another machine check. Don't touch!
83  */
84 
85 /*
86  * Don't use the pageflags directly.  Use the PageFoo macros.
87  *
88  * The page flags field is split into two parts, the main flags area
89  * which extends from the low bits upwards, and the fields area which
90  * extends from the high bits downwards.
91  *
92  *  | FIELD | ... | FLAGS |
93  *  N-1           ^       0
94  *               (NR_PAGEFLAGS)
95  *
96  * The fields area is reserved for fields mapping zone, node (for NUMA) and
97  * SPARSEMEM section (for variants of SPARSEMEM that require section ids like
98  * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
99  */
100 enum pageflags {
101 	PG_locked,		/* Page is locked. Don't touch. */
102 	PG_referenced,
103 	PG_uptodate,
104 	PG_dirty,
105 	PG_lru,
106 	PG_active,
107 	PG_workingset,
108 	PG_waiters,		/* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */
109 	PG_error,
110 	PG_slab,
111 	PG_owner_priv_1,	/* Owner use. If pagecache, fs may use*/
112 	PG_arch_1,
113 	PG_reserved,
114 	PG_private,		/* If pagecache, has fs-private data */
115 	PG_private_2,		/* If pagecache, has fs aux data */
116 	PG_writeback,		/* Page is under writeback */
117 	PG_head,		/* A head page */
118 	PG_mappedtodisk,	/* Has blocks allocated on-disk */
119 	PG_reclaim,		/* To be reclaimed asap */
120 	PG_swapbacked,		/* Page is backed by RAM/swap */
121 	PG_unevictable,		/* Page is "unevictable"  */
122 #ifdef CONFIG_MMU
123 	PG_mlocked,		/* Page is vma mlocked */
124 #endif
125 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
126 	PG_uncached,		/* Page has been mapped as uncached */
127 #endif
128 #ifdef CONFIG_MEMORY_FAILURE
129 	PG_hwpoison,		/* hardware poisoned page. Don't touch */
130 #endif
131 #if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT)
132 	PG_young,
133 	PG_idle,
134 #endif
135 #ifdef CONFIG_64BIT
136 	PG_arch_2,
137 #endif
138 #ifdef CONFIG_KASAN_HW_TAGS
139 	PG_skip_kasan_poison,
140 #endif
141 	__NR_PAGEFLAGS,
142 
143 	PG_readahead = PG_reclaim,
144 
145 	/* Filesystems */
146 	PG_checked = PG_owner_priv_1,
147 
148 	/* SwapBacked */
149 	PG_swapcache = PG_owner_priv_1,	/* Swap page: swp_entry_t in private */
150 
151 	/* Two page bits are conscripted by FS-Cache to maintain local caching
152 	 * state.  These bits are set on pages belonging to the netfs's inodes
153 	 * when those inodes are being locally cached.
154 	 */
155 	PG_fscache = PG_private_2,	/* page backed by cache */
156 
157 	/* XEN */
158 	/* Pinned in Xen as a read-only pagetable page. */
159 	PG_pinned = PG_owner_priv_1,
160 	/* Pinned as part of domain save (see xen_mm_pin_all()). */
161 	PG_savepinned = PG_dirty,
162 	/* Has a grant mapping of another (foreign) domain's page. */
163 	PG_foreign = PG_owner_priv_1,
164 	/* Remapped by swiotlb-xen. */
165 	PG_xen_remapped = PG_owner_priv_1,
166 
167 	/* SLOB */
168 	PG_slob_free = PG_private,
169 
170 	/* Compound pages. Stored in first tail page's flags */
171 	PG_double_map = PG_workingset,
172 
173 #ifdef CONFIG_MEMORY_FAILURE
174 	/*
175 	 * Compound pages. Stored in first tail page's flags.
176 	 * Indicates that at least one subpage is hwpoisoned in the
177 	 * THP.
178 	 */
179 	PG_has_hwpoisoned = PG_mappedtodisk,
180 #endif
181 
182 	/* non-lru isolated movable page */
183 	PG_isolated = PG_reclaim,
184 
185 	/* Only valid for buddy pages. Used to track pages that are reported */
186 	PG_reported = PG_uptodate,
187 };
188 
189 #define PAGEFLAGS_MASK		((1UL << NR_PAGEFLAGS) - 1)
190 
191 #ifndef __GENERATING_BOUNDS_H
192 
193 #ifdef CONFIG_HUGETLB_PAGE_FREE_VMEMMAP
194 DECLARE_STATIC_KEY_MAYBE(CONFIG_HUGETLB_PAGE_FREE_VMEMMAP_DEFAULT_ON,
195 			 hugetlb_free_vmemmap_enabled_key);
196 
197 static __always_inline bool hugetlb_free_vmemmap_enabled(void)
198 {
199 	return static_branch_maybe(CONFIG_HUGETLB_PAGE_FREE_VMEMMAP_DEFAULT_ON,
200 				   &hugetlb_free_vmemmap_enabled_key);
201 }
202 
203 /*
204  * If the feature of freeing some vmemmap pages associated with each HugeTLB
205  * page is enabled, the head vmemmap page frame is reused and all of the tail
206  * vmemmap addresses map to the head vmemmap page frame (furture details can
207  * refer to the figure at the head of the mm/hugetlb_vmemmap.c).  In other
208  * words, there are more than one page struct with PG_head associated with each
209  * HugeTLB page.  We __know__ that there is only one head page struct, the tail
210  * page structs with PG_head are fake head page structs.  We need an approach
211  * to distinguish between those two different types of page structs so that
212  * compound_head() can return the real head page struct when the parameter is
213  * the tail page struct but with PG_head.
214  *
215  * The page_fixed_fake_head() returns the real head page struct if the @page is
216  * fake page head, otherwise, returns @page which can either be a true page
217  * head or tail.
218  */
219 static __always_inline const struct page *page_fixed_fake_head(const struct page *page)
220 {
221 	if (!hugetlb_free_vmemmap_enabled())
222 		return page;
223 
224 	/*
225 	 * Only addresses aligned with PAGE_SIZE of struct page may be fake head
226 	 * struct page. The alignment check aims to avoid access the fields (
227 	 * e.g. compound_head) of the @page[1]. It can avoid touch a (possibly)
228 	 * cold cacheline in some cases.
229 	 */
230 	if (IS_ALIGNED((unsigned long)page, PAGE_SIZE) &&
231 	    test_bit(PG_head, &page->flags)) {
232 		/*
233 		 * We can safely access the field of the @page[1] with PG_head
234 		 * because the @page is a compound page composed with at least
235 		 * two contiguous pages.
236 		 */
237 		unsigned long head = READ_ONCE(page[1].compound_head);
238 
239 		if (likely(head & 1))
240 			return (const struct page *)(head - 1);
241 	}
242 	return page;
243 }
244 #else
245 static inline const struct page *page_fixed_fake_head(const struct page *page)
246 {
247 	return page;
248 }
249 
250 static inline bool hugetlb_free_vmemmap_enabled(void)
251 {
252 	return false;
253 }
254 #endif
255 
256 static __always_inline int page_is_fake_head(struct page *page)
257 {
258 	return page_fixed_fake_head(page) != page;
259 }
260 
261 static inline unsigned long _compound_head(const struct page *page)
262 {
263 	unsigned long head = READ_ONCE(page->compound_head);
264 
265 	if (unlikely(head & 1))
266 		return head - 1;
267 	return (unsigned long)page_fixed_fake_head(page);
268 }
269 
270 #define compound_head(page)	((typeof(page))_compound_head(page))
271 
272 /**
273  * page_folio - Converts from page to folio.
274  * @p: The page.
275  *
276  * Every page is part of a folio.  This function cannot be called on a
277  * NULL pointer.
278  *
279  * Context: No reference, nor lock is required on @page.  If the caller
280  * does not hold a reference, this call may race with a folio split, so
281  * it should re-check the folio still contains this page after gaining
282  * a reference on the folio.
283  * Return: The folio which contains this page.
284  */
285 #define page_folio(p)		(_Generic((p),				\
286 	const struct page *:	(const struct folio *)_compound_head(p), \
287 	struct page *:		(struct folio *)_compound_head(p)))
288 
289 /**
290  * folio_page - Return a page from a folio.
291  * @folio: The folio.
292  * @n: The page number to return.
293  *
294  * @n is relative to the start of the folio.  This function does not
295  * check that the page number lies within @folio; the caller is presumed
296  * to have a reference to the page.
297  */
298 #define folio_page(folio, n)	nth_page(&(folio)->page, n)
299 
300 static __always_inline int PageTail(struct page *page)
301 {
302 	return READ_ONCE(page->compound_head) & 1 || page_is_fake_head(page);
303 }
304 
305 static __always_inline int PageCompound(struct page *page)
306 {
307 	return test_bit(PG_head, &page->flags) ||
308 	       READ_ONCE(page->compound_head) & 1;
309 }
310 
311 #define	PAGE_POISON_PATTERN	-1l
312 static inline int PagePoisoned(const struct page *page)
313 {
314 	return READ_ONCE(page->flags) == PAGE_POISON_PATTERN;
315 }
316 
317 #ifdef CONFIG_DEBUG_VM
318 void page_init_poison(struct page *page, size_t size);
319 #else
320 static inline void page_init_poison(struct page *page, size_t size)
321 {
322 }
323 #endif
324 
325 static unsigned long *folio_flags(struct folio *folio, unsigned n)
326 {
327 	struct page *page = &folio->page;
328 
329 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
330 	VM_BUG_ON_PGFLAGS(n > 0 && !test_bit(PG_head, &page->flags), page);
331 	return &page[n].flags;
332 }
333 
334 /*
335  * Page flags policies wrt compound pages
336  *
337  * PF_POISONED_CHECK
338  *     check if this struct page poisoned/uninitialized
339  *
340  * PF_ANY:
341  *     the page flag is relevant for small, head and tail pages.
342  *
343  * PF_HEAD:
344  *     for compound page all operations related to the page flag applied to
345  *     head page.
346  *
347  * PF_ONLY_HEAD:
348  *     for compound page, callers only ever operate on the head page.
349  *
350  * PF_NO_TAIL:
351  *     modifications of the page flag must be done on small or head pages,
352  *     checks can be done on tail pages too.
353  *
354  * PF_NO_COMPOUND:
355  *     the page flag is not relevant for compound pages.
356  *
357  * PF_SECOND:
358  *     the page flag is stored in the first tail page.
359  */
360 #define PF_POISONED_CHECK(page) ({					\
361 		VM_BUG_ON_PGFLAGS(PagePoisoned(page), page);		\
362 		page; })
363 #define PF_ANY(page, enforce)	PF_POISONED_CHECK(page)
364 #define PF_HEAD(page, enforce)	PF_POISONED_CHECK(compound_head(page))
365 #define PF_ONLY_HEAD(page, enforce) ({					\
366 		VM_BUG_ON_PGFLAGS(PageTail(page), page);		\
367 		PF_POISONED_CHECK(page); })
368 #define PF_NO_TAIL(page, enforce) ({					\
369 		VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page);	\
370 		PF_POISONED_CHECK(compound_head(page)); })
371 #define PF_NO_COMPOUND(page, enforce) ({				\
372 		VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page);	\
373 		PF_POISONED_CHECK(page); })
374 #define PF_SECOND(page, enforce) ({					\
375 		VM_BUG_ON_PGFLAGS(!PageHead(page), page);		\
376 		PF_POISONED_CHECK(&page[1]); })
377 
378 /* Which page is the flag stored in */
379 #define FOLIO_PF_ANY		0
380 #define FOLIO_PF_HEAD		0
381 #define FOLIO_PF_ONLY_HEAD	0
382 #define FOLIO_PF_NO_TAIL	0
383 #define FOLIO_PF_NO_COMPOUND	0
384 #define FOLIO_PF_SECOND		1
385 
386 /*
387  * Macros to create function definitions for page flags
388  */
389 #define TESTPAGEFLAG(uname, lname, policy)				\
390 static __always_inline bool folio_test_##lname(struct folio *folio)	\
391 { return test_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }	\
392 static __always_inline int Page##uname(struct page *page)		\
393 { return test_bit(PG_##lname, &policy(page, 0)->flags); }
394 
395 #define SETPAGEFLAG(uname, lname, policy)				\
396 static __always_inline							\
397 void folio_set_##lname(struct folio *folio)				\
398 { set_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }		\
399 static __always_inline void SetPage##uname(struct page *page)		\
400 { set_bit(PG_##lname, &policy(page, 1)->flags); }
401 
402 #define CLEARPAGEFLAG(uname, lname, policy)				\
403 static __always_inline							\
404 void folio_clear_##lname(struct folio *folio)				\
405 { clear_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }		\
406 static __always_inline void ClearPage##uname(struct page *page)		\
407 { clear_bit(PG_##lname, &policy(page, 1)->flags); }
408 
409 #define __SETPAGEFLAG(uname, lname, policy)				\
410 static __always_inline							\
411 void __folio_set_##lname(struct folio *folio)				\
412 { __set_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }		\
413 static __always_inline void __SetPage##uname(struct page *page)		\
414 { __set_bit(PG_##lname, &policy(page, 1)->flags); }
415 
416 #define __CLEARPAGEFLAG(uname, lname, policy)				\
417 static __always_inline							\
418 void __folio_clear_##lname(struct folio *folio)				\
419 { __clear_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }	\
420 static __always_inline void __ClearPage##uname(struct page *page)	\
421 { __clear_bit(PG_##lname, &policy(page, 1)->flags); }
422 
423 #define TESTSETFLAG(uname, lname, policy)				\
424 static __always_inline							\
425 bool folio_test_set_##lname(struct folio *folio)			\
426 { return test_and_set_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \
427 static __always_inline int TestSetPage##uname(struct page *page)	\
428 { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); }
429 
430 #define TESTCLEARFLAG(uname, lname, policy)				\
431 static __always_inline							\
432 bool folio_test_clear_##lname(struct folio *folio)			\
433 { return test_and_clear_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \
434 static __always_inline int TestClearPage##uname(struct page *page)	\
435 { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); }
436 
437 #define PAGEFLAG(uname, lname, policy)					\
438 	TESTPAGEFLAG(uname, lname, policy)				\
439 	SETPAGEFLAG(uname, lname, policy)				\
440 	CLEARPAGEFLAG(uname, lname, policy)
441 
442 #define __PAGEFLAG(uname, lname, policy)				\
443 	TESTPAGEFLAG(uname, lname, policy)				\
444 	__SETPAGEFLAG(uname, lname, policy)				\
445 	__CLEARPAGEFLAG(uname, lname, policy)
446 
447 #define TESTSCFLAG(uname, lname, policy)				\
448 	TESTSETFLAG(uname, lname, policy)				\
449 	TESTCLEARFLAG(uname, lname, policy)
450 
451 #define TESTPAGEFLAG_FALSE(uname, lname)				\
452 static inline bool folio_test_##lname(const struct folio *folio) { return false; } \
453 static inline int Page##uname(const struct page *page) { return 0; }
454 
455 #define SETPAGEFLAG_NOOP(uname, lname)					\
456 static inline void folio_set_##lname(struct folio *folio) { }		\
457 static inline void SetPage##uname(struct page *page) {  }
458 
459 #define CLEARPAGEFLAG_NOOP(uname, lname)				\
460 static inline void folio_clear_##lname(struct folio *folio) { }		\
461 static inline void ClearPage##uname(struct page *page) {  }
462 
463 #define __CLEARPAGEFLAG_NOOP(uname, lname)				\
464 static inline void __folio_clear_##lname(struct folio *folio) { }	\
465 static inline void __ClearPage##uname(struct page *page) {  }
466 
467 #define TESTSETFLAG_FALSE(uname, lname)					\
468 static inline bool folio_test_set_##lname(struct folio *folio)		\
469 { return 0; }								\
470 static inline int TestSetPage##uname(struct page *page) { return 0; }
471 
472 #define TESTCLEARFLAG_FALSE(uname, lname)				\
473 static inline bool folio_test_clear_##lname(struct folio *folio)	\
474 { return 0; }								\
475 static inline int TestClearPage##uname(struct page *page) { return 0; }
476 
477 #define PAGEFLAG_FALSE(uname, lname) TESTPAGEFLAG_FALSE(uname, lname)	\
478 	SETPAGEFLAG_NOOP(uname, lname) CLEARPAGEFLAG_NOOP(uname, lname)
479 
480 #define TESTSCFLAG_FALSE(uname, lname)					\
481 	TESTSETFLAG_FALSE(uname, lname) TESTCLEARFLAG_FALSE(uname, lname)
482 
483 __PAGEFLAG(Locked, locked, PF_NO_TAIL)
484 PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD)
485 PAGEFLAG(Error, error, PF_NO_TAIL) TESTCLEARFLAG(Error, error, PF_NO_TAIL)
486 PAGEFLAG(Referenced, referenced, PF_HEAD)
487 	TESTCLEARFLAG(Referenced, referenced, PF_HEAD)
488 	__SETPAGEFLAG(Referenced, referenced, PF_HEAD)
489 PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD)
490 	__CLEARPAGEFLAG(Dirty, dirty, PF_HEAD)
491 PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD)
492 	TESTCLEARFLAG(LRU, lru, PF_HEAD)
493 PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD)
494 	TESTCLEARFLAG(Active, active, PF_HEAD)
495 PAGEFLAG(Workingset, workingset, PF_HEAD)
496 	TESTCLEARFLAG(Workingset, workingset, PF_HEAD)
497 __PAGEFLAG(Slab, slab, PF_NO_TAIL)
498 __PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL)
499 PAGEFLAG(Checked, checked, PF_NO_COMPOUND)	   /* Used by some filesystems */
500 
501 /* Xen */
502 PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND)
503 	TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND)
504 PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND);
505 PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND);
506 PAGEFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
507 	TESTCLEARFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
508 
509 PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
510 	__CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
511 	__SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
512 PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
513 	__CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
514 	__SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
515 
516 /*
517  * Private page markings that may be used by the filesystem that owns the page
518  * for its own purposes.
519  * - PG_private and PG_private_2 cause releasepage() and co to be invoked
520  */
521 PAGEFLAG(Private, private, PF_ANY)
522 PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY)
523 PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
524 	TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
525 
526 /*
527  * Only test-and-set exist for PG_writeback.  The unconditional operators are
528  * risky: they bypass page accounting.
529  */
530 TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL)
531 	TESTSCFLAG(Writeback, writeback, PF_NO_TAIL)
532 PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL)
533 
534 /* PG_readahead is only used for reads; PG_reclaim is only for writes */
535 PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL)
536 	TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL)
537 PAGEFLAG(Readahead, readahead, PF_NO_COMPOUND)
538 	TESTCLEARFLAG(Readahead, readahead, PF_NO_COMPOUND)
539 
540 #ifdef CONFIG_HIGHMEM
541 /*
542  * Must use a macro here due to header dependency issues. page_zone() is not
543  * available at this point.
544  */
545 #define PageHighMem(__p) is_highmem_idx(page_zonenum(__p))
546 #else
547 PAGEFLAG_FALSE(HighMem, highmem)
548 #endif
549 
550 #ifdef CONFIG_SWAP
551 static __always_inline bool folio_test_swapcache(struct folio *folio)
552 {
553 	return folio_test_swapbacked(folio) &&
554 			test_bit(PG_swapcache, folio_flags(folio, 0));
555 }
556 
557 static __always_inline bool PageSwapCache(struct page *page)
558 {
559 	return folio_test_swapcache(page_folio(page));
560 }
561 
562 SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
563 CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
564 #else
565 PAGEFLAG_FALSE(SwapCache, swapcache)
566 #endif
567 
568 PAGEFLAG(Unevictable, unevictable, PF_HEAD)
569 	__CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD)
570 	TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD)
571 
572 #ifdef CONFIG_MMU
573 PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
574 	__CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
575 	TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL)
576 #else
577 PAGEFLAG_FALSE(Mlocked, mlocked) __CLEARPAGEFLAG_NOOP(Mlocked, mlocked)
578 	TESTSCFLAG_FALSE(Mlocked, mlocked)
579 #endif
580 
581 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
582 PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND)
583 #else
584 PAGEFLAG_FALSE(Uncached, uncached)
585 #endif
586 
587 #ifdef CONFIG_MEMORY_FAILURE
588 PAGEFLAG(HWPoison, hwpoison, PF_ANY)
589 TESTSCFLAG(HWPoison, hwpoison, PF_ANY)
590 #define __PG_HWPOISON (1UL << PG_hwpoison)
591 #define MAGIC_HWPOISON	0x48575053U	/* HWPS */
592 extern void SetPageHWPoisonTakenOff(struct page *page);
593 extern void ClearPageHWPoisonTakenOff(struct page *page);
594 extern bool take_page_off_buddy(struct page *page);
595 extern bool put_page_back_buddy(struct page *page);
596 #else
597 PAGEFLAG_FALSE(HWPoison, hwpoison)
598 #define __PG_HWPOISON 0
599 #endif
600 
601 #if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT)
602 TESTPAGEFLAG(Young, young, PF_ANY)
603 SETPAGEFLAG(Young, young, PF_ANY)
604 TESTCLEARFLAG(Young, young, PF_ANY)
605 PAGEFLAG(Idle, idle, PF_ANY)
606 #endif
607 
608 #ifdef CONFIG_KASAN_HW_TAGS
609 PAGEFLAG(SkipKASanPoison, skip_kasan_poison, PF_HEAD)
610 #else
611 PAGEFLAG_FALSE(SkipKASanPoison, skip_kasan_poison)
612 #endif
613 
614 /*
615  * PageReported() is used to track reported free pages within the Buddy
616  * allocator. We can use the non-atomic version of the test and set
617  * operations as both should be shielded with the zone lock to prevent
618  * any possible races on the setting or clearing of the bit.
619  */
620 __PAGEFLAG(Reported, reported, PF_NO_COMPOUND)
621 
622 /*
623  * On an anonymous page mapped into a user virtual memory area,
624  * page->mapping points to its anon_vma, not to a struct address_space;
625  * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
626  *
627  * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
628  * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON
629  * bit; and then page->mapping points, not to an anon_vma, but to a private
630  * structure which KSM associates with that merged page.  See ksm.h.
631  *
632  * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable
633  * page and then page->mapping points a struct address_space.
634  *
635  * Please note that, confusingly, "page_mapping" refers to the inode
636  * address_space which maps the page from disk; whereas "page_mapped"
637  * refers to user virtual address space into which the page is mapped.
638  */
639 #define PAGE_MAPPING_ANON	0x1
640 #define PAGE_MAPPING_MOVABLE	0x2
641 #define PAGE_MAPPING_KSM	(PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
642 #define PAGE_MAPPING_FLAGS	(PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
643 
644 static __always_inline int PageMappingFlags(struct page *page)
645 {
646 	return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0;
647 }
648 
649 static __always_inline bool folio_test_anon(struct folio *folio)
650 {
651 	return ((unsigned long)folio->mapping & PAGE_MAPPING_ANON) != 0;
652 }
653 
654 static __always_inline bool PageAnon(struct page *page)
655 {
656 	return folio_test_anon(page_folio(page));
657 }
658 
659 static __always_inline int __PageMovable(struct page *page)
660 {
661 	return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
662 				PAGE_MAPPING_MOVABLE;
663 }
664 
665 #ifdef CONFIG_KSM
666 /*
667  * A KSM page is one of those write-protected "shared pages" or "merged pages"
668  * which KSM maps into multiple mms, wherever identical anonymous page content
669  * is found in VM_MERGEABLE vmas.  It's a PageAnon page, pointing not to any
670  * anon_vma, but to that page's node of the stable tree.
671  */
672 static __always_inline bool folio_test_ksm(struct folio *folio)
673 {
674 	return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) ==
675 				PAGE_MAPPING_KSM;
676 }
677 
678 static __always_inline bool PageKsm(struct page *page)
679 {
680 	return folio_test_ksm(page_folio(page));
681 }
682 #else
683 TESTPAGEFLAG_FALSE(Ksm, ksm)
684 #endif
685 
686 u64 stable_page_flags(struct page *page);
687 
688 /**
689  * folio_test_uptodate - Is this folio up to date?
690  * @folio: The folio.
691  *
692  * The uptodate flag is set on a folio when every byte in the folio is
693  * at least as new as the corresponding bytes on storage.  Anonymous
694  * and CoW folios are always uptodate.  If the folio is not uptodate,
695  * some of the bytes in it may be; see the is_partially_uptodate()
696  * address_space operation.
697  */
698 static inline bool folio_test_uptodate(struct folio *folio)
699 {
700 	bool ret = test_bit(PG_uptodate, folio_flags(folio, 0));
701 	/*
702 	 * Must ensure that the data we read out of the folio is loaded
703 	 * _after_ we've loaded folio->flags to check the uptodate bit.
704 	 * We can skip the barrier if the folio is not uptodate, because
705 	 * we wouldn't be reading anything from it.
706 	 *
707 	 * See folio_mark_uptodate() for the other side of the story.
708 	 */
709 	if (ret)
710 		smp_rmb();
711 
712 	return ret;
713 }
714 
715 static inline int PageUptodate(struct page *page)
716 {
717 	return folio_test_uptodate(page_folio(page));
718 }
719 
720 static __always_inline void __folio_mark_uptodate(struct folio *folio)
721 {
722 	smp_wmb();
723 	__set_bit(PG_uptodate, folio_flags(folio, 0));
724 }
725 
726 static __always_inline void folio_mark_uptodate(struct folio *folio)
727 {
728 	/*
729 	 * Memory barrier must be issued before setting the PG_uptodate bit,
730 	 * so that all previous stores issued in order to bring the folio
731 	 * uptodate are actually visible before folio_test_uptodate becomes true.
732 	 */
733 	smp_wmb();
734 	set_bit(PG_uptodate, folio_flags(folio, 0));
735 }
736 
737 static __always_inline void __SetPageUptodate(struct page *page)
738 {
739 	__folio_mark_uptodate((struct folio *)page);
740 }
741 
742 static __always_inline void SetPageUptodate(struct page *page)
743 {
744 	folio_mark_uptodate((struct folio *)page);
745 }
746 
747 CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL)
748 
749 bool __folio_start_writeback(struct folio *folio, bool keep_write);
750 bool set_page_writeback(struct page *page);
751 
752 #define folio_start_writeback(folio)			\
753 	__folio_start_writeback(folio, false)
754 #define folio_start_writeback_keepwrite(folio)	\
755 	__folio_start_writeback(folio, true)
756 
757 static inline void set_page_writeback_keepwrite(struct page *page)
758 {
759 	folio_start_writeback_keepwrite(page_folio(page));
760 }
761 
762 static inline bool test_set_page_writeback(struct page *page)
763 {
764 	return set_page_writeback(page);
765 }
766 
767 static __always_inline bool folio_test_head(struct folio *folio)
768 {
769 	return test_bit(PG_head, folio_flags(folio, FOLIO_PF_ANY));
770 }
771 
772 static __always_inline int PageHead(struct page *page)
773 {
774 	PF_POISONED_CHECK(page);
775 	return test_bit(PG_head, &page->flags) && !page_is_fake_head(page);
776 }
777 
778 __SETPAGEFLAG(Head, head, PF_ANY)
779 __CLEARPAGEFLAG(Head, head, PF_ANY)
780 CLEARPAGEFLAG(Head, head, PF_ANY)
781 
782 /**
783  * folio_test_large() - Does this folio contain more than one page?
784  * @folio: The folio to test.
785  *
786  * Return: True if the folio is larger than one page.
787  */
788 static inline bool folio_test_large(struct folio *folio)
789 {
790 	return folio_test_head(folio);
791 }
792 
793 static __always_inline void set_compound_head(struct page *page, struct page *head)
794 {
795 	WRITE_ONCE(page->compound_head, (unsigned long)head + 1);
796 }
797 
798 static __always_inline void clear_compound_head(struct page *page)
799 {
800 	WRITE_ONCE(page->compound_head, 0);
801 }
802 
803 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
804 static inline void ClearPageCompound(struct page *page)
805 {
806 	BUG_ON(!PageHead(page));
807 	ClearPageHead(page);
808 }
809 #endif
810 
811 #define PG_head_mask ((1UL << PG_head))
812 
813 #ifdef CONFIG_HUGETLB_PAGE
814 int PageHuge(struct page *page);
815 int PageHeadHuge(struct page *page);
816 static inline bool folio_test_hugetlb(struct folio *folio)
817 {
818 	return PageHeadHuge(&folio->page);
819 }
820 #else
821 TESTPAGEFLAG_FALSE(Huge, hugetlb)
822 TESTPAGEFLAG_FALSE(HeadHuge, headhuge)
823 #endif
824 
825 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
826 /*
827  * PageHuge() only returns true for hugetlbfs pages, but not for
828  * normal or transparent huge pages.
829  *
830  * PageTransHuge() returns true for both transparent huge and
831  * hugetlbfs pages, but not normal pages. PageTransHuge() can only be
832  * called only in the core VM paths where hugetlbfs pages can't exist.
833  */
834 static inline int PageTransHuge(struct page *page)
835 {
836 	VM_BUG_ON_PAGE(PageTail(page), page);
837 	return PageHead(page);
838 }
839 
840 static inline bool folio_test_transhuge(struct folio *folio)
841 {
842 	return folio_test_head(folio);
843 }
844 
845 /*
846  * PageTransCompound returns true for both transparent huge pages
847  * and hugetlbfs pages, so it should only be called when it's known
848  * that hugetlbfs pages aren't involved.
849  */
850 static inline int PageTransCompound(struct page *page)
851 {
852 	return PageCompound(page);
853 }
854 
855 /*
856  * PageTransTail returns true for both transparent huge pages
857  * and hugetlbfs pages, so it should only be called when it's known
858  * that hugetlbfs pages aren't involved.
859  */
860 static inline int PageTransTail(struct page *page)
861 {
862 	return PageTail(page);
863 }
864 
865 /*
866  * PageDoubleMap indicates that the compound page is mapped with PTEs as well
867  * as PMDs.
868  *
869  * This is required for optimization of rmap operations for THP: we can postpone
870  * per small page mapcount accounting (and its overhead from atomic operations)
871  * until the first PMD split.
872  *
873  * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up
874  * by one. This reference will go away with last compound_mapcount.
875  *
876  * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap().
877  */
878 PAGEFLAG(DoubleMap, double_map, PF_SECOND)
879 	TESTSCFLAG(DoubleMap, double_map, PF_SECOND)
880 #else
881 TESTPAGEFLAG_FALSE(TransHuge, transhuge)
882 TESTPAGEFLAG_FALSE(TransCompound, transcompound)
883 TESTPAGEFLAG_FALSE(TransCompoundMap, transcompoundmap)
884 TESTPAGEFLAG_FALSE(TransTail, transtail)
885 PAGEFLAG_FALSE(DoubleMap, double_map)
886 	TESTSCFLAG_FALSE(DoubleMap, double_map)
887 #endif
888 
889 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
890 /*
891  * PageHasHWPoisoned indicates that at least one subpage is hwpoisoned in the
892  * compound page.
893  *
894  * This flag is set by hwpoison handler.  Cleared by THP split or free page.
895  */
896 PAGEFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND)
897 	TESTSCFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND)
898 #else
899 PAGEFLAG_FALSE(HasHWPoisoned, has_hwpoisoned)
900 	TESTSCFLAG_FALSE(HasHWPoisoned, has_hwpoisoned)
901 #endif
902 
903 /*
904  * Check if a page is currently marked HWPoisoned. Note that this check is
905  * best effort only and inherently racy: there is no way to synchronize with
906  * failing hardware.
907  */
908 static inline bool is_page_hwpoison(struct page *page)
909 {
910 	if (PageHWPoison(page))
911 		return true;
912 	return PageHuge(page) && PageHWPoison(compound_head(page));
913 }
914 
915 /*
916  * For pages that are never mapped to userspace (and aren't PageSlab),
917  * page_type may be used.  Because it is initialised to -1, we invert the
918  * sense of the bit, so __SetPageFoo *clears* the bit used for PageFoo, and
919  * __ClearPageFoo *sets* the bit used for PageFoo.  We reserve a few high and
920  * low bits so that an underflow or overflow of page_mapcount() won't be
921  * mistaken for a page type value.
922  */
923 
924 #define PAGE_TYPE_BASE	0xf0000000
925 /* Reserve		0x0000007f to catch underflows of page_mapcount */
926 #define PAGE_MAPCOUNT_RESERVE	-128
927 #define PG_buddy	0x00000080
928 #define PG_offline	0x00000100
929 #define PG_table	0x00000200
930 #define PG_guard	0x00000400
931 
932 #define PageType(page, flag)						\
933 	((page->page_type & (PAGE_TYPE_BASE | flag)) == PAGE_TYPE_BASE)
934 
935 static inline int page_has_type(struct page *page)
936 {
937 	return (int)page->page_type < PAGE_MAPCOUNT_RESERVE;
938 }
939 
940 #define PAGE_TYPE_OPS(uname, lname)					\
941 static __always_inline int Page##uname(struct page *page)		\
942 {									\
943 	return PageType(page, PG_##lname);				\
944 }									\
945 static __always_inline void __SetPage##uname(struct page *page)		\
946 {									\
947 	VM_BUG_ON_PAGE(!PageType(page, 0), page);			\
948 	page->page_type &= ~PG_##lname;					\
949 }									\
950 static __always_inline void __ClearPage##uname(struct page *page)	\
951 {									\
952 	VM_BUG_ON_PAGE(!Page##uname(page), page);			\
953 	page->page_type |= PG_##lname;					\
954 }
955 
956 /*
957  * PageBuddy() indicates that the page is free and in the buddy system
958  * (see mm/page_alloc.c).
959  */
960 PAGE_TYPE_OPS(Buddy, buddy)
961 
962 /*
963  * PageOffline() indicates that the page is logically offline although the
964  * containing section is online. (e.g. inflated in a balloon driver or
965  * not onlined when onlining the section).
966  * The content of these pages is effectively stale. Such pages should not
967  * be touched (read/write/dump/save) except by their owner.
968  *
969  * If a driver wants to allow to offline unmovable PageOffline() pages without
970  * putting them back to the buddy, it can do so via the memory notifier by
971  * decrementing the reference count in MEM_GOING_OFFLINE and incrementing the
972  * reference count in MEM_CANCEL_OFFLINE. When offlining, the PageOffline()
973  * pages (now with a reference count of zero) are treated like free pages,
974  * allowing the containing memory block to get offlined. A driver that
975  * relies on this feature is aware that re-onlining the memory block will
976  * require to re-set the pages PageOffline() and not giving them to the
977  * buddy via online_page_callback_t.
978  *
979  * There are drivers that mark a page PageOffline() and expect there won't be
980  * any further access to page content. PFN walkers that read content of random
981  * pages should check PageOffline() and synchronize with such drivers using
982  * page_offline_freeze()/page_offline_thaw().
983  */
984 PAGE_TYPE_OPS(Offline, offline)
985 
986 extern void page_offline_freeze(void);
987 extern void page_offline_thaw(void);
988 extern void page_offline_begin(void);
989 extern void page_offline_end(void);
990 
991 /*
992  * Marks pages in use as page tables.
993  */
994 PAGE_TYPE_OPS(Table, table)
995 
996 /*
997  * Marks guardpages used with debug_pagealloc.
998  */
999 PAGE_TYPE_OPS(Guard, guard)
1000 
1001 extern bool is_free_buddy_page(struct page *page);
1002 
1003 PAGEFLAG(Isolated, isolated, PF_ANY);
1004 
1005 #ifdef CONFIG_MMU
1006 #define __PG_MLOCKED		(1UL << PG_mlocked)
1007 #else
1008 #define __PG_MLOCKED		0
1009 #endif
1010 
1011 /*
1012  * Flags checked when a page is freed.  Pages being freed should not have
1013  * these flags set.  If they are, there is a problem.
1014  */
1015 #define PAGE_FLAGS_CHECK_AT_FREE				\
1016 	(1UL << PG_lru		| 1UL << PG_locked	|	\
1017 	 1UL << PG_private	| 1UL << PG_private_2	|	\
1018 	 1UL << PG_writeback	| 1UL << PG_reserved	|	\
1019 	 1UL << PG_slab		| 1UL << PG_active 	|	\
1020 	 1UL << PG_unevictable	| __PG_MLOCKED)
1021 
1022 /*
1023  * Flags checked when a page is prepped for return by the page allocator.
1024  * Pages being prepped should not have these flags set.  If they are set,
1025  * there has been a kernel bug or struct page corruption.
1026  *
1027  * __PG_HWPOISON is exceptional because it needs to be kept beyond page's
1028  * alloc-free cycle to prevent from reusing the page.
1029  */
1030 #define PAGE_FLAGS_CHECK_AT_PREP	\
1031 	(PAGEFLAGS_MASK & ~__PG_HWPOISON)
1032 
1033 #define PAGE_FLAGS_PRIVATE				\
1034 	(1UL << PG_private | 1UL << PG_private_2)
1035 /**
1036  * page_has_private - Determine if page has private stuff
1037  * @page: The page to be checked
1038  *
1039  * Determine if a page has private stuff, indicating that release routines
1040  * should be invoked upon it.
1041  */
1042 static inline int page_has_private(struct page *page)
1043 {
1044 	return !!(page->flags & PAGE_FLAGS_PRIVATE);
1045 }
1046 
1047 static inline bool folio_has_private(struct folio *folio)
1048 {
1049 	return page_has_private(&folio->page);
1050 }
1051 
1052 #undef PF_ANY
1053 #undef PF_HEAD
1054 #undef PF_ONLY_HEAD
1055 #undef PF_NO_TAIL
1056 #undef PF_NO_COMPOUND
1057 #undef PF_SECOND
1058 #endif /* !__GENERATING_BOUNDS_H */
1059 
1060 #endif	/* PAGE_FLAGS_H */
1061