xref: /linux-6.15/include/linux/page-flags.h (revision 5adfeaec)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Macros for manipulating and testing page->flags
4  */
5 
6 #ifndef PAGE_FLAGS_H
7 #define PAGE_FLAGS_H
8 
9 #include <linux/types.h>
10 #include <linux/bug.h>
11 #include <linux/mmdebug.h>
12 #ifndef __GENERATING_BOUNDS_H
13 #include <linux/mm_types.h>
14 #include <generated/bounds.h>
15 #endif /* !__GENERATING_BOUNDS_H */
16 
17 /*
18  * Various page->flags bits:
19  *
20  * PG_reserved is set for special pages. The "struct page" of such a page
21  * should in general not be touched (e.g. set dirty) except by its owner.
22  * Pages marked as PG_reserved include:
23  * - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS,
24  *   initrd, HW tables)
25  * - Pages reserved or allocated early during boot (before the page allocator
26  *   was initialized). This includes (depending on the architecture) the
27  *   initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much
28  *   much more. Once (if ever) freed, PG_reserved is cleared and they will
29  *   be given to the page allocator.
30  * - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying
31  *   to read/write these pages might end badly. Don't touch!
32  * - The zero page(s)
33  * - Pages allocated in the context of kexec/kdump (loaded kernel image,
34  *   control pages, vmcoreinfo)
35  * - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are
36  *   not marked PG_reserved (as they might be in use by somebody else who does
37  *   not respect the caching strategy).
38  * - MCA pages on ia64
39  * - Pages holding CPU notes for POWER Firmware Assisted Dump
40  * - Device memory (e.g. PMEM, DAX, HMM)
41  * Some PG_reserved pages will be excluded from the hibernation image.
42  * PG_reserved does in general not hinder anybody from dumping or swapping
43  * and is no longer required for remap_pfn_range(). ioremap might require it.
44  * Consequently, PG_reserved for a page mapped into user space can indicate
45  * the zero page, the vDSO, MMIO pages or device memory.
46  *
47  * The PG_private bitflag is set on pagecache pages if they contain filesystem
48  * specific data (which is normally at page->private). It can be used by
49  * private allocations for its own usage.
50  *
51  * During initiation of disk I/O, PG_locked is set. This bit is set before I/O
52  * and cleared when writeback _starts_ or when read _completes_. PG_writeback
53  * is set before writeback starts and cleared when it finishes.
54  *
55  * PG_locked also pins a page in pagecache, and blocks truncation of the file
56  * while it is held.
57  *
58  * page_waitqueue(page) is a wait queue of all tasks waiting for the page
59  * to become unlocked.
60  *
61  * PG_swapbacked is set when a page uses swap as a backing storage.  This are
62  * usually PageAnon or shmem pages but please note that even anonymous pages
63  * might lose their PG_swapbacked flag when they simply can be dropped (e.g. as
64  * a result of MADV_FREE).
65  *
66  * PG_referenced, PG_reclaim are used for page reclaim for anonymous and
67  * file-backed pagecache (see mm/vmscan.c).
68  *
69  * PG_arch_1 is an architecture specific page state bit.  The generic code
70  * guarantees that this bit is cleared for a page when it first is entered into
71  * the page cache.
72  *
73  * PG_hwpoison indicates that a page got corrupted in hardware and contains
74  * data with incorrect ECC bits that triggered a machine check. Accessing is
75  * not safe since it may cause another machine check. Don't touch!
76  */
77 
78 /*
79  * Don't use the pageflags directly.  Use the PageFoo macros.
80  *
81  * The page flags field is split into two parts, the main flags area
82  * which extends from the low bits upwards, and the fields area which
83  * extends from the high bits downwards.
84  *
85  *  | FIELD | ... | FLAGS |
86  *  N-1           ^       0
87  *               (NR_PAGEFLAGS)
88  *
89  * The fields area is reserved for fields mapping zone, node (for NUMA) and
90  * SPARSEMEM section (for variants of SPARSEMEM that require section ids like
91  * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
92  */
93 enum pageflags {
94 	PG_locked,		/* Page is locked. Don't touch. */
95 	PG_writeback,		/* Page is under writeback */
96 	PG_referenced,
97 	PG_uptodate,
98 	PG_dirty,
99 	PG_lru,
100 	PG_head,		/* Must be in bit 6 */
101 	PG_waiters,		/* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */
102 	PG_active,
103 	PG_workingset,
104 	PG_owner_priv_1,	/* Owner use. If pagecache, fs may use*/
105 	PG_arch_1,
106 	PG_reserved,
107 	PG_private,		/* If pagecache, has fs-private data */
108 	PG_private_2,		/* If pagecache, has fs aux data */
109 	PG_mappedtodisk,	/* Has blocks allocated on-disk */
110 	PG_reclaim,		/* To be reclaimed asap */
111 	PG_swapbacked,		/* Page is backed by RAM/swap */
112 	PG_unevictable,		/* Page is "unevictable"  */
113 #ifdef CONFIG_MMU
114 	PG_mlocked,		/* Page is vma mlocked */
115 #endif
116 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
117 	PG_uncached,		/* Page has been mapped as uncached */
118 #endif
119 #ifdef CONFIG_MEMORY_FAILURE
120 	PG_hwpoison,		/* hardware poisoned page. Don't touch */
121 #endif
122 #if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT)
123 	PG_young,
124 	PG_idle,
125 #endif
126 #ifdef CONFIG_ARCH_USES_PG_ARCH_X
127 	PG_arch_2,
128 	PG_arch_3,
129 #endif
130 	__NR_PAGEFLAGS,
131 
132 	PG_readahead = PG_reclaim,
133 
134 	/*
135 	 * Depending on the way an anonymous folio can be mapped into a page
136 	 * table (e.g., single PMD/PUD/CONT of the head page vs. PTE-mapped
137 	 * THP), PG_anon_exclusive may be set only for the head page or for
138 	 * tail pages of an anonymous folio. For now, we only expect it to be
139 	 * set on tail pages for PTE-mapped THP.
140 	 */
141 	PG_anon_exclusive = PG_mappedtodisk,
142 
143 	/* Filesystems */
144 	PG_checked = PG_owner_priv_1,
145 
146 	/* SwapBacked */
147 	PG_swapcache = PG_owner_priv_1,	/* Swap page: swp_entry_t in private */
148 
149 	/* Two page bits are conscripted by FS-Cache to maintain local caching
150 	 * state.  These bits are set on pages belonging to the netfs's inodes
151 	 * when those inodes are being locally cached.
152 	 */
153 	PG_fscache = PG_private_2,	/* page backed by cache */
154 
155 	/* XEN */
156 	/* Pinned in Xen as a read-only pagetable page. */
157 	PG_pinned = PG_owner_priv_1,
158 	/* Pinned as part of domain save (see xen_mm_pin_all()). */
159 	PG_savepinned = PG_dirty,
160 	/* Has a grant mapping of another (foreign) domain's page. */
161 	PG_foreign = PG_owner_priv_1,
162 	/* Remapped by swiotlb-xen. */
163 	PG_xen_remapped = PG_owner_priv_1,
164 
165 	/* non-lru isolated movable page */
166 	PG_isolated = PG_reclaim,
167 
168 	/* Only valid for buddy pages. Used to track pages that are reported */
169 	PG_reported = PG_uptodate,
170 
171 #ifdef CONFIG_MEMORY_HOTPLUG
172 	/* For self-hosted memmap pages */
173 	PG_vmemmap_self_hosted = PG_owner_priv_1,
174 #endif
175 
176 	/*
177 	 * Flags only valid for compound pages.  Stored in first tail page's
178 	 * flags word.  Cannot use the first 8 flags or any flag marked as
179 	 * PF_ANY.
180 	 */
181 
182 	/* At least one page in this folio has the hwpoison flag set */
183 	PG_has_hwpoisoned = PG_active,
184 	PG_large_rmappable = PG_workingset, /* anon or file-backed */
185 };
186 
187 #define PAGEFLAGS_MASK		((1UL << NR_PAGEFLAGS) - 1)
188 
189 #ifndef __GENERATING_BOUNDS_H
190 
191 #ifdef CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP
192 DECLARE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key);
193 
194 /*
195  * Return the real head page struct iff the @page is a fake head page, otherwise
196  * return the @page itself. See Documentation/mm/vmemmap_dedup.rst.
197  */
198 static __always_inline const struct page *page_fixed_fake_head(const struct page *page)
199 {
200 	if (!static_branch_unlikely(&hugetlb_optimize_vmemmap_key))
201 		return page;
202 
203 	/*
204 	 * Only addresses aligned with PAGE_SIZE of struct page may be fake head
205 	 * struct page. The alignment check aims to avoid access the fields (
206 	 * e.g. compound_head) of the @page[1]. It can avoid touch a (possibly)
207 	 * cold cacheline in some cases.
208 	 */
209 	if (IS_ALIGNED((unsigned long)page, PAGE_SIZE) &&
210 	    test_bit(PG_head, &page->flags)) {
211 		/*
212 		 * We can safely access the field of the @page[1] with PG_head
213 		 * because the @page is a compound page composed with at least
214 		 * two contiguous pages.
215 		 */
216 		unsigned long head = READ_ONCE(page[1].compound_head);
217 
218 		if (likely(head & 1))
219 			return (const struct page *)(head - 1);
220 	}
221 	return page;
222 }
223 #else
224 static inline const struct page *page_fixed_fake_head(const struct page *page)
225 {
226 	return page;
227 }
228 #endif
229 
230 static __always_inline int page_is_fake_head(const struct page *page)
231 {
232 	return page_fixed_fake_head(page) != page;
233 }
234 
235 static inline unsigned long _compound_head(const struct page *page)
236 {
237 	unsigned long head = READ_ONCE(page->compound_head);
238 
239 	if (unlikely(head & 1))
240 		return head - 1;
241 	return (unsigned long)page_fixed_fake_head(page);
242 }
243 
244 #define compound_head(page)	((typeof(page))_compound_head(page))
245 
246 /**
247  * page_folio - Converts from page to folio.
248  * @p: The page.
249  *
250  * Every page is part of a folio.  This function cannot be called on a
251  * NULL pointer.
252  *
253  * Context: No reference, nor lock is required on @page.  If the caller
254  * does not hold a reference, this call may race with a folio split, so
255  * it should re-check the folio still contains this page after gaining
256  * a reference on the folio.
257  * Return: The folio which contains this page.
258  */
259 #define page_folio(p)		(_Generic((p),				\
260 	const struct page *:	(const struct folio *)_compound_head(p), \
261 	struct page *:		(struct folio *)_compound_head(p)))
262 
263 /**
264  * folio_page - Return a page from a folio.
265  * @folio: The folio.
266  * @n: The page number to return.
267  *
268  * @n is relative to the start of the folio.  This function does not
269  * check that the page number lies within @folio; the caller is presumed
270  * to have a reference to the page.
271  */
272 #define folio_page(folio, n)	nth_page(&(folio)->page, n)
273 
274 static __always_inline int PageTail(const struct page *page)
275 {
276 	return READ_ONCE(page->compound_head) & 1 || page_is_fake_head(page);
277 }
278 
279 static __always_inline int PageCompound(const struct page *page)
280 {
281 	return test_bit(PG_head, &page->flags) ||
282 	       READ_ONCE(page->compound_head) & 1;
283 }
284 
285 #define	PAGE_POISON_PATTERN	-1l
286 static inline int PagePoisoned(const struct page *page)
287 {
288 	return READ_ONCE(page->flags) == PAGE_POISON_PATTERN;
289 }
290 
291 #ifdef CONFIG_DEBUG_VM
292 void page_init_poison(struct page *page, size_t size);
293 #else
294 static inline void page_init_poison(struct page *page, size_t size)
295 {
296 }
297 #endif
298 
299 static const unsigned long *const_folio_flags(const struct folio *folio,
300 		unsigned n)
301 {
302 	const struct page *page = &folio->page;
303 
304 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
305 	VM_BUG_ON_PGFLAGS(n > 0 && !test_bit(PG_head, &page->flags), page);
306 	return &page[n].flags;
307 }
308 
309 static unsigned long *folio_flags(struct folio *folio, unsigned n)
310 {
311 	struct page *page = &folio->page;
312 
313 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
314 	VM_BUG_ON_PGFLAGS(n > 0 && !test_bit(PG_head, &page->flags), page);
315 	return &page[n].flags;
316 }
317 
318 /*
319  * Page flags policies wrt compound pages
320  *
321  * PF_POISONED_CHECK
322  *     check if this struct page poisoned/uninitialized
323  *
324  * PF_ANY:
325  *     the page flag is relevant for small, head and tail pages.
326  *
327  * PF_HEAD:
328  *     for compound page all operations related to the page flag applied to
329  *     head page.
330  *
331  * PF_NO_TAIL:
332  *     modifications of the page flag must be done on small or head pages,
333  *     checks can be done on tail pages too.
334  *
335  * PF_NO_COMPOUND:
336  *     the page flag is not relevant for compound pages.
337  *
338  * PF_SECOND:
339  *     the page flag is stored in the first tail page.
340  */
341 #define PF_POISONED_CHECK(page) ({					\
342 		VM_BUG_ON_PGFLAGS(PagePoisoned(page), page);		\
343 		page; })
344 #define PF_ANY(page, enforce)	PF_POISONED_CHECK(page)
345 #define PF_HEAD(page, enforce)	PF_POISONED_CHECK(compound_head(page))
346 #define PF_NO_TAIL(page, enforce) ({					\
347 		VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page);	\
348 		PF_POISONED_CHECK(compound_head(page)); })
349 #define PF_NO_COMPOUND(page, enforce) ({				\
350 		VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page);	\
351 		PF_POISONED_CHECK(page); })
352 #define PF_SECOND(page, enforce) ({					\
353 		VM_BUG_ON_PGFLAGS(!PageHead(page), page);		\
354 		PF_POISONED_CHECK(&page[1]); })
355 
356 /* Which page is the flag stored in */
357 #define FOLIO_PF_ANY		0
358 #define FOLIO_PF_HEAD		0
359 #define FOLIO_PF_NO_TAIL	0
360 #define FOLIO_PF_NO_COMPOUND	0
361 #define FOLIO_PF_SECOND		1
362 
363 #define FOLIO_HEAD_PAGE		0
364 #define FOLIO_SECOND_PAGE	1
365 
366 /*
367  * Macros to create function definitions for page flags
368  */
369 #define FOLIO_TEST_FLAG(name, page)					\
370 static __always_inline bool folio_test_##name(const struct folio *folio) \
371 { return test_bit(PG_##name, const_folio_flags(folio, page)); }
372 
373 #define FOLIO_SET_FLAG(name, page)					\
374 static __always_inline void folio_set_##name(struct folio *folio)	\
375 { set_bit(PG_##name, folio_flags(folio, page)); }
376 
377 #define FOLIO_CLEAR_FLAG(name, page)					\
378 static __always_inline void folio_clear_##name(struct folio *folio)	\
379 { clear_bit(PG_##name, folio_flags(folio, page)); }
380 
381 #define __FOLIO_SET_FLAG(name, page)					\
382 static __always_inline void __folio_set_##name(struct folio *folio)	\
383 { __set_bit(PG_##name, folio_flags(folio, page)); }
384 
385 #define __FOLIO_CLEAR_FLAG(name, page)					\
386 static __always_inline void __folio_clear_##name(struct folio *folio)	\
387 { __clear_bit(PG_##name, folio_flags(folio, page)); }
388 
389 #define FOLIO_TEST_SET_FLAG(name, page)					\
390 static __always_inline bool folio_test_set_##name(struct folio *folio)	\
391 { return test_and_set_bit(PG_##name, folio_flags(folio, page)); }
392 
393 #define FOLIO_TEST_CLEAR_FLAG(name, page)				\
394 static __always_inline bool folio_test_clear_##name(struct folio *folio) \
395 { return test_and_clear_bit(PG_##name, folio_flags(folio, page)); }
396 
397 #define FOLIO_FLAG(name, page)						\
398 FOLIO_TEST_FLAG(name, page)						\
399 FOLIO_SET_FLAG(name, page)						\
400 FOLIO_CLEAR_FLAG(name, page)
401 
402 #define TESTPAGEFLAG(uname, lname, policy)				\
403 FOLIO_TEST_FLAG(lname, FOLIO_##policy)					\
404 static __always_inline int Page##uname(const struct page *page)		\
405 { return test_bit(PG_##lname, &policy(page, 0)->flags); }
406 
407 #define SETPAGEFLAG(uname, lname, policy)				\
408 FOLIO_SET_FLAG(lname, FOLIO_##policy)					\
409 static __always_inline void SetPage##uname(struct page *page)		\
410 { set_bit(PG_##lname, &policy(page, 1)->flags); }
411 
412 #define CLEARPAGEFLAG(uname, lname, policy)				\
413 FOLIO_CLEAR_FLAG(lname, FOLIO_##policy)					\
414 static __always_inline void ClearPage##uname(struct page *page)		\
415 { clear_bit(PG_##lname, &policy(page, 1)->flags); }
416 
417 #define __SETPAGEFLAG(uname, lname, policy)				\
418 __FOLIO_SET_FLAG(lname, FOLIO_##policy)					\
419 static __always_inline void __SetPage##uname(struct page *page)		\
420 { __set_bit(PG_##lname, &policy(page, 1)->flags); }
421 
422 #define __CLEARPAGEFLAG(uname, lname, policy)				\
423 __FOLIO_CLEAR_FLAG(lname, FOLIO_##policy)				\
424 static __always_inline void __ClearPage##uname(struct page *page)	\
425 { __clear_bit(PG_##lname, &policy(page, 1)->flags); }
426 
427 #define TESTSETFLAG(uname, lname, policy)				\
428 FOLIO_TEST_SET_FLAG(lname, FOLIO_##policy)				\
429 static __always_inline int TestSetPage##uname(struct page *page)	\
430 { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); }
431 
432 #define TESTCLEARFLAG(uname, lname, policy)				\
433 FOLIO_TEST_CLEAR_FLAG(lname, FOLIO_##policy)				\
434 static __always_inline int TestClearPage##uname(struct page *page)	\
435 { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); }
436 
437 #define PAGEFLAG(uname, lname, policy)					\
438 	TESTPAGEFLAG(uname, lname, policy)				\
439 	SETPAGEFLAG(uname, lname, policy)				\
440 	CLEARPAGEFLAG(uname, lname, policy)
441 
442 #define __PAGEFLAG(uname, lname, policy)				\
443 	TESTPAGEFLAG(uname, lname, policy)				\
444 	__SETPAGEFLAG(uname, lname, policy)				\
445 	__CLEARPAGEFLAG(uname, lname, policy)
446 
447 #define TESTSCFLAG(uname, lname, policy)				\
448 	TESTSETFLAG(uname, lname, policy)				\
449 	TESTCLEARFLAG(uname, lname, policy)
450 
451 #define FOLIO_TEST_FLAG_FALSE(name)					\
452 static inline bool folio_test_##name(const struct folio *folio)		\
453 { return false; }
454 #define FOLIO_SET_FLAG_NOOP(name)					\
455 static inline void folio_set_##name(struct folio *folio) { }
456 #define FOLIO_CLEAR_FLAG_NOOP(name)					\
457 static inline void folio_clear_##name(struct folio *folio) { }
458 #define __FOLIO_SET_FLAG_NOOP(name)					\
459 static inline void __folio_set_##name(struct folio *folio) { }
460 #define __FOLIO_CLEAR_FLAG_NOOP(name)					\
461 static inline void __folio_clear_##name(struct folio *folio) { }
462 #define FOLIO_TEST_SET_FLAG_FALSE(name)					\
463 static inline bool folio_test_set_##name(struct folio *folio)		\
464 { return false; }
465 #define FOLIO_TEST_CLEAR_FLAG_FALSE(name)				\
466 static inline bool folio_test_clear_##name(struct folio *folio)		\
467 { return false; }
468 
469 #define FOLIO_FLAG_FALSE(name)						\
470 FOLIO_TEST_FLAG_FALSE(name)						\
471 FOLIO_SET_FLAG_NOOP(name)						\
472 FOLIO_CLEAR_FLAG_NOOP(name)
473 
474 #define TESTPAGEFLAG_FALSE(uname, lname)				\
475 FOLIO_TEST_FLAG_FALSE(lname)						\
476 static inline int Page##uname(const struct page *page) { return 0; }
477 
478 #define SETPAGEFLAG_NOOP(uname, lname)					\
479 FOLIO_SET_FLAG_NOOP(lname)						\
480 static inline void SetPage##uname(struct page *page) {  }
481 
482 #define CLEARPAGEFLAG_NOOP(uname, lname)				\
483 FOLIO_CLEAR_FLAG_NOOP(lname)						\
484 static inline void ClearPage##uname(struct page *page) {  }
485 
486 #define __CLEARPAGEFLAG_NOOP(uname, lname)				\
487 __FOLIO_CLEAR_FLAG_NOOP(lname)						\
488 static inline void __ClearPage##uname(struct page *page) {  }
489 
490 #define TESTSETFLAG_FALSE(uname, lname)					\
491 FOLIO_TEST_SET_FLAG_FALSE(lname)					\
492 static inline int TestSetPage##uname(struct page *page) { return 0; }
493 
494 #define TESTCLEARFLAG_FALSE(uname, lname)				\
495 FOLIO_TEST_CLEAR_FLAG_FALSE(lname)					\
496 static inline int TestClearPage##uname(struct page *page) { return 0; }
497 
498 #define PAGEFLAG_FALSE(uname, lname) TESTPAGEFLAG_FALSE(uname, lname)	\
499 	SETPAGEFLAG_NOOP(uname, lname) CLEARPAGEFLAG_NOOP(uname, lname)
500 
501 #define TESTSCFLAG_FALSE(uname, lname)					\
502 	TESTSETFLAG_FALSE(uname, lname) TESTCLEARFLAG_FALSE(uname, lname)
503 
504 __PAGEFLAG(Locked, locked, PF_NO_TAIL)
505 FOLIO_FLAG(waiters, FOLIO_HEAD_PAGE)
506 FOLIO_FLAG(referenced, FOLIO_HEAD_PAGE)
507 	FOLIO_TEST_CLEAR_FLAG(referenced, FOLIO_HEAD_PAGE)
508 	__FOLIO_SET_FLAG(referenced, FOLIO_HEAD_PAGE)
509 PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD)
510 	__CLEARPAGEFLAG(Dirty, dirty, PF_HEAD)
511 PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD)
512 	TESTCLEARFLAG(LRU, lru, PF_HEAD)
513 PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD)
514 	TESTCLEARFLAG(Active, active, PF_HEAD)
515 PAGEFLAG(Workingset, workingset, PF_HEAD)
516 	TESTCLEARFLAG(Workingset, workingset, PF_HEAD)
517 PAGEFLAG(Checked, checked, PF_NO_COMPOUND)	   /* Used by some filesystems */
518 
519 /* Xen */
520 PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND)
521 	TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND)
522 PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND);
523 PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND);
524 PAGEFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
525 	TESTCLEARFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
526 
527 PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
528 	__CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
529 	__SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
530 PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
531 	__CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
532 	__SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
533 
534 /*
535  * Private page markings that may be used by the filesystem that owns the page
536  * for its own purposes.
537  * - PG_private and PG_private_2 cause release_folio() and co to be invoked
538  */
539 PAGEFLAG(Private, private, PF_ANY)
540 PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY)
541 PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
542 	TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
543 
544 /*
545  * Only test-and-set exist for PG_writeback.  The unconditional operators are
546  * risky: they bypass page accounting.
547  */
548 TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL)
549 	TESTSCFLAG(Writeback, writeback, PF_NO_TAIL)
550 PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL)
551 
552 /* PG_readahead is only used for reads; PG_reclaim is only for writes */
553 PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL)
554 	TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL)
555 PAGEFLAG(Readahead, readahead, PF_NO_COMPOUND)
556 	TESTCLEARFLAG(Readahead, readahead, PF_NO_COMPOUND)
557 
558 #ifdef CONFIG_HIGHMEM
559 /*
560  * Must use a macro here due to header dependency issues. page_zone() is not
561  * available at this point.
562  */
563 #define PageHighMem(__p) is_highmem_idx(page_zonenum(__p))
564 #define folio_test_highmem(__f)	is_highmem_idx(folio_zonenum(__f))
565 #else
566 PAGEFLAG_FALSE(HighMem, highmem)
567 #endif
568 
569 #ifdef CONFIG_SWAP
570 static __always_inline bool folio_test_swapcache(const struct folio *folio)
571 {
572 	return folio_test_swapbacked(folio) &&
573 			test_bit(PG_swapcache, const_folio_flags(folio, 0));
574 }
575 
576 static __always_inline bool PageSwapCache(const struct page *page)
577 {
578 	return folio_test_swapcache(page_folio(page));
579 }
580 
581 SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
582 CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
583 #else
584 PAGEFLAG_FALSE(SwapCache, swapcache)
585 #endif
586 
587 PAGEFLAG(Unevictable, unevictable, PF_HEAD)
588 	__CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD)
589 	TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD)
590 
591 #ifdef CONFIG_MMU
592 PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
593 	__CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
594 	TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL)
595 #else
596 PAGEFLAG_FALSE(Mlocked, mlocked) __CLEARPAGEFLAG_NOOP(Mlocked, mlocked)
597 	TESTSCFLAG_FALSE(Mlocked, mlocked)
598 #endif
599 
600 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
601 PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND)
602 #else
603 PAGEFLAG_FALSE(Uncached, uncached)
604 #endif
605 
606 #ifdef CONFIG_MEMORY_FAILURE
607 PAGEFLAG(HWPoison, hwpoison, PF_ANY)
608 TESTSCFLAG(HWPoison, hwpoison, PF_ANY)
609 #define __PG_HWPOISON (1UL << PG_hwpoison)
610 #else
611 PAGEFLAG_FALSE(HWPoison, hwpoison)
612 #define __PG_HWPOISON 0
613 #endif
614 
615 #ifdef CONFIG_PAGE_IDLE_FLAG
616 #ifdef CONFIG_64BIT
617 FOLIO_TEST_FLAG(young, FOLIO_HEAD_PAGE)
618 FOLIO_SET_FLAG(young, FOLIO_HEAD_PAGE)
619 FOLIO_TEST_CLEAR_FLAG(young, FOLIO_HEAD_PAGE)
620 FOLIO_FLAG(idle, FOLIO_HEAD_PAGE)
621 #endif
622 /* See page_idle.h for !64BIT workaround */
623 #else /* !CONFIG_PAGE_IDLE_FLAG */
624 FOLIO_FLAG_FALSE(young)
625 FOLIO_TEST_CLEAR_FLAG_FALSE(young)
626 FOLIO_FLAG_FALSE(idle)
627 #endif
628 
629 /*
630  * PageReported() is used to track reported free pages within the Buddy
631  * allocator. We can use the non-atomic version of the test and set
632  * operations as both should be shielded with the zone lock to prevent
633  * any possible races on the setting or clearing of the bit.
634  */
635 __PAGEFLAG(Reported, reported, PF_NO_COMPOUND)
636 
637 #ifdef CONFIG_MEMORY_HOTPLUG
638 PAGEFLAG(VmemmapSelfHosted, vmemmap_self_hosted, PF_ANY)
639 #else
640 PAGEFLAG_FALSE(VmemmapSelfHosted, vmemmap_self_hosted)
641 #endif
642 
643 /*
644  * On an anonymous folio mapped into a user virtual memory area,
645  * folio->mapping points to its anon_vma, not to a struct address_space;
646  * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
647  *
648  * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
649  * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON
650  * bit; and then folio->mapping points, not to an anon_vma, but to a private
651  * structure which KSM associates with that merged page.  See ksm.h.
652  *
653  * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable
654  * page and then folio->mapping points to a struct movable_operations.
655  *
656  * Please note that, confusingly, "folio_mapping" refers to the inode
657  * address_space which maps the folio from disk; whereas "folio_mapped"
658  * refers to user virtual address space into which the folio is mapped.
659  *
660  * For slab pages, since slab reuses the bits in struct page to store its
661  * internal states, the folio->mapping does not exist as such, nor do
662  * these flags below.  So in order to avoid testing non-existent bits,
663  * please make sure that folio_test_slab(folio) actually evaluates to
664  * false before calling the following functions (e.g., folio_test_anon).
665  * See mm/slab.h.
666  */
667 #define PAGE_MAPPING_ANON	0x1
668 #define PAGE_MAPPING_MOVABLE	0x2
669 #define PAGE_MAPPING_KSM	(PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
670 #define PAGE_MAPPING_FLAGS	(PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
671 
672 /*
673  * Different with flags above, this flag is used only for fsdax mode.  It
674  * indicates that this page->mapping is now under reflink case.
675  */
676 #define PAGE_MAPPING_DAX_SHARED	((void *)0x1)
677 
678 static __always_inline bool folio_mapping_flags(const struct folio *folio)
679 {
680 	return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) != 0;
681 }
682 
683 static __always_inline bool PageMappingFlags(const struct page *page)
684 {
685 	return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0;
686 }
687 
688 static __always_inline bool folio_test_anon(const struct folio *folio)
689 {
690 	return ((unsigned long)folio->mapping & PAGE_MAPPING_ANON) != 0;
691 }
692 
693 static __always_inline bool PageAnon(const struct page *page)
694 {
695 	return folio_test_anon(page_folio(page));
696 }
697 
698 static __always_inline bool __folio_test_movable(const struct folio *folio)
699 {
700 	return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) ==
701 			PAGE_MAPPING_MOVABLE;
702 }
703 
704 static __always_inline bool __PageMovable(const struct page *page)
705 {
706 	return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
707 				PAGE_MAPPING_MOVABLE;
708 }
709 
710 #ifdef CONFIG_KSM
711 /*
712  * A KSM page is one of those write-protected "shared pages" or "merged pages"
713  * which KSM maps into multiple mms, wherever identical anonymous page content
714  * is found in VM_MERGEABLE vmas.  It's a PageAnon page, pointing not to any
715  * anon_vma, but to that page's node of the stable tree.
716  */
717 static __always_inline bool folio_test_ksm(const struct folio *folio)
718 {
719 	return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) ==
720 				PAGE_MAPPING_KSM;
721 }
722 
723 static __always_inline bool PageKsm(const struct page *page)
724 {
725 	return folio_test_ksm(page_folio(page));
726 }
727 #else
728 TESTPAGEFLAG_FALSE(Ksm, ksm)
729 #endif
730 
731 u64 stable_page_flags(const struct page *page);
732 
733 /**
734  * folio_xor_flags_has_waiters - Change some folio flags.
735  * @folio: The folio.
736  * @mask: Bits set in this word will be changed.
737  *
738  * This must only be used for flags which are changed with the folio
739  * lock held.  For example, it is unsafe to use for PG_dirty as that
740  * can be set without the folio lock held.  It can also only be used
741  * on flags which are in the range 0-6 as some of the implementations
742  * only affect those bits.
743  *
744  * Return: Whether there are tasks waiting on the folio.
745  */
746 static inline bool folio_xor_flags_has_waiters(struct folio *folio,
747 		unsigned long mask)
748 {
749 	return xor_unlock_is_negative_byte(mask, folio_flags(folio, 0));
750 }
751 
752 /**
753  * folio_test_uptodate - Is this folio up to date?
754  * @folio: The folio.
755  *
756  * The uptodate flag is set on a folio when every byte in the folio is
757  * at least as new as the corresponding bytes on storage.  Anonymous
758  * and CoW folios are always uptodate.  If the folio is not uptodate,
759  * some of the bytes in it may be; see the is_partially_uptodate()
760  * address_space operation.
761  */
762 static inline bool folio_test_uptodate(const struct folio *folio)
763 {
764 	bool ret = test_bit(PG_uptodate, const_folio_flags(folio, 0));
765 	/*
766 	 * Must ensure that the data we read out of the folio is loaded
767 	 * _after_ we've loaded folio->flags to check the uptodate bit.
768 	 * We can skip the barrier if the folio is not uptodate, because
769 	 * we wouldn't be reading anything from it.
770 	 *
771 	 * See folio_mark_uptodate() for the other side of the story.
772 	 */
773 	if (ret)
774 		smp_rmb();
775 
776 	return ret;
777 }
778 
779 static inline bool PageUptodate(const struct page *page)
780 {
781 	return folio_test_uptodate(page_folio(page));
782 }
783 
784 static __always_inline void __folio_mark_uptodate(struct folio *folio)
785 {
786 	smp_wmb();
787 	__set_bit(PG_uptodate, folio_flags(folio, 0));
788 }
789 
790 static __always_inline void folio_mark_uptodate(struct folio *folio)
791 {
792 	/*
793 	 * Memory barrier must be issued before setting the PG_uptodate bit,
794 	 * so that all previous stores issued in order to bring the folio
795 	 * uptodate are actually visible before folio_test_uptodate becomes true.
796 	 */
797 	smp_wmb();
798 	set_bit(PG_uptodate, folio_flags(folio, 0));
799 }
800 
801 static __always_inline void __SetPageUptodate(struct page *page)
802 {
803 	__folio_mark_uptodate((struct folio *)page);
804 }
805 
806 static __always_inline void SetPageUptodate(struct page *page)
807 {
808 	folio_mark_uptodate((struct folio *)page);
809 }
810 
811 CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL)
812 
813 void __folio_start_writeback(struct folio *folio, bool keep_write);
814 void set_page_writeback(struct page *page);
815 
816 #define folio_start_writeback(folio)			\
817 	__folio_start_writeback(folio, false)
818 #define folio_start_writeback_keepwrite(folio)	\
819 	__folio_start_writeback(folio, true)
820 
821 static __always_inline bool folio_test_head(const struct folio *folio)
822 {
823 	return test_bit(PG_head, const_folio_flags(folio, FOLIO_PF_ANY));
824 }
825 
826 static __always_inline int PageHead(const struct page *page)
827 {
828 	PF_POISONED_CHECK(page);
829 	return test_bit(PG_head, &page->flags) && !page_is_fake_head(page);
830 }
831 
832 __SETPAGEFLAG(Head, head, PF_ANY)
833 __CLEARPAGEFLAG(Head, head, PF_ANY)
834 CLEARPAGEFLAG(Head, head, PF_ANY)
835 
836 /**
837  * folio_test_large() - Does this folio contain more than one page?
838  * @folio: The folio to test.
839  *
840  * Return: True if the folio is larger than one page.
841  */
842 static inline bool folio_test_large(const struct folio *folio)
843 {
844 	return folio_test_head(folio);
845 }
846 
847 static __always_inline void set_compound_head(struct page *page, struct page *head)
848 {
849 	WRITE_ONCE(page->compound_head, (unsigned long)head + 1);
850 }
851 
852 static __always_inline void clear_compound_head(struct page *page)
853 {
854 	WRITE_ONCE(page->compound_head, 0);
855 }
856 
857 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
858 static inline void ClearPageCompound(struct page *page)
859 {
860 	BUG_ON(!PageHead(page));
861 	ClearPageHead(page);
862 }
863 FOLIO_FLAG(large_rmappable, FOLIO_SECOND_PAGE)
864 #else
865 FOLIO_FLAG_FALSE(large_rmappable)
866 #endif
867 
868 #define PG_head_mask ((1UL << PG_head))
869 
870 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
871 /*
872  * PageHuge() only returns true for hugetlbfs pages, but not for
873  * normal or transparent huge pages.
874  *
875  * PageTransHuge() returns true for both transparent huge and
876  * hugetlbfs pages, but not normal pages. PageTransHuge() can only be
877  * called only in the core VM paths where hugetlbfs pages can't exist.
878  */
879 static inline int PageTransHuge(const struct page *page)
880 {
881 	VM_BUG_ON_PAGE(PageTail(page), page);
882 	return PageHead(page);
883 }
884 
885 /*
886  * PageTransCompound returns true for both transparent huge pages
887  * and hugetlbfs pages, so it should only be called when it's known
888  * that hugetlbfs pages aren't involved.
889  */
890 static inline int PageTransCompound(const struct page *page)
891 {
892 	return PageCompound(page);
893 }
894 
895 /*
896  * PageTransTail returns true for both transparent huge pages
897  * and hugetlbfs pages, so it should only be called when it's known
898  * that hugetlbfs pages aren't involved.
899  */
900 static inline int PageTransTail(const struct page *page)
901 {
902 	return PageTail(page);
903 }
904 #else
905 TESTPAGEFLAG_FALSE(TransHuge, transhuge)
906 TESTPAGEFLAG_FALSE(TransCompound, transcompound)
907 TESTPAGEFLAG_FALSE(TransCompoundMap, transcompoundmap)
908 TESTPAGEFLAG_FALSE(TransTail, transtail)
909 #endif
910 
911 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
912 /*
913  * PageHasHWPoisoned indicates that at least one subpage is hwpoisoned in the
914  * compound page.
915  *
916  * This flag is set by hwpoison handler.  Cleared by THP split or free page.
917  */
918 PAGEFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND)
919 	TESTSCFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND)
920 #else
921 PAGEFLAG_FALSE(HasHWPoisoned, has_hwpoisoned)
922 	TESTSCFLAG_FALSE(HasHWPoisoned, has_hwpoisoned)
923 #endif
924 
925 /*
926  * For pages that are never mapped to userspace,
927  * page_type may be used.  Because it is initialised to -1, we invert the
928  * sense of the bit, so __SetPageFoo *clears* the bit used for PageFoo, and
929  * __ClearPageFoo *sets* the bit used for PageFoo.  We reserve a few high and
930  * low bits so that an underflow or overflow of _mapcount won't be
931  * mistaken for a page type value.
932  */
933 
934 enum pagetype {
935 	PG_buddy	= 0x40000000,
936 	PG_offline	= 0x20000000,
937 	PG_table	= 0x10000000,
938 	PG_guard	= 0x08000000,
939 	PG_hugetlb	= 0x04000000,
940 	PG_slab		= 0x02000000,
941 	PG_zsmalloc	= 0x01000000,
942 	PG_unaccepted	= 0x00800000,
943 
944 	PAGE_TYPE_BASE	= 0x80000000,
945 
946 	/*
947 	 * Reserve 0xffff0000 - 0xfffffffe to catch _mapcount underflows and
948 	 * allow owners that set a type to reuse the lower 16 bit for their own
949 	 * purposes.
950 	 */
951 	PAGE_MAPCOUNT_RESERVE	= ~0x0000ffff,
952 };
953 
954 #define PageType(page, flag)						\
955 	((READ_ONCE(page->page_type) & (PAGE_TYPE_BASE | flag)) == PAGE_TYPE_BASE)
956 #define folio_test_type(folio, flag)					\
957 	((READ_ONCE(folio->page.page_type) & (PAGE_TYPE_BASE | flag))  == PAGE_TYPE_BASE)
958 
959 static inline int page_type_has_type(unsigned int page_type)
960 {
961 	return (int)page_type < PAGE_MAPCOUNT_RESERVE;
962 }
963 
964 static inline int page_has_type(const struct page *page)
965 {
966 	return page_type_has_type(READ_ONCE(page->page_type));
967 }
968 
969 #define FOLIO_TYPE_OPS(lname, fname)					\
970 static __always_inline bool folio_test_##fname(const struct folio *folio)\
971 {									\
972 	return folio_test_type(folio, PG_##lname);			\
973 }									\
974 static __always_inline void __folio_set_##fname(struct folio *folio)	\
975 {									\
976 	VM_BUG_ON_FOLIO(!folio_test_type(folio, 0), folio);		\
977 	folio->page.page_type &= ~PG_##lname;				\
978 }									\
979 static __always_inline void __folio_clear_##fname(struct folio *folio)	\
980 {									\
981 	VM_BUG_ON_FOLIO(!folio_test_##fname(folio), folio);		\
982 	folio->page.page_type |= PG_##lname;				\
983 }
984 
985 #define PAGE_TYPE_OPS(uname, lname, fname)				\
986 FOLIO_TYPE_OPS(lname, fname)						\
987 static __always_inline int Page##uname(const struct page *page)		\
988 {									\
989 	return PageType(page, PG_##lname);				\
990 }									\
991 static __always_inline void __SetPage##uname(struct page *page)		\
992 {									\
993 	VM_BUG_ON_PAGE(!PageType(page, 0), page);			\
994 	page->page_type &= ~PG_##lname;					\
995 }									\
996 static __always_inline void __ClearPage##uname(struct page *page)	\
997 {									\
998 	VM_BUG_ON_PAGE(!Page##uname(page), page);			\
999 	page->page_type |= PG_##lname;					\
1000 }
1001 
1002 /*
1003  * PageBuddy() indicates that the page is free and in the buddy system
1004  * (see mm/page_alloc.c).
1005  */
1006 PAGE_TYPE_OPS(Buddy, buddy, buddy)
1007 
1008 /*
1009  * PageOffline() indicates that the page is logically offline although the
1010  * containing section is online. (e.g. inflated in a balloon driver or
1011  * not onlined when onlining the section).
1012  * The content of these pages is effectively stale. Such pages should not
1013  * be touched (read/write/dump/save) except by their owner.
1014  *
1015  * When a memory block gets onlined, all pages are initialized with a
1016  * refcount of 1 and PageOffline(). generic_online_page() will
1017  * take care of clearing PageOffline().
1018  *
1019  * If a driver wants to allow to offline unmovable PageOffline() pages without
1020  * putting them back to the buddy, it can do so via the memory notifier by
1021  * decrementing the reference count in MEM_GOING_OFFLINE and incrementing the
1022  * reference count in MEM_CANCEL_OFFLINE. When offlining, the PageOffline()
1023  * pages (now with a reference count of zero) are treated like free (unmanaged)
1024  * pages, allowing the containing memory block to get offlined. A driver that
1025  * relies on this feature is aware that re-onlining the memory block will
1026  * require not giving them to the buddy via generic_online_page().
1027  *
1028  * Memory offlining code will not adjust the managed page count for any
1029  * PageOffline() pages, treating them like they were never exposed to the
1030  * buddy using generic_online_page().
1031  *
1032  * There are drivers that mark a page PageOffline() and expect there won't be
1033  * any further access to page content. PFN walkers that read content of random
1034  * pages should check PageOffline() and synchronize with such drivers using
1035  * page_offline_freeze()/page_offline_thaw().
1036  */
1037 PAGE_TYPE_OPS(Offline, offline, offline)
1038 
1039 extern void page_offline_freeze(void);
1040 extern void page_offline_thaw(void);
1041 extern void page_offline_begin(void);
1042 extern void page_offline_end(void);
1043 
1044 /*
1045  * Marks pages in use as page tables.
1046  */
1047 PAGE_TYPE_OPS(Table, table, pgtable)
1048 
1049 /*
1050  * Marks guardpages used with debug_pagealloc.
1051  */
1052 PAGE_TYPE_OPS(Guard, guard, guard)
1053 
1054 FOLIO_TYPE_OPS(slab, slab)
1055 
1056 /**
1057  * PageSlab - Determine if the page belongs to the slab allocator
1058  * @page: The page to test.
1059  *
1060  * Context: Any context.
1061  * Return: True for slab pages, false for any other kind of page.
1062  */
1063 static inline bool PageSlab(const struct page *page)
1064 {
1065 	return folio_test_slab(page_folio(page));
1066 }
1067 
1068 #ifdef CONFIG_HUGETLB_PAGE
1069 FOLIO_TYPE_OPS(hugetlb, hugetlb)
1070 #else
1071 FOLIO_TEST_FLAG_FALSE(hugetlb)
1072 #endif
1073 
1074 PAGE_TYPE_OPS(Zsmalloc, zsmalloc, zsmalloc)
1075 
1076 /*
1077  * Mark pages that has to be accepted before touched for the first time.
1078  *
1079  * Serialized with zone lock.
1080  */
1081 PAGE_TYPE_OPS(Unaccepted, unaccepted, unaccepted)
1082 
1083 /**
1084  * PageHuge - Determine if the page belongs to hugetlbfs
1085  * @page: The page to test.
1086  *
1087  * Context: Any context.
1088  * Return: True for hugetlbfs pages, false for anon pages or pages
1089  * belonging to other filesystems.
1090  */
1091 static inline bool PageHuge(const struct page *page)
1092 {
1093 	return folio_test_hugetlb(page_folio(page));
1094 }
1095 
1096 /*
1097  * Check if a page is currently marked HWPoisoned. Note that this check is
1098  * best effort only and inherently racy: there is no way to synchronize with
1099  * failing hardware.
1100  */
1101 static inline bool is_page_hwpoison(const struct page *page)
1102 {
1103 	const struct folio *folio;
1104 
1105 	if (PageHWPoison(page))
1106 		return true;
1107 	folio = page_folio(page);
1108 	return folio_test_hugetlb(folio) && PageHWPoison(&folio->page);
1109 }
1110 
1111 bool is_free_buddy_page(const struct page *page);
1112 
1113 PAGEFLAG(Isolated, isolated, PF_ANY);
1114 
1115 static __always_inline int PageAnonExclusive(const struct page *page)
1116 {
1117 	VM_BUG_ON_PGFLAGS(!PageAnon(page), page);
1118 	/*
1119 	 * HugeTLB stores this information on the head page; THP keeps it per
1120 	 * page
1121 	 */
1122 	if (PageHuge(page))
1123 		page = compound_head(page);
1124 	return test_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags);
1125 }
1126 
1127 static __always_inline void SetPageAnonExclusive(struct page *page)
1128 {
1129 	VM_BUG_ON_PGFLAGS(!PageAnon(page) || PageKsm(page), page);
1130 	VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page);
1131 	set_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags);
1132 }
1133 
1134 static __always_inline void ClearPageAnonExclusive(struct page *page)
1135 {
1136 	VM_BUG_ON_PGFLAGS(!PageAnon(page) || PageKsm(page), page);
1137 	VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page);
1138 	clear_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags);
1139 }
1140 
1141 static __always_inline void __ClearPageAnonExclusive(struct page *page)
1142 {
1143 	VM_BUG_ON_PGFLAGS(!PageAnon(page), page);
1144 	VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page);
1145 	__clear_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags);
1146 }
1147 
1148 #ifdef CONFIG_MMU
1149 #define __PG_MLOCKED		(1UL << PG_mlocked)
1150 #else
1151 #define __PG_MLOCKED		0
1152 #endif
1153 
1154 /*
1155  * Flags checked when a page is freed.  Pages being freed should not have
1156  * these flags set.  If they are, there is a problem.
1157  */
1158 #define PAGE_FLAGS_CHECK_AT_FREE				\
1159 	(1UL << PG_lru		| 1UL << PG_locked	|	\
1160 	 1UL << PG_private	| 1UL << PG_private_2	|	\
1161 	 1UL << PG_writeback	| 1UL << PG_reserved	|	\
1162 	 1UL << PG_active 	|				\
1163 	 1UL << PG_unevictable	| __PG_MLOCKED | LRU_GEN_MASK)
1164 
1165 /*
1166  * Flags checked when a page is prepped for return by the page allocator.
1167  * Pages being prepped should not have these flags set.  If they are set,
1168  * there has been a kernel bug or struct page corruption.
1169  *
1170  * __PG_HWPOISON is exceptional because it needs to be kept beyond page's
1171  * alloc-free cycle to prevent from reusing the page.
1172  */
1173 #define PAGE_FLAGS_CHECK_AT_PREP	\
1174 	((PAGEFLAGS_MASK & ~__PG_HWPOISON) | LRU_GEN_MASK | LRU_REFS_MASK)
1175 
1176 /*
1177  * Flags stored in the second page of a compound page.  They may overlap
1178  * the CHECK_AT_FREE flags above, so need to be cleared.
1179  */
1180 #define PAGE_FLAGS_SECOND						\
1181 	(0xffUL /* order */		| 1UL << PG_has_hwpoisoned |	\
1182 	 1UL << PG_large_rmappable)
1183 
1184 #define PAGE_FLAGS_PRIVATE				\
1185 	(1UL << PG_private | 1UL << PG_private_2)
1186 /**
1187  * page_has_private - Determine if page has private stuff
1188  * @page: The page to be checked
1189  *
1190  * Determine if a page has private stuff, indicating that release routines
1191  * should be invoked upon it.
1192  */
1193 static inline int page_has_private(const struct page *page)
1194 {
1195 	return !!(page->flags & PAGE_FLAGS_PRIVATE);
1196 }
1197 
1198 static inline bool folio_has_private(const struct folio *folio)
1199 {
1200 	return page_has_private(&folio->page);
1201 }
1202 
1203 #undef PF_ANY
1204 #undef PF_HEAD
1205 #undef PF_NO_TAIL
1206 #undef PF_NO_COMPOUND
1207 #undef PF_SECOND
1208 #endif /* !__GENERATING_BOUNDS_H */
1209 
1210 #endif	/* PAGE_FLAGS_H */
1211