1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Macros for manipulating and testing page->flags 4 */ 5 6 #ifndef PAGE_FLAGS_H 7 #define PAGE_FLAGS_H 8 9 #include <linux/types.h> 10 #include <linux/bug.h> 11 #include <linux/mmdebug.h> 12 #ifndef __GENERATING_BOUNDS_H 13 #include <linux/mm_types.h> 14 #include <generated/bounds.h> 15 #endif /* !__GENERATING_BOUNDS_H */ 16 17 /* 18 * Various page->flags bits: 19 * 20 * PG_reserved is set for special pages. The "struct page" of such a page 21 * should in general not be touched (e.g. set dirty) except by its owner. 22 * Pages marked as PG_reserved include: 23 * - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS, 24 * initrd, HW tables) 25 * - Pages reserved or allocated early during boot (before the page allocator 26 * was initialized). This includes (depending on the architecture) the 27 * initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much 28 * much more. Once (if ever) freed, PG_reserved is cleared and they will 29 * be given to the page allocator. 30 * - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying 31 * to read/write these pages might end badly. Don't touch! 32 * - The zero page(s) 33 * - Pages allocated in the context of kexec/kdump (loaded kernel image, 34 * control pages, vmcoreinfo) 35 * - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are 36 * not marked PG_reserved (as they might be in use by somebody else who does 37 * not respect the caching strategy). 38 * - MCA pages on ia64 39 * - Pages holding CPU notes for POWER Firmware Assisted Dump 40 * - Device memory (e.g. PMEM, DAX, HMM) 41 * Some PG_reserved pages will be excluded from the hibernation image. 42 * PG_reserved does in general not hinder anybody from dumping or swapping 43 * and is no longer required for remap_pfn_range(). ioremap might require it. 44 * Consequently, PG_reserved for a page mapped into user space can indicate 45 * the zero page, the vDSO, MMIO pages or device memory. 46 * 47 * The PG_private bitflag is set on pagecache pages if they contain filesystem 48 * specific data (which is normally at page->private). It can be used by 49 * private allocations for its own usage. 50 * 51 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O 52 * and cleared when writeback _starts_ or when read _completes_. PG_writeback 53 * is set before writeback starts and cleared when it finishes. 54 * 55 * PG_locked also pins a page in pagecache, and blocks truncation of the file 56 * while it is held. 57 * 58 * page_waitqueue(page) is a wait queue of all tasks waiting for the page 59 * to become unlocked. 60 * 61 * PG_swapbacked is set when a page uses swap as a backing storage. This are 62 * usually PageAnon or shmem pages but please note that even anonymous pages 63 * might lose their PG_swapbacked flag when they simply can be dropped (e.g. as 64 * a result of MADV_FREE). 65 * 66 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and 67 * file-backed pagecache (see mm/vmscan.c). 68 * 69 * PG_arch_1 is an architecture specific page state bit. The generic code 70 * guarantees that this bit is cleared for a page when it first is entered into 71 * the page cache. 72 * 73 * PG_hwpoison indicates that a page got corrupted in hardware and contains 74 * data with incorrect ECC bits that triggered a machine check. Accessing is 75 * not safe since it may cause another machine check. Don't touch! 76 */ 77 78 /* 79 * Don't use the pageflags directly. Use the PageFoo macros. 80 * 81 * The page flags field is split into two parts, the main flags area 82 * which extends from the low bits upwards, and the fields area which 83 * extends from the high bits downwards. 84 * 85 * | FIELD | ... | FLAGS | 86 * N-1 ^ 0 87 * (NR_PAGEFLAGS) 88 * 89 * The fields area is reserved for fields mapping zone, node (for NUMA) and 90 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like 91 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP). 92 */ 93 enum pageflags { 94 PG_locked, /* Page is locked. Don't touch. */ 95 PG_writeback, /* Page is under writeback */ 96 PG_referenced, 97 PG_uptodate, 98 PG_dirty, 99 PG_lru, 100 PG_head, /* Must be in bit 6 */ 101 PG_waiters, /* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */ 102 PG_active, 103 PG_workingset, 104 PG_owner_priv_1, /* Owner use. If pagecache, fs may use */ 105 PG_owner_2, /* Owner use. If pagecache, fs may use */ 106 PG_arch_1, 107 PG_reserved, 108 PG_private, /* If pagecache, has fs-private data */ 109 PG_private_2, /* If pagecache, has fs aux data */ 110 PG_reclaim, /* To be reclaimed asap */ 111 PG_swapbacked, /* Page is backed by RAM/swap */ 112 PG_unevictable, /* Page is "unevictable" */ 113 PG_dropbehind, /* drop pages on IO completion */ 114 #ifdef CONFIG_MMU 115 PG_mlocked, /* Page is vma mlocked */ 116 #endif 117 #ifdef CONFIG_MEMORY_FAILURE 118 PG_hwpoison, /* hardware poisoned page. Don't touch */ 119 #endif 120 #if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT) 121 PG_young, 122 PG_idle, 123 #endif 124 #ifdef CONFIG_ARCH_USES_PG_ARCH_2 125 PG_arch_2, 126 #endif 127 #ifdef CONFIG_ARCH_USES_PG_ARCH_3 128 PG_arch_3, 129 #endif 130 __NR_PAGEFLAGS, 131 132 PG_readahead = PG_reclaim, 133 134 /* Anonymous memory (and shmem) */ 135 PG_swapcache = PG_owner_priv_1, /* Swap page: swp_entry_t in private */ 136 /* Some filesystems */ 137 PG_checked = PG_owner_priv_1, 138 139 /* 140 * Depending on the way an anonymous folio can be mapped into a page 141 * table (e.g., single PMD/PUD/CONT of the head page vs. PTE-mapped 142 * THP), PG_anon_exclusive may be set only for the head page or for 143 * tail pages of an anonymous folio. For now, we only expect it to be 144 * set on tail pages for PTE-mapped THP. 145 */ 146 PG_anon_exclusive = PG_owner_2, 147 148 /* 149 * Set if all buffer heads in the folio are mapped. 150 * Filesystems which do not use BHs can use it for their own purpose. 151 */ 152 PG_mappedtodisk = PG_owner_2, 153 154 /* Two page bits are conscripted by FS-Cache to maintain local caching 155 * state. These bits are set on pages belonging to the netfs's inodes 156 * when those inodes are being locally cached. 157 */ 158 PG_fscache = PG_private_2, /* page backed by cache */ 159 160 /* XEN */ 161 /* Pinned in Xen as a read-only pagetable page. */ 162 PG_pinned = PG_owner_priv_1, 163 /* Pinned as part of domain save (see xen_mm_pin_all()). */ 164 PG_savepinned = PG_dirty, 165 /* Has a grant mapping of another (foreign) domain's page. */ 166 PG_foreign = PG_owner_priv_1, 167 /* Remapped by swiotlb-xen. */ 168 PG_xen_remapped = PG_owner_priv_1, 169 170 /* non-lru isolated movable page */ 171 PG_isolated = PG_reclaim, 172 173 /* Only valid for buddy pages. Used to track pages that are reported */ 174 PG_reported = PG_uptodate, 175 176 #ifdef CONFIG_MEMORY_HOTPLUG 177 /* For self-hosted memmap pages */ 178 PG_vmemmap_self_hosted = PG_owner_priv_1, 179 #endif 180 181 /* 182 * Flags only valid for compound pages. Stored in first tail page's 183 * flags word. Cannot use the first 8 flags or any flag marked as 184 * PF_ANY. 185 */ 186 187 /* At least one page in this folio has the hwpoison flag set */ 188 PG_has_hwpoisoned = PG_active, 189 PG_large_rmappable = PG_workingset, /* anon or file-backed */ 190 PG_partially_mapped = PG_reclaim, /* was identified to be partially mapped */ 191 }; 192 193 #define PAGEFLAGS_MASK ((1UL << NR_PAGEFLAGS) - 1) 194 195 #ifndef __GENERATING_BOUNDS_H 196 197 #ifdef CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP 198 DECLARE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key); 199 200 /* 201 * Return the real head page struct iff the @page is a fake head page, otherwise 202 * return the @page itself. See Documentation/mm/vmemmap_dedup.rst. 203 */ 204 static __always_inline const struct page *page_fixed_fake_head(const struct page *page) 205 { 206 if (!static_branch_unlikely(&hugetlb_optimize_vmemmap_key)) 207 return page; 208 209 /* 210 * Only addresses aligned with PAGE_SIZE of struct page may be fake head 211 * struct page. The alignment check aims to avoid access the fields ( 212 * e.g. compound_head) of the @page[1]. It can avoid touch a (possibly) 213 * cold cacheline in some cases. 214 */ 215 if (IS_ALIGNED((unsigned long)page, PAGE_SIZE) && 216 test_bit(PG_head, &page->flags)) { 217 /* 218 * We can safely access the field of the @page[1] with PG_head 219 * because the @page is a compound page composed with at least 220 * two contiguous pages. 221 */ 222 unsigned long head = READ_ONCE(page[1].compound_head); 223 224 if (likely(head & 1)) 225 return (const struct page *)(head - 1); 226 } 227 return page; 228 } 229 230 static __always_inline bool page_count_writable(const struct page *page, int u) 231 { 232 if (!static_branch_unlikely(&hugetlb_optimize_vmemmap_key)) 233 return true; 234 235 /* 236 * The refcount check is ordered before the fake-head check to prevent 237 * the following race: 238 * CPU 1 (HVO) CPU 2 (speculative PFN walker) 239 * 240 * page_ref_freeze() 241 * synchronize_rcu() 242 * rcu_read_lock() 243 * page_is_fake_head() is false 244 * vmemmap_remap_pte() 245 * XXX: struct page[] becomes r/o 246 * 247 * page_ref_unfreeze() 248 * page_ref_count() is not zero 249 * 250 * atomic_add_unless(&page->_refcount) 251 * XXX: try to modify r/o struct page[] 252 * 253 * The refcount check also prevents modification attempts to other (r/o) 254 * tail pages that are not fake heads. 255 */ 256 if (atomic_read_acquire(&page->_refcount) == u) 257 return false; 258 259 return page_fixed_fake_head(page) == page; 260 } 261 #else 262 static inline const struct page *page_fixed_fake_head(const struct page *page) 263 { 264 return page; 265 } 266 267 static inline bool page_count_writable(const struct page *page, int u) 268 { 269 return true; 270 } 271 #endif 272 273 static __always_inline int page_is_fake_head(const struct page *page) 274 { 275 return page_fixed_fake_head(page) != page; 276 } 277 278 static __always_inline unsigned long _compound_head(const struct page *page) 279 { 280 unsigned long head = READ_ONCE(page->compound_head); 281 282 if (unlikely(head & 1)) 283 return head - 1; 284 return (unsigned long)page_fixed_fake_head(page); 285 } 286 287 #define compound_head(page) ((typeof(page))_compound_head(page)) 288 289 /** 290 * page_folio - Converts from page to folio. 291 * @p: The page. 292 * 293 * Every page is part of a folio. This function cannot be called on a 294 * NULL pointer. 295 * 296 * Context: No reference, nor lock is required on @page. If the caller 297 * does not hold a reference, this call may race with a folio split, so 298 * it should re-check the folio still contains this page after gaining 299 * a reference on the folio. 300 * Return: The folio which contains this page. 301 */ 302 #define page_folio(p) (_Generic((p), \ 303 const struct page *: (const struct folio *)_compound_head(p), \ 304 struct page *: (struct folio *)_compound_head(p))) 305 306 /** 307 * folio_page - Return a page from a folio. 308 * @folio: The folio. 309 * @n: The page number to return. 310 * 311 * @n is relative to the start of the folio. This function does not 312 * check that the page number lies within @folio; the caller is presumed 313 * to have a reference to the page. 314 */ 315 #define folio_page(folio, n) nth_page(&(folio)->page, n) 316 317 static __always_inline int PageTail(const struct page *page) 318 { 319 return READ_ONCE(page->compound_head) & 1 || page_is_fake_head(page); 320 } 321 322 static __always_inline int PageCompound(const struct page *page) 323 { 324 return test_bit(PG_head, &page->flags) || 325 READ_ONCE(page->compound_head) & 1; 326 } 327 328 #define PAGE_POISON_PATTERN -1l 329 static inline int PagePoisoned(const struct page *page) 330 { 331 return READ_ONCE(page->flags) == PAGE_POISON_PATTERN; 332 } 333 334 #ifdef CONFIG_DEBUG_VM 335 void page_init_poison(struct page *page, size_t size); 336 #else 337 static inline void page_init_poison(struct page *page, size_t size) 338 { 339 } 340 #endif 341 342 static const unsigned long *const_folio_flags(const struct folio *folio, 343 unsigned n) 344 { 345 const struct page *page = &folio->page; 346 347 VM_BUG_ON_PGFLAGS(page->compound_head & 1, page); 348 VM_BUG_ON_PGFLAGS(n > 0 && !test_bit(PG_head, &page->flags), page); 349 return &page[n].flags; 350 } 351 352 static unsigned long *folio_flags(struct folio *folio, unsigned n) 353 { 354 struct page *page = &folio->page; 355 356 VM_BUG_ON_PGFLAGS(page->compound_head & 1, page); 357 VM_BUG_ON_PGFLAGS(n > 0 && !test_bit(PG_head, &page->flags), page); 358 return &page[n].flags; 359 } 360 361 /* 362 * Page flags policies wrt compound pages 363 * 364 * PF_POISONED_CHECK 365 * check if this struct page poisoned/uninitialized 366 * 367 * PF_ANY: 368 * the page flag is relevant for small, head and tail pages. 369 * 370 * PF_HEAD: 371 * for compound page all operations related to the page flag applied to 372 * head page. 373 * 374 * PF_NO_TAIL: 375 * modifications of the page flag must be done on small or head pages, 376 * checks can be done on tail pages too. 377 * 378 * PF_NO_COMPOUND: 379 * the page flag is not relevant for compound pages. 380 * 381 * PF_SECOND: 382 * the page flag is stored in the first tail page. 383 */ 384 #define PF_POISONED_CHECK(page) ({ \ 385 VM_BUG_ON_PGFLAGS(PagePoisoned(page), page); \ 386 page; }) 387 #define PF_ANY(page, enforce) PF_POISONED_CHECK(page) 388 #define PF_HEAD(page, enforce) PF_POISONED_CHECK(compound_head(page)) 389 #define PF_NO_TAIL(page, enforce) ({ \ 390 VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page); \ 391 PF_POISONED_CHECK(compound_head(page)); }) 392 #define PF_NO_COMPOUND(page, enforce) ({ \ 393 VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \ 394 PF_POISONED_CHECK(page); }) 395 #define PF_SECOND(page, enforce) ({ \ 396 VM_BUG_ON_PGFLAGS(!PageHead(page), page); \ 397 PF_POISONED_CHECK(&page[1]); }) 398 399 /* Which page is the flag stored in */ 400 #define FOLIO_PF_ANY 0 401 #define FOLIO_PF_HEAD 0 402 #define FOLIO_PF_NO_TAIL 0 403 #define FOLIO_PF_NO_COMPOUND 0 404 #define FOLIO_PF_SECOND 1 405 406 #define FOLIO_HEAD_PAGE 0 407 #define FOLIO_SECOND_PAGE 1 408 409 /* 410 * Macros to create function definitions for page flags 411 */ 412 #define FOLIO_TEST_FLAG(name, page) \ 413 static __always_inline bool folio_test_##name(const struct folio *folio) \ 414 { return test_bit(PG_##name, const_folio_flags(folio, page)); } 415 416 #define FOLIO_SET_FLAG(name, page) \ 417 static __always_inline void folio_set_##name(struct folio *folio) \ 418 { set_bit(PG_##name, folio_flags(folio, page)); } 419 420 #define FOLIO_CLEAR_FLAG(name, page) \ 421 static __always_inline void folio_clear_##name(struct folio *folio) \ 422 { clear_bit(PG_##name, folio_flags(folio, page)); } 423 424 #define __FOLIO_SET_FLAG(name, page) \ 425 static __always_inline void __folio_set_##name(struct folio *folio) \ 426 { __set_bit(PG_##name, folio_flags(folio, page)); } 427 428 #define __FOLIO_CLEAR_FLAG(name, page) \ 429 static __always_inline void __folio_clear_##name(struct folio *folio) \ 430 { __clear_bit(PG_##name, folio_flags(folio, page)); } 431 432 #define FOLIO_TEST_SET_FLAG(name, page) \ 433 static __always_inline bool folio_test_set_##name(struct folio *folio) \ 434 { return test_and_set_bit(PG_##name, folio_flags(folio, page)); } 435 436 #define FOLIO_TEST_CLEAR_FLAG(name, page) \ 437 static __always_inline bool folio_test_clear_##name(struct folio *folio) \ 438 { return test_and_clear_bit(PG_##name, folio_flags(folio, page)); } 439 440 #define FOLIO_FLAG(name, page) \ 441 FOLIO_TEST_FLAG(name, page) \ 442 FOLIO_SET_FLAG(name, page) \ 443 FOLIO_CLEAR_FLAG(name, page) 444 445 #define TESTPAGEFLAG(uname, lname, policy) \ 446 FOLIO_TEST_FLAG(lname, FOLIO_##policy) \ 447 static __always_inline int Page##uname(const struct page *page) \ 448 { return test_bit(PG_##lname, &policy(page, 0)->flags); } 449 450 #define SETPAGEFLAG(uname, lname, policy) \ 451 FOLIO_SET_FLAG(lname, FOLIO_##policy) \ 452 static __always_inline void SetPage##uname(struct page *page) \ 453 { set_bit(PG_##lname, &policy(page, 1)->flags); } 454 455 #define CLEARPAGEFLAG(uname, lname, policy) \ 456 FOLIO_CLEAR_FLAG(lname, FOLIO_##policy) \ 457 static __always_inline void ClearPage##uname(struct page *page) \ 458 { clear_bit(PG_##lname, &policy(page, 1)->flags); } 459 460 #define __SETPAGEFLAG(uname, lname, policy) \ 461 __FOLIO_SET_FLAG(lname, FOLIO_##policy) \ 462 static __always_inline void __SetPage##uname(struct page *page) \ 463 { __set_bit(PG_##lname, &policy(page, 1)->flags); } 464 465 #define __CLEARPAGEFLAG(uname, lname, policy) \ 466 __FOLIO_CLEAR_FLAG(lname, FOLIO_##policy) \ 467 static __always_inline void __ClearPage##uname(struct page *page) \ 468 { __clear_bit(PG_##lname, &policy(page, 1)->flags); } 469 470 #define TESTSETFLAG(uname, lname, policy) \ 471 FOLIO_TEST_SET_FLAG(lname, FOLIO_##policy) \ 472 static __always_inline int TestSetPage##uname(struct page *page) \ 473 { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); } 474 475 #define TESTCLEARFLAG(uname, lname, policy) \ 476 FOLIO_TEST_CLEAR_FLAG(lname, FOLIO_##policy) \ 477 static __always_inline int TestClearPage##uname(struct page *page) \ 478 { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); } 479 480 #define PAGEFLAG(uname, lname, policy) \ 481 TESTPAGEFLAG(uname, lname, policy) \ 482 SETPAGEFLAG(uname, lname, policy) \ 483 CLEARPAGEFLAG(uname, lname, policy) 484 485 #define __PAGEFLAG(uname, lname, policy) \ 486 TESTPAGEFLAG(uname, lname, policy) \ 487 __SETPAGEFLAG(uname, lname, policy) \ 488 __CLEARPAGEFLAG(uname, lname, policy) 489 490 #define TESTSCFLAG(uname, lname, policy) \ 491 TESTSETFLAG(uname, lname, policy) \ 492 TESTCLEARFLAG(uname, lname, policy) 493 494 #define FOLIO_TEST_FLAG_FALSE(name) \ 495 static inline bool folio_test_##name(const struct folio *folio) \ 496 { return false; } 497 #define FOLIO_SET_FLAG_NOOP(name) \ 498 static inline void folio_set_##name(struct folio *folio) { } 499 #define FOLIO_CLEAR_FLAG_NOOP(name) \ 500 static inline void folio_clear_##name(struct folio *folio) { } 501 #define __FOLIO_SET_FLAG_NOOP(name) \ 502 static inline void __folio_set_##name(struct folio *folio) { } 503 #define __FOLIO_CLEAR_FLAG_NOOP(name) \ 504 static inline void __folio_clear_##name(struct folio *folio) { } 505 #define FOLIO_TEST_SET_FLAG_FALSE(name) \ 506 static inline bool folio_test_set_##name(struct folio *folio) \ 507 { return false; } 508 #define FOLIO_TEST_CLEAR_FLAG_FALSE(name) \ 509 static inline bool folio_test_clear_##name(struct folio *folio) \ 510 { return false; } 511 512 #define FOLIO_FLAG_FALSE(name) \ 513 FOLIO_TEST_FLAG_FALSE(name) \ 514 FOLIO_SET_FLAG_NOOP(name) \ 515 FOLIO_CLEAR_FLAG_NOOP(name) 516 517 #define TESTPAGEFLAG_FALSE(uname, lname) \ 518 FOLIO_TEST_FLAG_FALSE(lname) \ 519 static inline int Page##uname(const struct page *page) { return 0; } 520 521 #define SETPAGEFLAG_NOOP(uname, lname) \ 522 FOLIO_SET_FLAG_NOOP(lname) \ 523 static inline void SetPage##uname(struct page *page) { } 524 525 #define CLEARPAGEFLAG_NOOP(uname, lname) \ 526 FOLIO_CLEAR_FLAG_NOOP(lname) \ 527 static inline void ClearPage##uname(struct page *page) { } 528 529 #define __CLEARPAGEFLAG_NOOP(uname, lname) \ 530 __FOLIO_CLEAR_FLAG_NOOP(lname) \ 531 static inline void __ClearPage##uname(struct page *page) { } 532 533 #define TESTSETFLAG_FALSE(uname, lname) \ 534 FOLIO_TEST_SET_FLAG_FALSE(lname) \ 535 static inline int TestSetPage##uname(struct page *page) { return 0; } 536 537 #define TESTCLEARFLAG_FALSE(uname, lname) \ 538 FOLIO_TEST_CLEAR_FLAG_FALSE(lname) \ 539 static inline int TestClearPage##uname(struct page *page) { return 0; } 540 541 #define PAGEFLAG_FALSE(uname, lname) TESTPAGEFLAG_FALSE(uname, lname) \ 542 SETPAGEFLAG_NOOP(uname, lname) CLEARPAGEFLAG_NOOP(uname, lname) 543 544 #define TESTSCFLAG_FALSE(uname, lname) \ 545 TESTSETFLAG_FALSE(uname, lname) TESTCLEARFLAG_FALSE(uname, lname) 546 547 __PAGEFLAG(Locked, locked, PF_NO_TAIL) 548 FOLIO_FLAG(waiters, FOLIO_HEAD_PAGE) 549 FOLIO_FLAG(referenced, FOLIO_HEAD_PAGE) 550 FOLIO_TEST_CLEAR_FLAG(referenced, FOLIO_HEAD_PAGE) 551 __FOLIO_SET_FLAG(referenced, FOLIO_HEAD_PAGE) 552 PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD) 553 __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD) 554 PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD) 555 TESTCLEARFLAG(LRU, lru, PF_HEAD) 556 FOLIO_FLAG(active, FOLIO_HEAD_PAGE) 557 __FOLIO_CLEAR_FLAG(active, FOLIO_HEAD_PAGE) 558 FOLIO_TEST_CLEAR_FLAG(active, FOLIO_HEAD_PAGE) 559 PAGEFLAG(Workingset, workingset, PF_HEAD) 560 TESTCLEARFLAG(Workingset, workingset, PF_HEAD) 561 PAGEFLAG(Checked, checked, PF_NO_COMPOUND) /* Used by some filesystems */ 562 563 /* Xen */ 564 PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND) 565 TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND) 566 PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND); 567 PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND); 568 PAGEFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND) 569 TESTCLEARFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND) 570 571 PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 572 __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 573 __SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 574 FOLIO_FLAG(swapbacked, FOLIO_HEAD_PAGE) 575 __FOLIO_CLEAR_FLAG(swapbacked, FOLIO_HEAD_PAGE) 576 __FOLIO_SET_FLAG(swapbacked, FOLIO_HEAD_PAGE) 577 578 /* 579 * Private page markings that may be used by the filesystem that owns the page 580 * for its own purposes. 581 * - PG_private and PG_private_2 cause release_folio() and co to be invoked 582 */ 583 PAGEFLAG(Private, private, PF_ANY) 584 FOLIO_FLAG(private_2, FOLIO_HEAD_PAGE) 585 586 /* owner_2 can be set on tail pages for anon memory */ 587 FOLIO_FLAG(owner_2, FOLIO_HEAD_PAGE) 588 589 /* 590 * Only test-and-set exist for PG_writeback. The unconditional operators are 591 * risky: they bypass page accounting. 592 */ 593 TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL) 594 TESTSCFLAG(Writeback, writeback, PF_NO_TAIL) 595 FOLIO_FLAG(mappedtodisk, FOLIO_HEAD_PAGE) 596 597 /* PG_readahead is only used for reads; PG_reclaim is only for writes */ 598 PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL) 599 TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL) 600 FOLIO_FLAG(readahead, FOLIO_HEAD_PAGE) 601 FOLIO_TEST_CLEAR_FLAG(readahead, FOLIO_HEAD_PAGE) 602 603 FOLIO_FLAG(dropbehind, FOLIO_HEAD_PAGE) 604 FOLIO_TEST_CLEAR_FLAG(dropbehind, FOLIO_HEAD_PAGE) 605 __FOLIO_SET_FLAG(dropbehind, FOLIO_HEAD_PAGE) 606 607 #ifdef CONFIG_HIGHMEM 608 /* 609 * Must use a macro here due to header dependency issues. page_zone() is not 610 * available at this point. 611 */ 612 #define PageHighMem(__p) is_highmem_idx(page_zonenum(__p)) 613 #define folio_test_highmem(__f) is_highmem_idx(folio_zonenum(__f)) 614 #else 615 PAGEFLAG_FALSE(HighMem, highmem) 616 #endif 617 618 #ifdef CONFIG_SWAP 619 static __always_inline bool folio_test_swapcache(const struct folio *folio) 620 { 621 return folio_test_swapbacked(folio) && 622 test_bit(PG_swapcache, const_folio_flags(folio, 0)); 623 } 624 625 FOLIO_SET_FLAG(swapcache, FOLIO_HEAD_PAGE) 626 FOLIO_CLEAR_FLAG(swapcache, FOLIO_HEAD_PAGE) 627 #else 628 FOLIO_FLAG_FALSE(swapcache) 629 #endif 630 631 FOLIO_FLAG(unevictable, FOLIO_HEAD_PAGE) 632 __FOLIO_CLEAR_FLAG(unevictable, FOLIO_HEAD_PAGE) 633 FOLIO_TEST_CLEAR_FLAG(unevictable, FOLIO_HEAD_PAGE) 634 635 #ifdef CONFIG_MMU 636 FOLIO_FLAG(mlocked, FOLIO_HEAD_PAGE) 637 __FOLIO_CLEAR_FLAG(mlocked, FOLIO_HEAD_PAGE) 638 FOLIO_TEST_CLEAR_FLAG(mlocked, FOLIO_HEAD_PAGE) 639 FOLIO_TEST_SET_FLAG(mlocked, FOLIO_HEAD_PAGE) 640 #else 641 FOLIO_FLAG_FALSE(mlocked) 642 __FOLIO_CLEAR_FLAG_NOOP(mlocked) 643 FOLIO_TEST_CLEAR_FLAG_FALSE(mlocked) 644 FOLIO_TEST_SET_FLAG_FALSE(mlocked) 645 #endif 646 647 #ifdef CONFIG_MEMORY_FAILURE 648 PAGEFLAG(HWPoison, hwpoison, PF_ANY) 649 TESTSCFLAG(HWPoison, hwpoison, PF_ANY) 650 #define __PG_HWPOISON (1UL << PG_hwpoison) 651 #else 652 PAGEFLAG_FALSE(HWPoison, hwpoison) 653 #define __PG_HWPOISON 0 654 #endif 655 656 #ifdef CONFIG_PAGE_IDLE_FLAG 657 #ifdef CONFIG_64BIT 658 FOLIO_TEST_FLAG(young, FOLIO_HEAD_PAGE) 659 FOLIO_SET_FLAG(young, FOLIO_HEAD_PAGE) 660 FOLIO_TEST_CLEAR_FLAG(young, FOLIO_HEAD_PAGE) 661 FOLIO_FLAG(idle, FOLIO_HEAD_PAGE) 662 #endif 663 /* See page_idle.h for !64BIT workaround */ 664 #else /* !CONFIG_PAGE_IDLE_FLAG */ 665 FOLIO_FLAG_FALSE(young) 666 FOLIO_TEST_CLEAR_FLAG_FALSE(young) 667 FOLIO_FLAG_FALSE(idle) 668 #endif 669 670 /* 671 * PageReported() is used to track reported free pages within the Buddy 672 * allocator. We can use the non-atomic version of the test and set 673 * operations as both should be shielded with the zone lock to prevent 674 * any possible races on the setting or clearing of the bit. 675 */ 676 __PAGEFLAG(Reported, reported, PF_NO_COMPOUND) 677 678 #ifdef CONFIG_MEMORY_HOTPLUG 679 PAGEFLAG(VmemmapSelfHosted, vmemmap_self_hosted, PF_ANY) 680 #else 681 PAGEFLAG_FALSE(VmemmapSelfHosted, vmemmap_self_hosted) 682 #endif 683 684 /* 685 * On an anonymous folio mapped into a user virtual memory area, 686 * folio->mapping points to its anon_vma, not to a struct address_space; 687 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 688 * 689 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 690 * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON 691 * bit; and then folio->mapping points, not to an anon_vma, but to a private 692 * structure which KSM associates with that merged page. See ksm.h. 693 * 694 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable 695 * page and then folio->mapping points to a struct movable_operations. 696 * 697 * Please note that, confusingly, "folio_mapping" refers to the inode 698 * address_space which maps the folio from disk; whereas "folio_mapped" 699 * refers to user virtual address space into which the folio is mapped. 700 * 701 * For slab pages, since slab reuses the bits in struct page to store its 702 * internal states, the folio->mapping does not exist as such, nor do 703 * these flags below. So in order to avoid testing non-existent bits, 704 * please make sure that folio_test_slab(folio) actually evaluates to 705 * false before calling the following functions (e.g., folio_test_anon). 706 * See mm/slab.h. 707 */ 708 #define PAGE_MAPPING_ANON 0x1 709 #define PAGE_MAPPING_MOVABLE 0x2 710 #define PAGE_MAPPING_KSM (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE) 711 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE) 712 713 static __always_inline bool folio_mapping_flags(const struct folio *folio) 714 { 715 return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) != 0; 716 } 717 718 static __always_inline bool PageMappingFlags(const struct page *page) 719 { 720 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0; 721 } 722 723 static __always_inline bool folio_test_anon(const struct folio *folio) 724 { 725 return ((unsigned long)folio->mapping & PAGE_MAPPING_ANON) != 0; 726 } 727 728 static __always_inline bool PageAnonNotKsm(const struct page *page) 729 { 730 unsigned long flags = (unsigned long)page_folio(page)->mapping; 731 732 return (flags & PAGE_MAPPING_FLAGS) == PAGE_MAPPING_ANON; 733 } 734 735 static __always_inline bool PageAnon(const struct page *page) 736 { 737 return folio_test_anon(page_folio(page)); 738 } 739 740 static __always_inline bool __folio_test_movable(const struct folio *folio) 741 { 742 return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) == 743 PAGE_MAPPING_MOVABLE; 744 } 745 746 static __always_inline bool __PageMovable(const struct page *page) 747 { 748 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) == 749 PAGE_MAPPING_MOVABLE; 750 } 751 752 #ifdef CONFIG_KSM 753 /* 754 * A KSM page is one of those write-protected "shared pages" or "merged pages" 755 * which KSM maps into multiple mms, wherever identical anonymous page content 756 * is found in VM_MERGEABLE vmas. It's a PageAnon page, pointing not to any 757 * anon_vma, but to that page's node of the stable tree. 758 */ 759 static __always_inline bool folio_test_ksm(const struct folio *folio) 760 { 761 return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) == 762 PAGE_MAPPING_KSM; 763 } 764 #else 765 FOLIO_TEST_FLAG_FALSE(ksm) 766 #endif 767 768 u64 stable_page_flags(const struct page *page); 769 770 /** 771 * folio_xor_flags_has_waiters - Change some folio flags. 772 * @folio: The folio. 773 * @mask: Bits set in this word will be changed. 774 * 775 * This must only be used for flags which are changed with the folio 776 * lock held. For example, it is unsafe to use for PG_dirty as that 777 * can be set without the folio lock held. It can also only be used 778 * on flags which are in the range 0-6 as some of the implementations 779 * only affect those bits. 780 * 781 * Return: Whether there are tasks waiting on the folio. 782 */ 783 static inline bool folio_xor_flags_has_waiters(struct folio *folio, 784 unsigned long mask) 785 { 786 return xor_unlock_is_negative_byte(mask, folio_flags(folio, 0)); 787 } 788 789 /** 790 * folio_test_uptodate - Is this folio up to date? 791 * @folio: The folio. 792 * 793 * The uptodate flag is set on a folio when every byte in the folio is 794 * at least as new as the corresponding bytes on storage. Anonymous 795 * and CoW folios are always uptodate. If the folio is not uptodate, 796 * some of the bytes in it may be; see the is_partially_uptodate() 797 * address_space operation. 798 */ 799 static inline bool folio_test_uptodate(const struct folio *folio) 800 { 801 bool ret = test_bit(PG_uptodate, const_folio_flags(folio, 0)); 802 /* 803 * Must ensure that the data we read out of the folio is loaded 804 * _after_ we've loaded folio->flags to check the uptodate bit. 805 * We can skip the barrier if the folio is not uptodate, because 806 * we wouldn't be reading anything from it. 807 * 808 * See folio_mark_uptodate() for the other side of the story. 809 */ 810 if (ret) 811 smp_rmb(); 812 813 return ret; 814 } 815 816 static inline bool PageUptodate(const struct page *page) 817 { 818 return folio_test_uptodate(page_folio(page)); 819 } 820 821 static __always_inline void __folio_mark_uptodate(struct folio *folio) 822 { 823 smp_wmb(); 824 __set_bit(PG_uptodate, folio_flags(folio, 0)); 825 } 826 827 static __always_inline void folio_mark_uptodate(struct folio *folio) 828 { 829 /* 830 * Memory barrier must be issued before setting the PG_uptodate bit, 831 * so that all previous stores issued in order to bring the folio 832 * uptodate are actually visible before folio_test_uptodate becomes true. 833 */ 834 smp_wmb(); 835 set_bit(PG_uptodate, folio_flags(folio, 0)); 836 } 837 838 static __always_inline void __SetPageUptodate(struct page *page) 839 { 840 __folio_mark_uptodate((struct folio *)page); 841 } 842 843 static __always_inline void SetPageUptodate(struct page *page) 844 { 845 folio_mark_uptodate((struct folio *)page); 846 } 847 848 CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL) 849 850 void __folio_start_writeback(struct folio *folio, bool keep_write); 851 void set_page_writeback(struct page *page); 852 853 #define folio_start_writeback(folio) \ 854 __folio_start_writeback(folio, false) 855 #define folio_start_writeback_keepwrite(folio) \ 856 __folio_start_writeback(folio, true) 857 858 static __always_inline bool folio_test_head(const struct folio *folio) 859 { 860 return test_bit(PG_head, const_folio_flags(folio, FOLIO_PF_ANY)); 861 } 862 863 static __always_inline int PageHead(const struct page *page) 864 { 865 PF_POISONED_CHECK(page); 866 return test_bit(PG_head, &page->flags) && !page_is_fake_head(page); 867 } 868 869 __SETPAGEFLAG(Head, head, PF_ANY) 870 __CLEARPAGEFLAG(Head, head, PF_ANY) 871 CLEARPAGEFLAG(Head, head, PF_ANY) 872 873 /** 874 * folio_test_large() - Does this folio contain more than one page? 875 * @folio: The folio to test. 876 * 877 * Return: True if the folio is larger than one page. 878 */ 879 static inline bool folio_test_large(const struct folio *folio) 880 { 881 return folio_test_head(folio); 882 } 883 884 static __always_inline void set_compound_head(struct page *page, struct page *head) 885 { 886 WRITE_ONCE(page->compound_head, (unsigned long)head + 1); 887 } 888 889 static __always_inline void clear_compound_head(struct page *page) 890 { 891 WRITE_ONCE(page->compound_head, 0); 892 } 893 894 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 895 static inline void ClearPageCompound(struct page *page) 896 { 897 BUG_ON(!PageHead(page)); 898 ClearPageHead(page); 899 } 900 FOLIO_FLAG(large_rmappable, FOLIO_SECOND_PAGE) 901 FOLIO_FLAG(partially_mapped, FOLIO_SECOND_PAGE) 902 #else 903 FOLIO_FLAG_FALSE(large_rmappable) 904 FOLIO_FLAG_FALSE(partially_mapped) 905 #endif 906 907 #define PG_head_mask ((1UL << PG_head)) 908 909 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 910 /* 911 * PageHuge() only returns true for hugetlbfs pages, but not for 912 * normal or transparent huge pages. 913 * 914 * PageTransHuge() returns true for both transparent huge and 915 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be 916 * called only in the core VM paths where hugetlbfs pages can't exist. 917 */ 918 static inline int PageTransHuge(const struct page *page) 919 { 920 VM_BUG_ON_PAGE(PageTail(page), page); 921 return PageHead(page); 922 } 923 924 /* 925 * PageTransCompound returns true for both transparent huge pages 926 * and hugetlbfs pages, so it should only be called when it's known 927 * that hugetlbfs pages aren't involved. 928 */ 929 static inline int PageTransCompound(const struct page *page) 930 { 931 return PageCompound(page); 932 } 933 #else 934 TESTPAGEFLAG_FALSE(TransHuge, transhuge) 935 TESTPAGEFLAG_FALSE(TransCompound, transcompound) 936 #endif 937 938 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 939 /* 940 * PageHasHWPoisoned indicates that at least one subpage is hwpoisoned in the 941 * compound page. 942 * 943 * This flag is set by hwpoison handler. Cleared by THP split or free page. 944 */ 945 FOLIO_FLAG(has_hwpoisoned, FOLIO_SECOND_PAGE) 946 #else 947 FOLIO_FLAG_FALSE(has_hwpoisoned) 948 #endif 949 950 /* 951 * For pages that do not use mapcount, page_type may be used. 952 * The low 24 bits of pagetype may be used for your own purposes, as long 953 * as you are careful to not affect the top 8 bits. The low bits of 954 * pagetype will be overwritten when you clear the page_type from the page. 955 */ 956 enum pagetype { 957 /* 0x00-0x7f are positive numbers, ie mapcount */ 958 /* Reserve 0x80-0xef for mapcount overflow. */ 959 PGTY_buddy = 0xf0, 960 PGTY_offline = 0xf1, 961 PGTY_table = 0xf2, 962 PGTY_guard = 0xf3, 963 PGTY_hugetlb = 0xf4, 964 PGTY_slab = 0xf5, 965 PGTY_zsmalloc = 0xf6, 966 PGTY_unaccepted = 0xf7, 967 PGTY_large_kmalloc = 0xf8, 968 969 PGTY_mapcount_underflow = 0xff 970 }; 971 972 static inline bool page_type_has_type(int page_type) 973 { 974 return page_type < (PGTY_mapcount_underflow << 24); 975 } 976 977 /* This takes a mapcount which is one more than page->_mapcount */ 978 static inline bool page_mapcount_is_type(unsigned int mapcount) 979 { 980 return page_type_has_type(mapcount - 1); 981 } 982 983 static inline bool page_has_type(const struct page *page) 984 { 985 return page_mapcount_is_type(data_race(page->page_type)); 986 } 987 988 #define FOLIO_TYPE_OPS(lname, fname) \ 989 static __always_inline bool folio_test_##fname(const struct folio *folio) \ 990 { \ 991 return data_race(folio->page.page_type >> 24) == PGTY_##lname; \ 992 } \ 993 static __always_inline void __folio_set_##fname(struct folio *folio) \ 994 { \ 995 if (folio_test_##fname(folio)) \ 996 return; \ 997 VM_BUG_ON_FOLIO(data_race(folio->page.page_type) != UINT_MAX, \ 998 folio); \ 999 folio->page.page_type = (unsigned int)PGTY_##lname << 24; \ 1000 } \ 1001 static __always_inline void __folio_clear_##fname(struct folio *folio) \ 1002 { \ 1003 if (folio->page.page_type == UINT_MAX) \ 1004 return; \ 1005 VM_BUG_ON_FOLIO(!folio_test_##fname(folio), folio); \ 1006 folio->page.page_type = UINT_MAX; \ 1007 } 1008 1009 #define PAGE_TYPE_OPS(uname, lname, fname) \ 1010 FOLIO_TYPE_OPS(lname, fname) \ 1011 static __always_inline int Page##uname(const struct page *page) \ 1012 { \ 1013 return data_race(page->page_type >> 24) == PGTY_##lname; \ 1014 } \ 1015 static __always_inline void __SetPage##uname(struct page *page) \ 1016 { \ 1017 if (Page##uname(page)) \ 1018 return; \ 1019 VM_BUG_ON_PAGE(data_race(page->page_type) != UINT_MAX, page); \ 1020 page->page_type = (unsigned int)PGTY_##lname << 24; \ 1021 } \ 1022 static __always_inline void __ClearPage##uname(struct page *page) \ 1023 { \ 1024 if (page->page_type == UINT_MAX) \ 1025 return; \ 1026 VM_BUG_ON_PAGE(!Page##uname(page), page); \ 1027 page->page_type = UINT_MAX; \ 1028 } 1029 1030 /* 1031 * PageBuddy() indicates that the page is free and in the buddy system 1032 * (see mm/page_alloc.c). 1033 */ 1034 PAGE_TYPE_OPS(Buddy, buddy, buddy) 1035 1036 /* 1037 * PageOffline() indicates that the page is logically offline although the 1038 * containing section is online. (e.g. inflated in a balloon driver or 1039 * not onlined when onlining the section). 1040 * The content of these pages is effectively stale. Such pages should not 1041 * be touched (read/write/dump/save) except by their owner. 1042 * 1043 * When a memory block gets onlined, all pages are initialized with a 1044 * refcount of 1 and PageOffline(). generic_online_page() will 1045 * take care of clearing PageOffline(). 1046 * 1047 * If a driver wants to allow to offline unmovable PageOffline() pages without 1048 * putting them back to the buddy, it can do so via the memory notifier by 1049 * decrementing the reference count in MEM_GOING_OFFLINE and incrementing the 1050 * reference count in MEM_CANCEL_OFFLINE. When offlining, the PageOffline() 1051 * pages (now with a reference count of zero) are treated like free (unmanaged) 1052 * pages, allowing the containing memory block to get offlined. A driver that 1053 * relies on this feature is aware that re-onlining the memory block will 1054 * require not giving them to the buddy via generic_online_page(). 1055 * 1056 * Memory offlining code will not adjust the managed page count for any 1057 * PageOffline() pages, treating them like they were never exposed to the 1058 * buddy using generic_online_page(). 1059 * 1060 * There are drivers that mark a page PageOffline() and expect there won't be 1061 * any further access to page content. PFN walkers that read content of random 1062 * pages should check PageOffline() and synchronize with such drivers using 1063 * page_offline_freeze()/page_offline_thaw(). 1064 */ 1065 PAGE_TYPE_OPS(Offline, offline, offline) 1066 1067 extern void page_offline_freeze(void); 1068 extern void page_offline_thaw(void); 1069 extern void page_offline_begin(void); 1070 extern void page_offline_end(void); 1071 1072 /* 1073 * Marks pages in use as page tables. 1074 */ 1075 PAGE_TYPE_OPS(Table, table, pgtable) 1076 1077 /* 1078 * Marks guardpages used with debug_pagealloc. 1079 */ 1080 PAGE_TYPE_OPS(Guard, guard, guard) 1081 1082 FOLIO_TYPE_OPS(slab, slab) 1083 1084 /** 1085 * PageSlab - Determine if the page belongs to the slab allocator 1086 * @page: The page to test. 1087 * 1088 * Context: Any context. 1089 * Return: True for slab pages, false for any other kind of page. 1090 */ 1091 static inline bool PageSlab(const struct page *page) 1092 { 1093 return folio_test_slab(page_folio(page)); 1094 } 1095 1096 #ifdef CONFIG_HUGETLB_PAGE 1097 FOLIO_TYPE_OPS(hugetlb, hugetlb) 1098 #else 1099 FOLIO_TEST_FLAG_FALSE(hugetlb) 1100 #endif 1101 1102 PAGE_TYPE_OPS(Zsmalloc, zsmalloc, zsmalloc) 1103 1104 /* 1105 * Mark pages that has to be accepted before touched for the first time. 1106 * 1107 * Serialized with zone lock. 1108 */ 1109 PAGE_TYPE_OPS(Unaccepted, unaccepted, unaccepted) 1110 FOLIO_TYPE_OPS(large_kmalloc, large_kmalloc) 1111 1112 /** 1113 * PageHuge - Determine if the page belongs to hugetlbfs 1114 * @page: The page to test. 1115 * 1116 * Context: Any context. 1117 * Return: True for hugetlbfs pages, false for anon pages or pages 1118 * belonging to other filesystems. 1119 */ 1120 static inline bool PageHuge(const struct page *page) 1121 { 1122 return folio_test_hugetlb(page_folio(page)); 1123 } 1124 1125 /* 1126 * Check if a page is currently marked HWPoisoned. Note that this check is 1127 * best effort only and inherently racy: there is no way to synchronize with 1128 * failing hardware. 1129 */ 1130 static inline bool is_page_hwpoison(const struct page *page) 1131 { 1132 const struct folio *folio; 1133 1134 if (PageHWPoison(page)) 1135 return true; 1136 folio = page_folio(page); 1137 return folio_test_hugetlb(folio) && PageHWPoison(&folio->page); 1138 } 1139 1140 static inline bool folio_contain_hwpoisoned_page(struct folio *folio) 1141 { 1142 return folio_test_hwpoison(folio) || 1143 (folio_test_large(folio) && folio_test_has_hwpoisoned(folio)); 1144 } 1145 1146 bool is_free_buddy_page(const struct page *page); 1147 1148 PAGEFLAG(Isolated, isolated, PF_ANY); 1149 1150 static __always_inline int PageAnonExclusive(const struct page *page) 1151 { 1152 VM_BUG_ON_PGFLAGS(!PageAnon(page), page); 1153 /* 1154 * HugeTLB stores this information on the head page; THP keeps it per 1155 * page 1156 */ 1157 if (PageHuge(page)) 1158 page = compound_head(page); 1159 return test_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags); 1160 } 1161 1162 static __always_inline void SetPageAnonExclusive(struct page *page) 1163 { 1164 VM_BUG_ON_PGFLAGS(!PageAnonNotKsm(page), page); 1165 VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page); 1166 set_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags); 1167 } 1168 1169 static __always_inline void ClearPageAnonExclusive(struct page *page) 1170 { 1171 VM_BUG_ON_PGFLAGS(!PageAnonNotKsm(page), page); 1172 VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page); 1173 clear_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags); 1174 } 1175 1176 static __always_inline void __ClearPageAnonExclusive(struct page *page) 1177 { 1178 VM_BUG_ON_PGFLAGS(!PageAnon(page), page); 1179 VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page); 1180 __clear_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags); 1181 } 1182 1183 #ifdef CONFIG_MMU 1184 #define __PG_MLOCKED (1UL << PG_mlocked) 1185 #else 1186 #define __PG_MLOCKED 0 1187 #endif 1188 1189 /* 1190 * Flags checked when a page is freed. Pages being freed should not have 1191 * these flags set. If they are, there is a problem. 1192 */ 1193 #define PAGE_FLAGS_CHECK_AT_FREE \ 1194 (1UL << PG_lru | 1UL << PG_locked | \ 1195 1UL << PG_private | 1UL << PG_private_2 | \ 1196 1UL << PG_writeback | 1UL << PG_reserved | \ 1197 1UL << PG_active | \ 1198 1UL << PG_unevictable | __PG_MLOCKED | LRU_GEN_MASK) 1199 1200 /* 1201 * Flags checked when a page is prepped for return by the page allocator. 1202 * Pages being prepped should not have these flags set. If they are set, 1203 * there has been a kernel bug or struct page corruption. 1204 * 1205 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's 1206 * alloc-free cycle to prevent from reusing the page. 1207 */ 1208 #define PAGE_FLAGS_CHECK_AT_PREP \ 1209 ((PAGEFLAGS_MASK & ~__PG_HWPOISON) | LRU_GEN_MASK | LRU_REFS_MASK) 1210 1211 /* 1212 * Flags stored in the second page of a compound page. They may overlap 1213 * the CHECK_AT_FREE flags above, so need to be cleared. 1214 */ 1215 #define PAGE_FLAGS_SECOND \ 1216 (0xffUL /* order */ | 1UL << PG_has_hwpoisoned | \ 1217 1UL << PG_large_rmappable | 1UL << PG_partially_mapped) 1218 1219 #define PAGE_FLAGS_PRIVATE \ 1220 (1UL << PG_private | 1UL << PG_private_2) 1221 /** 1222 * folio_has_private - Determine if folio has private stuff 1223 * @folio: The folio to be checked 1224 * 1225 * Determine if a folio has private stuff, indicating that release routines 1226 * should be invoked upon it. 1227 */ 1228 static inline int folio_has_private(const struct folio *folio) 1229 { 1230 return !!(folio->flags & PAGE_FLAGS_PRIVATE); 1231 } 1232 1233 static inline bool folio_test_large_maybe_mapped_shared(const struct folio *folio) 1234 { 1235 return test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids); 1236 } 1237 #undef PF_ANY 1238 #undef PF_HEAD 1239 #undef PF_NO_TAIL 1240 #undef PF_NO_COMPOUND 1241 #undef PF_SECOND 1242 #endif /* !__GENERATING_BOUNDS_H */ 1243 1244 #endif /* PAGE_FLAGS_H */ 1245