xref: /linux-6.15/include/linux/page-flags.h (revision 2cd5769f)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Macros for manipulating and testing page->flags
4  */
5 
6 #ifndef PAGE_FLAGS_H
7 #define PAGE_FLAGS_H
8 
9 #include <linux/types.h>
10 #include <linux/bug.h>
11 #include <linux/mmdebug.h>
12 #ifndef __GENERATING_BOUNDS_H
13 #include <linux/mm_types.h>
14 #include <generated/bounds.h>
15 #endif /* !__GENERATING_BOUNDS_H */
16 
17 /*
18  * Various page->flags bits:
19  *
20  * PG_reserved is set for special pages. The "struct page" of such a page
21  * should in general not be touched (e.g. set dirty) except by its owner.
22  * Pages marked as PG_reserved include:
23  * - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS,
24  *   initrd, HW tables)
25  * - Pages reserved or allocated early during boot (before the page allocator
26  *   was initialized). This includes (depending on the architecture) the
27  *   initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much
28  *   much more. Once (if ever) freed, PG_reserved is cleared and they will
29  *   be given to the page allocator.
30  * - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying
31  *   to read/write these pages might end badly. Don't touch!
32  * - The zero page(s)
33  * - Pages allocated in the context of kexec/kdump (loaded kernel image,
34  *   control pages, vmcoreinfo)
35  * - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are
36  *   not marked PG_reserved (as they might be in use by somebody else who does
37  *   not respect the caching strategy).
38  * - MCA pages on ia64
39  * - Pages holding CPU notes for POWER Firmware Assisted Dump
40  * - Device memory (e.g. PMEM, DAX, HMM)
41  * Some PG_reserved pages will be excluded from the hibernation image.
42  * PG_reserved does in general not hinder anybody from dumping or swapping
43  * and is no longer required for remap_pfn_range(). ioremap might require it.
44  * Consequently, PG_reserved for a page mapped into user space can indicate
45  * the zero page, the vDSO, MMIO pages or device memory.
46  *
47  * The PG_private bitflag is set on pagecache pages if they contain filesystem
48  * specific data (which is normally at page->private). It can be used by
49  * private allocations for its own usage.
50  *
51  * During initiation of disk I/O, PG_locked is set. This bit is set before I/O
52  * and cleared when writeback _starts_ or when read _completes_. PG_writeback
53  * is set before writeback starts and cleared when it finishes.
54  *
55  * PG_locked also pins a page in pagecache, and blocks truncation of the file
56  * while it is held.
57  *
58  * page_waitqueue(page) is a wait queue of all tasks waiting for the page
59  * to become unlocked.
60  *
61  * PG_swapbacked is set when a page uses swap as a backing storage.  This are
62  * usually PageAnon or shmem pages but please note that even anonymous pages
63  * might lose their PG_swapbacked flag when they simply can be dropped (e.g. as
64  * a result of MADV_FREE).
65  *
66  * PG_referenced, PG_reclaim are used for page reclaim for anonymous and
67  * file-backed pagecache (see mm/vmscan.c).
68  *
69  * PG_arch_1 is an architecture specific page state bit.  The generic code
70  * guarantees that this bit is cleared for a page when it first is entered into
71  * the page cache.
72  *
73  * PG_hwpoison indicates that a page got corrupted in hardware and contains
74  * data with incorrect ECC bits that triggered a machine check. Accessing is
75  * not safe since it may cause another machine check. Don't touch!
76  */
77 
78 /*
79  * Don't use the pageflags directly.  Use the PageFoo macros.
80  *
81  * The page flags field is split into two parts, the main flags area
82  * which extends from the low bits upwards, and the fields area which
83  * extends from the high bits downwards.
84  *
85  *  | FIELD | ... | FLAGS |
86  *  N-1           ^       0
87  *               (NR_PAGEFLAGS)
88  *
89  * The fields area is reserved for fields mapping zone, node (for NUMA) and
90  * SPARSEMEM section (for variants of SPARSEMEM that require section ids like
91  * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
92  */
93 enum pageflags {
94 	PG_locked,		/* Page is locked. Don't touch. */
95 	PG_writeback,		/* Page is under writeback */
96 	PG_referenced,
97 	PG_uptodate,
98 	PG_dirty,
99 	PG_lru,
100 	PG_head,		/* Must be in bit 6 */
101 	PG_waiters,		/* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */
102 	PG_active,
103 	PG_workingset,
104 	PG_owner_priv_1,	/* Owner use. If pagecache, fs may use */
105 	PG_owner_2,		/* Owner use. If pagecache, fs may use */
106 	PG_arch_1,
107 	PG_reserved,
108 	PG_private,		/* If pagecache, has fs-private data */
109 	PG_private_2,		/* If pagecache, has fs aux data */
110 	PG_reclaim,		/* To be reclaimed asap */
111 	PG_swapbacked,		/* Page is backed by RAM/swap */
112 	PG_unevictable,		/* Page is "unevictable"  */
113 	PG_dropbehind,		/* drop pages on IO completion */
114 #ifdef CONFIG_MMU
115 	PG_mlocked,		/* Page is vma mlocked */
116 #endif
117 #ifdef CONFIG_MEMORY_FAILURE
118 	PG_hwpoison,		/* hardware poisoned page. Don't touch */
119 #endif
120 #if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT)
121 	PG_young,
122 	PG_idle,
123 #endif
124 #ifdef CONFIG_ARCH_USES_PG_ARCH_2
125 	PG_arch_2,
126 #endif
127 #ifdef CONFIG_ARCH_USES_PG_ARCH_3
128 	PG_arch_3,
129 #endif
130 	__NR_PAGEFLAGS,
131 
132 	PG_readahead = PG_reclaim,
133 
134 	/* Anonymous memory (and shmem) */
135 	PG_swapcache = PG_owner_priv_1, /* Swap page: swp_entry_t in private */
136 	/* Some filesystems */
137 	PG_checked = PG_owner_priv_1,
138 
139 	/*
140 	 * Depending on the way an anonymous folio can be mapped into a page
141 	 * table (e.g., single PMD/PUD/CONT of the head page vs. PTE-mapped
142 	 * THP), PG_anon_exclusive may be set only for the head page or for
143 	 * tail pages of an anonymous folio. For now, we only expect it to be
144 	 * set on tail pages for PTE-mapped THP.
145 	 */
146 	PG_anon_exclusive = PG_owner_2,
147 
148 	/*
149 	 * Set if all buffer heads in the folio are mapped.
150 	 * Filesystems which do not use BHs can use it for their own purpose.
151 	 */
152 	PG_mappedtodisk = PG_owner_2,
153 
154 	/* Two page bits are conscripted by FS-Cache to maintain local caching
155 	 * state.  These bits are set on pages belonging to the netfs's inodes
156 	 * when those inodes are being locally cached.
157 	 */
158 	PG_fscache = PG_private_2,	/* page backed by cache */
159 
160 	/* XEN */
161 	/* Pinned in Xen as a read-only pagetable page. */
162 	PG_pinned = PG_owner_priv_1,
163 	/* Pinned as part of domain save (see xen_mm_pin_all()). */
164 	PG_savepinned = PG_dirty,
165 	/* Has a grant mapping of another (foreign) domain's page. */
166 	PG_foreign = PG_owner_priv_1,
167 	/* Remapped by swiotlb-xen. */
168 	PG_xen_remapped = PG_owner_priv_1,
169 
170 	/* non-lru isolated movable page */
171 	PG_isolated = PG_reclaim,
172 
173 	/* Only valid for buddy pages. Used to track pages that are reported */
174 	PG_reported = PG_uptodate,
175 
176 #ifdef CONFIG_MEMORY_HOTPLUG
177 	/* For self-hosted memmap pages */
178 	PG_vmemmap_self_hosted = PG_owner_priv_1,
179 #endif
180 
181 	/*
182 	 * Flags only valid for compound pages.  Stored in first tail page's
183 	 * flags word.  Cannot use the first 8 flags or any flag marked as
184 	 * PF_ANY.
185 	 */
186 
187 	/* At least one page in this folio has the hwpoison flag set */
188 	PG_has_hwpoisoned = PG_active,
189 	PG_large_rmappable = PG_workingset, /* anon or file-backed */
190 	PG_partially_mapped = PG_reclaim, /* was identified to be partially mapped */
191 };
192 
193 #define PAGEFLAGS_MASK		((1UL << NR_PAGEFLAGS) - 1)
194 
195 #ifndef __GENERATING_BOUNDS_H
196 
197 #ifdef CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP
198 DECLARE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key);
199 
200 /*
201  * Return the real head page struct iff the @page is a fake head page, otherwise
202  * return the @page itself. See Documentation/mm/vmemmap_dedup.rst.
203  */
204 static __always_inline const struct page *page_fixed_fake_head(const struct page *page)
205 {
206 	if (!static_branch_unlikely(&hugetlb_optimize_vmemmap_key))
207 		return page;
208 
209 	/*
210 	 * Only addresses aligned with PAGE_SIZE of struct page may be fake head
211 	 * struct page. The alignment check aims to avoid access the fields (
212 	 * e.g. compound_head) of the @page[1]. It can avoid touch a (possibly)
213 	 * cold cacheline in some cases.
214 	 */
215 	if (IS_ALIGNED((unsigned long)page, PAGE_SIZE) &&
216 	    test_bit(PG_head, &page->flags)) {
217 		/*
218 		 * We can safely access the field of the @page[1] with PG_head
219 		 * because the @page is a compound page composed with at least
220 		 * two contiguous pages.
221 		 */
222 		unsigned long head = READ_ONCE(page[1].compound_head);
223 
224 		if (likely(head & 1))
225 			return (const struct page *)(head - 1);
226 	}
227 	return page;
228 }
229 #else
230 static inline const struct page *page_fixed_fake_head(const struct page *page)
231 {
232 	return page;
233 }
234 #endif
235 
236 static __always_inline int page_is_fake_head(const struct page *page)
237 {
238 	return page_fixed_fake_head(page) != page;
239 }
240 
241 static __always_inline unsigned long _compound_head(const struct page *page)
242 {
243 	unsigned long head = READ_ONCE(page->compound_head);
244 
245 	if (unlikely(head & 1))
246 		return head - 1;
247 	return (unsigned long)page_fixed_fake_head(page);
248 }
249 
250 #define compound_head(page)	((typeof(page))_compound_head(page))
251 
252 /**
253  * page_folio - Converts from page to folio.
254  * @p: The page.
255  *
256  * Every page is part of a folio.  This function cannot be called on a
257  * NULL pointer.
258  *
259  * Context: No reference, nor lock is required on @page.  If the caller
260  * does not hold a reference, this call may race with a folio split, so
261  * it should re-check the folio still contains this page after gaining
262  * a reference on the folio.
263  * Return: The folio which contains this page.
264  */
265 #define page_folio(p)		(_Generic((p),				\
266 	const struct page *:	(const struct folio *)_compound_head(p), \
267 	struct page *:		(struct folio *)_compound_head(p)))
268 
269 /**
270  * folio_page - Return a page from a folio.
271  * @folio: The folio.
272  * @n: The page number to return.
273  *
274  * @n is relative to the start of the folio.  This function does not
275  * check that the page number lies within @folio; the caller is presumed
276  * to have a reference to the page.
277  */
278 #define folio_page(folio, n)	nth_page(&(folio)->page, n)
279 
280 static __always_inline int PageTail(const struct page *page)
281 {
282 	return READ_ONCE(page->compound_head) & 1 || page_is_fake_head(page);
283 }
284 
285 static __always_inline int PageCompound(const struct page *page)
286 {
287 	return test_bit(PG_head, &page->flags) ||
288 	       READ_ONCE(page->compound_head) & 1;
289 }
290 
291 #define	PAGE_POISON_PATTERN	-1l
292 static inline int PagePoisoned(const struct page *page)
293 {
294 	return READ_ONCE(page->flags) == PAGE_POISON_PATTERN;
295 }
296 
297 #ifdef CONFIG_DEBUG_VM
298 void page_init_poison(struct page *page, size_t size);
299 #else
300 static inline void page_init_poison(struct page *page, size_t size)
301 {
302 }
303 #endif
304 
305 static const unsigned long *const_folio_flags(const struct folio *folio,
306 		unsigned n)
307 {
308 	const struct page *page = &folio->page;
309 
310 	VM_BUG_ON_PGFLAGS(page->compound_head & 1, page);
311 	VM_BUG_ON_PGFLAGS(n > 0 && !test_bit(PG_head, &page->flags), page);
312 	return &page[n].flags;
313 }
314 
315 static unsigned long *folio_flags(struct folio *folio, unsigned n)
316 {
317 	struct page *page = &folio->page;
318 
319 	VM_BUG_ON_PGFLAGS(page->compound_head & 1, page);
320 	VM_BUG_ON_PGFLAGS(n > 0 && !test_bit(PG_head, &page->flags), page);
321 	return &page[n].flags;
322 }
323 
324 /*
325  * Page flags policies wrt compound pages
326  *
327  * PF_POISONED_CHECK
328  *     check if this struct page poisoned/uninitialized
329  *
330  * PF_ANY:
331  *     the page flag is relevant for small, head and tail pages.
332  *
333  * PF_HEAD:
334  *     for compound page all operations related to the page flag applied to
335  *     head page.
336  *
337  * PF_NO_TAIL:
338  *     modifications of the page flag must be done on small or head pages,
339  *     checks can be done on tail pages too.
340  *
341  * PF_NO_COMPOUND:
342  *     the page flag is not relevant for compound pages.
343  *
344  * PF_SECOND:
345  *     the page flag is stored in the first tail page.
346  */
347 #define PF_POISONED_CHECK(page) ({					\
348 		VM_BUG_ON_PGFLAGS(PagePoisoned(page), page);		\
349 		page; })
350 #define PF_ANY(page, enforce)	PF_POISONED_CHECK(page)
351 #define PF_HEAD(page, enforce)	PF_POISONED_CHECK(compound_head(page))
352 #define PF_NO_TAIL(page, enforce) ({					\
353 		VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page);	\
354 		PF_POISONED_CHECK(compound_head(page)); })
355 #define PF_NO_COMPOUND(page, enforce) ({				\
356 		VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page);	\
357 		PF_POISONED_CHECK(page); })
358 #define PF_SECOND(page, enforce) ({					\
359 		VM_BUG_ON_PGFLAGS(!PageHead(page), page);		\
360 		PF_POISONED_CHECK(&page[1]); })
361 
362 /* Which page is the flag stored in */
363 #define FOLIO_PF_ANY		0
364 #define FOLIO_PF_HEAD		0
365 #define FOLIO_PF_NO_TAIL	0
366 #define FOLIO_PF_NO_COMPOUND	0
367 #define FOLIO_PF_SECOND		1
368 
369 #define FOLIO_HEAD_PAGE		0
370 #define FOLIO_SECOND_PAGE	1
371 
372 /*
373  * Macros to create function definitions for page flags
374  */
375 #define FOLIO_TEST_FLAG(name, page)					\
376 static __always_inline bool folio_test_##name(const struct folio *folio) \
377 { return test_bit(PG_##name, const_folio_flags(folio, page)); }
378 
379 #define FOLIO_SET_FLAG(name, page)					\
380 static __always_inline void folio_set_##name(struct folio *folio)	\
381 { set_bit(PG_##name, folio_flags(folio, page)); }
382 
383 #define FOLIO_CLEAR_FLAG(name, page)					\
384 static __always_inline void folio_clear_##name(struct folio *folio)	\
385 { clear_bit(PG_##name, folio_flags(folio, page)); }
386 
387 #define __FOLIO_SET_FLAG(name, page)					\
388 static __always_inline void __folio_set_##name(struct folio *folio)	\
389 { __set_bit(PG_##name, folio_flags(folio, page)); }
390 
391 #define __FOLIO_CLEAR_FLAG(name, page)					\
392 static __always_inline void __folio_clear_##name(struct folio *folio)	\
393 { __clear_bit(PG_##name, folio_flags(folio, page)); }
394 
395 #define FOLIO_TEST_SET_FLAG(name, page)					\
396 static __always_inline bool folio_test_set_##name(struct folio *folio)	\
397 { return test_and_set_bit(PG_##name, folio_flags(folio, page)); }
398 
399 #define FOLIO_TEST_CLEAR_FLAG(name, page)				\
400 static __always_inline bool folio_test_clear_##name(struct folio *folio) \
401 { return test_and_clear_bit(PG_##name, folio_flags(folio, page)); }
402 
403 #define FOLIO_FLAG(name, page)						\
404 FOLIO_TEST_FLAG(name, page)						\
405 FOLIO_SET_FLAG(name, page)						\
406 FOLIO_CLEAR_FLAG(name, page)
407 
408 #define TESTPAGEFLAG(uname, lname, policy)				\
409 FOLIO_TEST_FLAG(lname, FOLIO_##policy)					\
410 static __always_inline int Page##uname(const struct page *page)		\
411 { return test_bit(PG_##lname, &policy(page, 0)->flags); }
412 
413 #define SETPAGEFLAG(uname, lname, policy)				\
414 FOLIO_SET_FLAG(lname, FOLIO_##policy)					\
415 static __always_inline void SetPage##uname(struct page *page)		\
416 { set_bit(PG_##lname, &policy(page, 1)->flags); }
417 
418 #define CLEARPAGEFLAG(uname, lname, policy)				\
419 FOLIO_CLEAR_FLAG(lname, FOLIO_##policy)					\
420 static __always_inline void ClearPage##uname(struct page *page)		\
421 { clear_bit(PG_##lname, &policy(page, 1)->flags); }
422 
423 #define __SETPAGEFLAG(uname, lname, policy)				\
424 __FOLIO_SET_FLAG(lname, FOLIO_##policy)					\
425 static __always_inline void __SetPage##uname(struct page *page)		\
426 { __set_bit(PG_##lname, &policy(page, 1)->flags); }
427 
428 #define __CLEARPAGEFLAG(uname, lname, policy)				\
429 __FOLIO_CLEAR_FLAG(lname, FOLIO_##policy)				\
430 static __always_inline void __ClearPage##uname(struct page *page)	\
431 { __clear_bit(PG_##lname, &policy(page, 1)->flags); }
432 
433 #define TESTSETFLAG(uname, lname, policy)				\
434 FOLIO_TEST_SET_FLAG(lname, FOLIO_##policy)				\
435 static __always_inline int TestSetPage##uname(struct page *page)	\
436 { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); }
437 
438 #define TESTCLEARFLAG(uname, lname, policy)				\
439 FOLIO_TEST_CLEAR_FLAG(lname, FOLIO_##policy)				\
440 static __always_inline int TestClearPage##uname(struct page *page)	\
441 { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); }
442 
443 #define PAGEFLAG(uname, lname, policy)					\
444 	TESTPAGEFLAG(uname, lname, policy)				\
445 	SETPAGEFLAG(uname, lname, policy)				\
446 	CLEARPAGEFLAG(uname, lname, policy)
447 
448 #define __PAGEFLAG(uname, lname, policy)				\
449 	TESTPAGEFLAG(uname, lname, policy)				\
450 	__SETPAGEFLAG(uname, lname, policy)				\
451 	__CLEARPAGEFLAG(uname, lname, policy)
452 
453 #define TESTSCFLAG(uname, lname, policy)				\
454 	TESTSETFLAG(uname, lname, policy)				\
455 	TESTCLEARFLAG(uname, lname, policy)
456 
457 #define FOLIO_TEST_FLAG_FALSE(name)					\
458 static inline bool folio_test_##name(const struct folio *folio)		\
459 { return false; }
460 #define FOLIO_SET_FLAG_NOOP(name)					\
461 static inline void folio_set_##name(struct folio *folio) { }
462 #define FOLIO_CLEAR_FLAG_NOOP(name)					\
463 static inline void folio_clear_##name(struct folio *folio) { }
464 #define __FOLIO_SET_FLAG_NOOP(name)					\
465 static inline void __folio_set_##name(struct folio *folio) { }
466 #define __FOLIO_CLEAR_FLAG_NOOP(name)					\
467 static inline void __folio_clear_##name(struct folio *folio) { }
468 #define FOLIO_TEST_SET_FLAG_FALSE(name)					\
469 static inline bool folio_test_set_##name(struct folio *folio)		\
470 { return false; }
471 #define FOLIO_TEST_CLEAR_FLAG_FALSE(name)				\
472 static inline bool folio_test_clear_##name(struct folio *folio)		\
473 { return false; }
474 
475 #define FOLIO_FLAG_FALSE(name)						\
476 FOLIO_TEST_FLAG_FALSE(name)						\
477 FOLIO_SET_FLAG_NOOP(name)						\
478 FOLIO_CLEAR_FLAG_NOOP(name)
479 
480 #define TESTPAGEFLAG_FALSE(uname, lname)				\
481 FOLIO_TEST_FLAG_FALSE(lname)						\
482 static inline int Page##uname(const struct page *page) { return 0; }
483 
484 #define SETPAGEFLAG_NOOP(uname, lname)					\
485 FOLIO_SET_FLAG_NOOP(lname)						\
486 static inline void SetPage##uname(struct page *page) {  }
487 
488 #define CLEARPAGEFLAG_NOOP(uname, lname)				\
489 FOLIO_CLEAR_FLAG_NOOP(lname)						\
490 static inline void ClearPage##uname(struct page *page) {  }
491 
492 #define __CLEARPAGEFLAG_NOOP(uname, lname)				\
493 __FOLIO_CLEAR_FLAG_NOOP(lname)						\
494 static inline void __ClearPage##uname(struct page *page) {  }
495 
496 #define TESTSETFLAG_FALSE(uname, lname)					\
497 FOLIO_TEST_SET_FLAG_FALSE(lname)					\
498 static inline int TestSetPage##uname(struct page *page) { return 0; }
499 
500 #define TESTCLEARFLAG_FALSE(uname, lname)				\
501 FOLIO_TEST_CLEAR_FLAG_FALSE(lname)					\
502 static inline int TestClearPage##uname(struct page *page) { return 0; }
503 
504 #define PAGEFLAG_FALSE(uname, lname) TESTPAGEFLAG_FALSE(uname, lname)	\
505 	SETPAGEFLAG_NOOP(uname, lname) CLEARPAGEFLAG_NOOP(uname, lname)
506 
507 #define TESTSCFLAG_FALSE(uname, lname)					\
508 	TESTSETFLAG_FALSE(uname, lname) TESTCLEARFLAG_FALSE(uname, lname)
509 
510 __PAGEFLAG(Locked, locked, PF_NO_TAIL)
511 FOLIO_FLAG(waiters, FOLIO_HEAD_PAGE)
512 FOLIO_FLAG(referenced, FOLIO_HEAD_PAGE)
513 	FOLIO_TEST_CLEAR_FLAG(referenced, FOLIO_HEAD_PAGE)
514 	__FOLIO_SET_FLAG(referenced, FOLIO_HEAD_PAGE)
515 PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD)
516 	__CLEARPAGEFLAG(Dirty, dirty, PF_HEAD)
517 PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD)
518 	TESTCLEARFLAG(LRU, lru, PF_HEAD)
519 FOLIO_FLAG(active, FOLIO_HEAD_PAGE)
520 	__FOLIO_CLEAR_FLAG(active, FOLIO_HEAD_PAGE)
521 	FOLIO_TEST_CLEAR_FLAG(active, FOLIO_HEAD_PAGE)
522 PAGEFLAG(Workingset, workingset, PF_HEAD)
523 	TESTCLEARFLAG(Workingset, workingset, PF_HEAD)
524 PAGEFLAG(Checked, checked, PF_NO_COMPOUND)	   /* Used by some filesystems */
525 
526 /* Xen */
527 PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND)
528 	TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND)
529 PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND);
530 PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND);
531 PAGEFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
532 	TESTCLEARFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
533 
534 PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
535 	__CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
536 	__SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
537 FOLIO_FLAG(swapbacked, FOLIO_HEAD_PAGE)
538 	__FOLIO_CLEAR_FLAG(swapbacked, FOLIO_HEAD_PAGE)
539 	__FOLIO_SET_FLAG(swapbacked, FOLIO_HEAD_PAGE)
540 
541 /*
542  * Private page markings that may be used by the filesystem that owns the page
543  * for its own purposes.
544  * - PG_private and PG_private_2 cause release_folio() and co to be invoked
545  */
546 PAGEFLAG(Private, private, PF_ANY)
547 FOLIO_FLAG(private_2, FOLIO_HEAD_PAGE)
548 
549 /* owner_2 can be set on tail pages for anon memory */
550 FOLIO_FLAG(owner_2, FOLIO_HEAD_PAGE)
551 
552 /*
553  * Only test-and-set exist for PG_writeback.  The unconditional operators are
554  * risky: they bypass page accounting.
555  */
556 TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL)
557 	TESTSCFLAG(Writeback, writeback, PF_NO_TAIL)
558 FOLIO_FLAG(mappedtodisk, FOLIO_HEAD_PAGE)
559 
560 /* PG_readahead is only used for reads; PG_reclaim is only for writes */
561 PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL)
562 	TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL)
563 FOLIO_FLAG(readahead, FOLIO_HEAD_PAGE)
564 	FOLIO_TEST_CLEAR_FLAG(readahead, FOLIO_HEAD_PAGE)
565 
566 FOLIO_FLAG(dropbehind, FOLIO_HEAD_PAGE)
567 	FOLIO_TEST_CLEAR_FLAG(dropbehind, FOLIO_HEAD_PAGE)
568 	__FOLIO_SET_FLAG(dropbehind, FOLIO_HEAD_PAGE)
569 
570 #ifdef CONFIG_HIGHMEM
571 /*
572  * Must use a macro here due to header dependency issues. page_zone() is not
573  * available at this point.
574  */
575 #define PageHighMem(__p) is_highmem_idx(page_zonenum(__p))
576 #define folio_test_highmem(__f)	is_highmem_idx(folio_zonenum(__f))
577 #else
578 PAGEFLAG_FALSE(HighMem, highmem)
579 #endif
580 
581 #ifdef CONFIG_SWAP
582 static __always_inline bool folio_test_swapcache(const struct folio *folio)
583 {
584 	return folio_test_swapbacked(folio) &&
585 			test_bit(PG_swapcache, const_folio_flags(folio, 0));
586 }
587 
588 FOLIO_SET_FLAG(swapcache, FOLIO_HEAD_PAGE)
589 FOLIO_CLEAR_FLAG(swapcache, FOLIO_HEAD_PAGE)
590 #else
591 FOLIO_FLAG_FALSE(swapcache)
592 #endif
593 
594 FOLIO_FLAG(unevictable, FOLIO_HEAD_PAGE)
595 	__FOLIO_CLEAR_FLAG(unevictable, FOLIO_HEAD_PAGE)
596 	FOLIO_TEST_CLEAR_FLAG(unevictable, FOLIO_HEAD_PAGE)
597 
598 #ifdef CONFIG_MMU
599 FOLIO_FLAG(mlocked, FOLIO_HEAD_PAGE)
600 	__FOLIO_CLEAR_FLAG(mlocked, FOLIO_HEAD_PAGE)
601 	FOLIO_TEST_CLEAR_FLAG(mlocked, FOLIO_HEAD_PAGE)
602 	FOLIO_TEST_SET_FLAG(mlocked, FOLIO_HEAD_PAGE)
603 #else
604 FOLIO_FLAG_FALSE(mlocked)
605 	__FOLIO_CLEAR_FLAG_NOOP(mlocked)
606 	FOLIO_TEST_CLEAR_FLAG_FALSE(mlocked)
607 	FOLIO_TEST_SET_FLAG_FALSE(mlocked)
608 #endif
609 
610 #ifdef CONFIG_MEMORY_FAILURE
611 PAGEFLAG(HWPoison, hwpoison, PF_ANY)
612 TESTSCFLAG(HWPoison, hwpoison, PF_ANY)
613 #define __PG_HWPOISON (1UL << PG_hwpoison)
614 #else
615 PAGEFLAG_FALSE(HWPoison, hwpoison)
616 #define __PG_HWPOISON 0
617 #endif
618 
619 #ifdef CONFIG_PAGE_IDLE_FLAG
620 #ifdef CONFIG_64BIT
621 FOLIO_TEST_FLAG(young, FOLIO_HEAD_PAGE)
622 FOLIO_SET_FLAG(young, FOLIO_HEAD_PAGE)
623 FOLIO_TEST_CLEAR_FLAG(young, FOLIO_HEAD_PAGE)
624 FOLIO_FLAG(idle, FOLIO_HEAD_PAGE)
625 #endif
626 /* See page_idle.h for !64BIT workaround */
627 #else /* !CONFIG_PAGE_IDLE_FLAG */
628 FOLIO_FLAG_FALSE(young)
629 FOLIO_TEST_CLEAR_FLAG_FALSE(young)
630 FOLIO_FLAG_FALSE(idle)
631 #endif
632 
633 /*
634  * PageReported() is used to track reported free pages within the Buddy
635  * allocator. We can use the non-atomic version of the test and set
636  * operations as both should be shielded with the zone lock to prevent
637  * any possible races on the setting or clearing of the bit.
638  */
639 __PAGEFLAG(Reported, reported, PF_NO_COMPOUND)
640 
641 #ifdef CONFIG_MEMORY_HOTPLUG
642 PAGEFLAG(VmemmapSelfHosted, vmemmap_self_hosted, PF_ANY)
643 #else
644 PAGEFLAG_FALSE(VmemmapSelfHosted, vmemmap_self_hosted)
645 #endif
646 
647 /*
648  * On an anonymous folio mapped into a user virtual memory area,
649  * folio->mapping points to its anon_vma, not to a struct address_space;
650  * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
651  *
652  * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
653  * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON
654  * bit; and then folio->mapping points, not to an anon_vma, but to a private
655  * structure which KSM associates with that merged page.  See ksm.h.
656  *
657  * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable
658  * page and then folio->mapping points to a struct movable_operations.
659  *
660  * Please note that, confusingly, "folio_mapping" refers to the inode
661  * address_space which maps the folio from disk; whereas "folio_mapped"
662  * refers to user virtual address space into which the folio is mapped.
663  *
664  * For slab pages, since slab reuses the bits in struct page to store its
665  * internal states, the folio->mapping does not exist as such, nor do
666  * these flags below.  So in order to avoid testing non-existent bits,
667  * please make sure that folio_test_slab(folio) actually evaluates to
668  * false before calling the following functions (e.g., folio_test_anon).
669  * See mm/slab.h.
670  */
671 #define PAGE_MAPPING_ANON	0x1
672 #define PAGE_MAPPING_MOVABLE	0x2
673 #define PAGE_MAPPING_KSM	(PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
674 #define PAGE_MAPPING_FLAGS	(PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
675 
676 static __always_inline bool folio_mapping_flags(const struct folio *folio)
677 {
678 	return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) != 0;
679 }
680 
681 static __always_inline bool PageMappingFlags(const struct page *page)
682 {
683 	return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0;
684 }
685 
686 static __always_inline bool folio_test_anon(const struct folio *folio)
687 {
688 	return ((unsigned long)folio->mapping & PAGE_MAPPING_ANON) != 0;
689 }
690 
691 static __always_inline bool PageAnonNotKsm(const struct page *page)
692 {
693 	unsigned long flags = (unsigned long)page_folio(page)->mapping;
694 
695 	return (flags & PAGE_MAPPING_FLAGS) == PAGE_MAPPING_ANON;
696 }
697 
698 static __always_inline bool PageAnon(const struct page *page)
699 {
700 	return folio_test_anon(page_folio(page));
701 }
702 
703 static __always_inline bool __folio_test_movable(const struct folio *folio)
704 {
705 	return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) ==
706 			PAGE_MAPPING_MOVABLE;
707 }
708 
709 static __always_inline bool __PageMovable(const struct page *page)
710 {
711 	return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
712 				PAGE_MAPPING_MOVABLE;
713 }
714 
715 #ifdef CONFIG_KSM
716 /*
717  * A KSM page is one of those write-protected "shared pages" or "merged pages"
718  * which KSM maps into multiple mms, wherever identical anonymous page content
719  * is found in VM_MERGEABLE vmas.  It's a PageAnon page, pointing not to any
720  * anon_vma, but to that page's node of the stable tree.
721  */
722 static __always_inline bool folio_test_ksm(const struct folio *folio)
723 {
724 	return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) ==
725 				PAGE_MAPPING_KSM;
726 }
727 #else
728 FOLIO_TEST_FLAG_FALSE(ksm)
729 #endif
730 
731 u64 stable_page_flags(const struct page *page);
732 
733 /**
734  * folio_xor_flags_has_waiters - Change some folio flags.
735  * @folio: The folio.
736  * @mask: Bits set in this word will be changed.
737  *
738  * This must only be used for flags which are changed with the folio
739  * lock held.  For example, it is unsafe to use for PG_dirty as that
740  * can be set without the folio lock held.  It can also only be used
741  * on flags which are in the range 0-6 as some of the implementations
742  * only affect those bits.
743  *
744  * Return: Whether there are tasks waiting on the folio.
745  */
746 static inline bool folio_xor_flags_has_waiters(struct folio *folio,
747 		unsigned long mask)
748 {
749 	return xor_unlock_is_negative_byte(mask, folio_flags(folio, 0));
750 }
751 
752 /**
753  * folio_test_uptodate - Is this folio up to date?
754  * @folio: The folio.
755  *
756  * The uptodate flag is set on a folio when every byte in the folio is
757  * at least as new as the corresponding bytes on storage.  Anonymous
758  * and CoW folios are always uptodate.  If the folio is not uptodate,
759  * some of the bytes in it may be; see the is_partially_uptodate()
760  * address_space operation.
761  */
762 static inline bool folio_test_uptodate(const struct folio *folio)
763 {
764 	bool ret = test_bit(PG_uptodate, const_folio_flags(folio, 0));
765 	/*
766 	 * Must ensure that the data we read out of the folio is loaded
767 	 * _after_ we've loaded folio->flags to check the uptodate bit.
768 	 * We can skip the barrier if the folio is not uptodate, because
769 	 * we wouldn't be reading anything from it.
770 	 *
771 	 * See folio_mark_uptodate() for the other side of the story.
772 	 */
773 	if (ret)
774 		smp_rmb();
775 
776 	return ret;
777 }
778 
779 static inline bool PageUptodate(const struct page *page)
780 {
781 	return folio_test_uptodate(page_folio(page));
782 }
783 
784 static __always_inline void __folio_mark_uptodate(struct folio *folio)
785 {
786 	smp_wmb();
787 	__set_bit(PG_uptodate, folio_flags(folio, 0));
788 }
789 
790 static __always_inline void folio_mark_uptodate(struct folio *folio)
791 {
792 	/*
793 	 * Memory barrier must be issued before setting the PG_uptodate bit,
794 	 * so that all previous stores issued in order to bring the folio
795 	 * uptodate are actually visible before folio_test_uptodate becomes true.
796 	 */
797 	smp_wmb();
798 	set_bit(PG_uptodate, folio_flags(folio, 0));
799 }
800 
801 static __always_inline void __SetPageUptodate(struct page *page)
802 {
803 	__folio_mark_uptodate((struct folio *)page);
804 }
805 
806 static __always_inline void SetPageUptodate(struct page *page)
807 {
808 	folio_mark_uptodate((struct folio *)page);
809 }
810 
811 CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL)
812 
813 void __folio_start_writeback(struct folio *folio, bool keep_write);
814 void set_page_writeback(struct page *page);
815 
816 #define folio_start_writeback(folio)			\
817 	__folio_start_writeback(folio, false)
818 #define folio_start_writeback_keepwrite(folio)	\
819 	__folio_start_writeback(folio, true)
820 
821 static __always_inline bool folio_test_head(const struct folio *folio)
822 {
823 	return test_bit(PG_head, const_folio_flags(folio, FOLIO_PF_ANY));
824 }
825 
826 static __always_inline int PageHead(const struct page *page)
827 {
828 	PF_POISONED_CHECK(page);
829 	return test_bit(PG_head, &page->flags) && !page_is_fake_head(page);
830 }
831 
832 __SETPAGEFLAG(Head, head, PF_ANY)
833 __CLEARPAGEFLAG(Head, head, PF_ANY)
834 CLEARPAGEFLAG(Head, head, PF_ANY)
835 
836 /**
837  * folio_test_large() - Does this folio contain more than one page?
838  * @folio: The folio to test.
839  *
840  * Return: True if the folio is larger than one page.
841  */
842 static inline bool folio_test_large(const struct folio *folio)
843 {
844 	return folio_test_head(folio);
845 }
846 
847 static __always_inline void set_compound_head(struct page *page, struct page *head)
848 {
849 	WRITE_ONCE(page->compound_head, (unsigned long)head + 1);
850 }
851 
852 static __always_inline void clear_compound_head(struct page *page)
853 {
854 	WRITE_ONCE(page->compound_head, 0);
855 }
856 
857 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
858 static inline void ClearPageCompound(struct page *page)
859 {
860 	BUG_ON(!PageHead(page));
861 	ClearPageHead(page);
862 }
863 FOLIO_FLAG(large_rmappable, FOLIO_SECOND_PAGE)
864 FOLIO_FLAG(partially_mapped, FOLIO_SECOND_PAGE)
865 #else
866 FOLIO_FLAG_FALSE(large_rmappable)
867 FOLIO_FLAG_FALSE(partially_mapped)
868 #endif
869 
870 #define PG_head_mask ((1UL << PG_head))
871 
872 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
873 /*
874  * PageHuge() only returns true for hugetlbfs pages, but not for
875  * normal or transparent huge pages.
876  *
877  * PageTransHuge() returns true for both transparent huge and
878  * hugetlbfs pages, but not normal pages. PageTransHuge() can only be
879  * called only in the core VM paths where hugetlbfs pages can't exist.
880  */
881 static inline int PageTransHuge(const struct page *page)
882 {
883 	VM_BUG_ON_PAGE(PageTail(page), page);
884 	return PageHead(page);
885 }
886 
887 /*
888  * PageTransCompound returns true for both transparent huge pages
889  * and hugetlbfs pages, so it should only be called when it's known
890  * that hugetlbfs pages aren't involved.
891  */
892 static inline int PageTransCompound(const struct page *page)
893 {
894 	return PageCompound(page);
895 }
896 #else
897 TESTPAGEFLAG_FALSE(TransHuge, transhuge)
898 TESTPAGEFLAG_FALSE(TransCompound, transcompound)
899 #endif
900 
901 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
902 /*
903  * PageHasHWPoisoned indicates that at least one subpage is hwpoisoned in the
904  * compound page.
905  *
906  * This flag is set by hwpoison handler.  Cleared by THP split or free page.
907  */
908 FOLIO_FLAG(has_hwpoisoned, FOLIO_SECOND_PAGE)
909 #else
910 FOLIO_FLAG_FALSE(has_hwpoisoned)
911 #endif
912 
913 /*
914  * For pages that do not use mapcount, page_type may be used.
915  * The low 24 bits of pagetype may be used for your own purposes, as long
916  * as you are careful to not affect the top 8 bits.  The low bits of
917  * pagetype will be overwritten when you clear the page_type from the page.
918  */
919 enum pagetype {
920 	/* 0x00-0x7f are positive numbers, ie mapcount */
921 	/* Reserve 0x80-0xef for mapcount overflow. */
922 	PGTY_buddy		= 0xf0,
923 	PGTY_offline		= 0xf1,
924 	PGTY_table		= 0xf2,
925 	PGTY_guard		= 0xf3,
926 	PGTY_hugetlb		= 0xf4,
927 	PGTY_slab		= 0xf5,
928 	PGTY_zsmalloc		= 0xf6,
929 	PGTY_unaccepted		= 0xf7,
930 	PGTY_large_kmalloc	= 0xf8,
931 
932 	PGTY_mapcount_underflow = 0xff
933 };
934 
935 static inline bool page_type_has_type(int page_type)
936 {
937 	return page_type < (PGTY_mapcount_underflow << 24);
938 }
939 
940 /* This takes a mapcount which is one more than page->_mapcount */
941 static inline bool page_mapcount_is_type(unsigned int mapcount)
942 {
943 	return page_type_has_type(mapcount - 1);
944 }
945 
946 static inline bool page_has_type(const struct page *page)
947 {
948 	return page_mapcount_is_type(data_race(page->page_type));
949 }
950 
951 #define FOLIO_TYPE_OPS(lname, fname)					\
952 static __always_inline bool folio_test_##fname(const struct folio *folio) \
953 {									\
954 	return data_race(folio->page.page_type >> 24) == PGTY_##lname;	\
955 }									\
956 static __always_inline void __folio_set_##fname(struct folio *folio)	\
957 {									\
958 	if (folio_test_##fname(folio))					\
959 		return;							\
960 	VM_BUG_ON_FOLIO(data_race(folio->page.page_type) != UINT_MAX,	\
961 			folio);						\
962 	folio->page.page_type = (unsigned int)PGTY_##lname << 24;	\
963 }									\
964 static __always_inline void __folio_clear_##fname(struct folio *folio)	\
965 {									\
966 	if (folio->page.page_type == UINT_MAX)				\
967 		return;							\
968 	VM_BUG_ON_FOLIO(!folio_test_##fname(folio), folio);		\
969 	folio->page.page_type = UINT_MAX;				\
970 }
971 
972 #define PAGE_TYPE_OPS(uname, lname, fname)				\
973 FOLIO_TYPE_OPS(lname, fname)						\
974 static __always_inline int Page##uname(const struct page *page)		\
975 {									\
976 	return data_race(page->page_type >> 24) == PGTY_##lname;	\
977 }									\
978 static __always_inline void __SetPage##uname(struct page *page)		\
979 {									\
980 	if (Page##uname(page))						\
981 		return;							\
982 	VM_BUG_ON_PAGE(data_race(page->page_type) != UINT_MAX, page);	\
983 	page->page_type = (unsigned int)PGTY_##lname << 24;		\
984 }									\
985 static __always_inline void __ClearPage##uname(struct page *page)	\
986 {									\
987 	if (page->page_type == UINT_MAX)				\
988 		return;							\
989 	VM_BUG_ON_PAGE(!Page##uname(page), page);			\
990 	page->page_type = UINT_MAX;					\
991 }
992 
993 /*
994  * PageBuddy() indicates that the page is free and in the buddy system
995  * (see mm/page_alloc.c).
996  */
997 PAGE_TYPE_OPS(Buddy, buddy, buddy)
998 
999 /*
1000  * PageOffline() indicates that the page is logically offline although the
1001  * containing section is online. (e.g. inflated in a balloon driver or
1002  * not onlined when onlining the section).
1003  * The content of these pages is effectively stale. Such pages should not
1004  * be touched (read/write/dump/save) except by their owner.
1005  *
1006  * When a memory block gets onlined, all pages are initialized with a
1007  * refcount of 1 and PageOffline(). generic_online_page() will
1008  * take care of clearing PageOffline().
1009  *
1010  * If a driver wants to allow to offline unmovable PageOffline() pages without
1011  * putting them back to the buddy, it can do so via the memory notifier by
1012  * decrementing the reference count in MEM_GOING_OFFLINE and incrementing the
1013  * reference count in MEM_CANCEL_OFFLINE. When offlining, the PageOffline()
1014  * pages (now with a reference count of zero) are treated like free (unmanaged)
1015  * pages, allowing the containing memory block to get offlined. A driver that
1016  * relies on this feature is aware that re-onlining the memory block will
1017  * require not giving them to the buddy via generic_online_page().
1018  *
1019  * Memory offlining code will not adjust the managed page count for any
1020  * PageOffline() pages, treating them like they were never exposed to the
1021  * buddy using generic_online_page().
1022  *
1023  * There are drivers that mark a page PageOffline() and expect there won't be
1024  * any further access to page content. PFN walkers that read content of random
1025  * pages should check PageOffline() and synchronize with such drivers using
1026  * page_offline_freeze()/page_offline_thaw().
1027  */
1028 PAGE_TYPE_OPS(Offline, offline, offline)
1029 
1030 extern void page_offline_freeze(void);
1031 extern void page_offline_thaw(void);
1032 extern void page_offline_begin(void);
1033 extern void page_offline_end(void);
1034 
1035 /*
1036  * Marks pages in use as page tables.
1037  */
1038 PAGE_TYPE_OPS(Table, table, pgtable)
1039 
1040 /*
1041  * Marks guardpages used with debug_pagealloc.
1042  */
1043 PAGE_TYPE_OPS(Guard, guard, guard)
1044 
1045 FOLIO_TYPE_OPS(slab, slab)
1046 
1047 /**
1048  * PageSlab - Determine if the page belongs to the slab allocator
1049  * @page: The page to test.
1050  *
1051  * Context: Any context.
1052  * Return: True for slab pages, false for any other kind of page.
1053  */
1054 static inline bool PageSlab(const struct page *page)
1055 {
1056 	return folio_test_slab(page_folio(page));
1057 }
1058 
1059 #ifdef CONFIG_HUGETLB_PAGE
1060 FOLIO_TYPE_OPS(hugetlb, hugetlb)
1061 #else
1062 FOLIO_TEST_FLAG_FALSE(hugetlb)
1063 #endif
1064 
1065 PAGE_TYPE_OPS(Zsmalloc, zsmalloc, zsmalloc)
1066 
1067 /*
1068  * Mark pages that has to be accepted before touched for the first time.
1069  *
1070  * Serialized with zone lock.
1071  */
1072 PAGE_TYPE_OPS(Unaccepted, unaccepted, unaccepted)
1073 FOLIO_TYPE_OPS(large_kmalloc, large_kmalloc)
1074 
1075 /**
1076  * PageHuge - Determine if the page belongs to hugetlbfs
1077  * @page: The page to test.
1078  *
1079  * Context: Any context.
1080  * Return: True for hugetlbfs pages, false for anon pages or pages
1081  * belonging to other filesystems.
1082  */
1083 static inline bool PageHuge(const struct page *page)
1084 {
1085 	return folio_test_hugetlb(page_folio(page));
1086 }
1087 
1088 /*
1089  * Check if a page is currently marked HWPoisoned. Note that this check is
1090  * best effort only and inherently racy: there is no way to synchronize with
1091  * failing hardware.
1092  */
1093 static inline bool is_page_hwpoison(const struct page *page)
1094 {
1095 	const struct folio *folio;
1096 
1097 	if (PageHWPoison(page))
1098 		return true;
1099 	folio = page_folio(page);
1100 	return folio_test_hugetlb(folio) && PageHWPoison(&folio->page);
1101 }
1102 
1103 static inline bool folio_contain_hwpoisoned_page(struct folio *folio)
1104 {
1105 	return folio_test_hwpoison(folio) ||
1106 	    (folio_test_large(folio) && folio_test_has_hwpoisoned(folio));
1107 }
1108 
1109 bool is_free_buddy_page(const struct page *page);
1110 
1111 PAGEFLAG(Isolated, isolated, PF_ANY);
1112 
1113 static __always_inline int PageAnonExclusive(const struct page *page)
1114 {
1115 	VM_BUG_ON_PGFLAGS(!PageAnon(page), page);
1116 	/*
1117 	 * HugeTLB stores this information on the head page; THP keeps it per
1118 	 * page
1119 	 */
1120 	if (PageHuge(page))
1121 		page = compound_head(page);
1122 	return test_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags);
1123 }
1124 
1125 static __always_inline void SetPageAnonExclusive(struct page *page)
1126 {
1127 	VM_BUG_ON_PGFLAGS(!PageAnonNotKsm(page), page);
1128 	VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page);
1129 	set_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags);
1130 }
1131 
1132 static __always_inline void ClearPageAnonExclusive(struct page *page)
1133 {
1134 	VM_BUG_ON_PGFLAGS(!PageAnonNotKsm(page), page);
1135 	VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page);
1136 	clear_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags);
1137 }
1138 
1139 static __always_inline void __ClearPageAnonExclusive(struct page *page)
1140 {
1141 	VM_BUG_ON_PGFLAGS(!PageAnon(page), page);
1142 	VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page);
1143 	__clear_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags);
1144 }
1145 
1146 #ifdef CONFIG_MMU
1147 #define __PG_MLOCKED		(1UL << PG_mlocked)
1148 #else
1149 #define __PG_MLOCKED		0
1150 #endif
1151 
1152 /*
1153  * Flags checked when a page is freed.  Pages being freed should not have
1154  * these flags set.  If they are, there is a problem.
1155  */
1156 #define PAGE_FLAGS_CHECK_AT_FREE				\
1157 	(1UL << PG_lru		| 1UL << PG_locked	|	\
1158 	 1UL << PG_private	| 1UL << PG_private_2	|	\
1159 	 1UL << PG_writeback	| 1UL << PG_reserved	|	\
1160 	 1UL << PG_active 	|				\
1161 	 1UL << PG_unevictable	| __PG_MLOCKED | LRU_GEN_MASK)
1162 
1163 /*
1164  * Flags checked when a page is prepped for return by the page allocator.
1165  * Pages being prepped should not have these flags set.  If they are set,
1166  * there has been a kernel bug or struct page corruption.
1167  *
1168  * __PG_HWPOISON is exceptional because it needs to be kept beyond page's
1169  * alloc-free cycle to prevent from reusing the page.
1170  */
1171 #define PAGE_FLAGS_CHECK_AT_PREP	\
1172 	((PAGEFLAGS_MASK & ~__PG_HWPOISON) | LRU_GEN_MASK | LRU_REFS_MASK)
1173 
1174 /*
1175  * Flags stored in the second page of a compound page.  They may overlap
1176  * the CHECK_AT_FREE flags above, so need to be cleared.
1177  */
1178 #define PAGE_FLAGS_SECOND						\
1179 	(0xffUL /* order */		| 1UL << PG_has_hwpoisoned |	\
1180 	 1UL << PG_large_rmappable	| 1UL << PG_partially_mapped)
1181 
1182 #define PAGE_FLAGS_PRIVATE				\
1183 	(1UL << PG_private | 1UL << PG_private_2)
1184 /**
1185  * folio_has_private - Determine if folio has private stuff
1186  * @folio: The folio to be checked
1187  *
1188  * Determine if a folio has private stuff, indicating that release routines
1189  * should be invoked upon it.
1190  */
1191 static inline int folio_has_private(const struct folio *folio)
1192 {
1193 	return !!(folio->flags & PAGE_FLAGS_PRIVATE);
1194 }
1195 
1196 static inline bool folio_test_large_maybe_mapped_shared(const struct folio *folio)
1197 {
1198 	return test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids);
1199 }
1200 #undef PF_ANY
1201 #undef PF_HEAD
1202 #undef PF_NO_TAIL
1203 #undef PF_NO_COMPOUND
1204 #undef PF_SECOND
1205 #endif /* !__GENERATING_BOUNDS_H */
1206 
1207 #endif	/* PAGE_FLAGS_H */
1208