1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Macros for manipulating and testing page->flags 4 */ 5 6 #ifndef PAGE_FLAGS_H 7 #define PAGE_FLAGS_H 8 9 #include <linux/types.h> 10 #include <linux/bug.h> 11 #include <linux/mmdebug.h> 12 #ifndef __GENERATING_BOUNDS_H 13 #include <linux/mm_types.h> 14 #include <generated/bounds.h> 15 #endif /* !__GENERATING_BOUNDS_H */ 16 17 /* 18 * Various page->flags bits: 19 * 20 * PG_reserved is set for special pages. The "struct page" of such a page 21 * should in general not be touched (e.g. set dirty) except by its owner. 22 * Pages marked as PG_reserved include: 23 * - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS, 24 * initrd, HW tables) 25 * - Pages reserved or allocated early during boot (before the page allocator 26 * was initialized). This includes (depending on the architecture) the 27 * initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much 28 * much more. Once (if ever) freed, PG_reserved is cleared and they will 29 * be given to the page allocator. 30 * - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying 31 * to read/write these pages might end badly. Don't touch! 32 * - The zero page(s) 33 * - Pages not added to the page allocator when onlining a section because 34 * they were excluded via the online_page_callback() or because they are 35 * PG_hwpoison. 36 * - Pages allocated in the context of kexec/kdump (loaded kernel image, 37 * control pages, vmcoreinfo) 38 * - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are 39 * not marked PG_reserved (as they might be in use by somebody else who does 40 * not respect the caching strategy). 41 * - Pages part of an offline section (struct pages of offline sections should 42 * not be trusted as they will be initialized when first onlined). 43 * - MCA pages on ia64 44 * - Pages holding CPU notes for POWER Firmware Assisted Dump 45 * - Device memory (e.g. PMEM, DAX, HMM) 46 * Some PG_reserved pages will be excluded from the hibernation image. 47 * PG_reserved does in general not hinder anybody from dumping or swapping 48 * and is no longer required for remap_pfn_range(). ioremap might require it. 49 * Consequently, PG_reserved for a page mapped into user space can indicate 50 * the zero page, the vDSO, MMIO pages or device memory. 51 * 52 * The PG_private bitflag is set on pagecache pages if they contain filesystem 53 * specific data (which is normally at page->private). It can be used by 54 * private allocations for its own usage. 55 * 56 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O 57 * and cleared when writeback _starts_ or when read _completes_. PG_writeback 58 * is set before writeback starts and cleared when it finishes. 59 * 60 * PG_locked also pins a page in pagecache, and blocks truncation of the file 61 * while it is held. 62 * 63 * page_waitqueue(page) is a wait queue of all tasks waiting for the page 64 * to become unlocked. 65 * 66 * PG_swapbacked is set when a page uses swap as a backing storage. This are 67 * usually PageAnon or shmem pages but please note that even anonymous pages 68 * might lose their PG_swapbacked flag when they simply can be dropped (e.g. as 69 * a result of MADV_FREE). 70 * 71 * PG_uptodate tells whether the page's contents is valid. When a read 72 * completes, the page becomes uptodate, unless a disk I/O error happened. 73 * 74 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and 75 * file-backed pagecache (see mm/vmscan.c). 76 * 77 * PG_error is set to indicate that an I/O error occurred on this page. 78 * 79 * PG_arch_1 is an architecture specific page state bit. The generic code 80 * guarantees that this bit is cleared for a page when it first is entered into 81 * the page cache. 82 * 83 * PG_hwpoison indicates that a page got corrupted in hardware and contains 84 * data with incorrect ECC bits that triggered a machine check. Accessing is 85 * not safe since it may cause another machine check. Don't touch! 86 */ 87 88 /* 89 * Don't use the *_dontuse flags. Use the macros. Otherwise you'll break 90 * locked- and dirty-page accounting. 91 * 92 * The page flags field is split into two parts, the main flags area 93 * which extends from the low bits upwards, and the fields area which 94 * extends from the high bits downwards. 95 * 96 * | FIELD | ... | FLAGS | 97 * N-1 ^ 0 98 * (NR_PAGEFLAGS) 99 * 100 * The fields area is reserved for fields mapping zone, node (for NUMA) and 101 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like 102 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP). 103 */ 104 enum pageflags { 105 PG_locked, /* Page is locked. Don't touch. */ 106 PG_referenced, 107 PG_uptodate, 108 PG_dirty, 109 PG_lru, 110 PG_active, 111 PG_workingset, 112 PG_waiters, /* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */ 113 PG_error, 114 PG_slab, 115 PG_owner_priv_1, /* Owner use. If pagecache, fs may use*/ 116 PG_arch_1, 117 PG_reserved, 118 PG_private, /* If pagecache, has fs-private data */ 119 PG_private_2, /* If pagecache, has fs aux data */ 120 PG_writeback, /* Page is under writeback */ 121 PG_head, /* A head page */ 122 PG_mappedtodisk, /* Has blocks allocated on-disk */ 123 PG_reclaim, /* To be reclaimed asap */ 124 PG_swapbacked, /* Page is backed by RAM/swap */ 125 PG_unevictable, /* Page is "unevictable" */ 126 #ifdef CONFIG_MMU 127 PG_mlocked, /* Page is vma mlocked */ 128 #endif 129 #ifdef CONFIG_ARCH_USES_PG_UNCACHED 130 PG_uncached, /* Page has been mapped as uncached */ 131 #endif 132 #ifdef CONFIG_MEMORY_FAILURE 133 PG_hwpoison, /* hardware poisoned page. Don't touch */ 134 #endif 135 #if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT) 136 PG_young, 137 PG_idle, 138 #endif 139 #ifdef CONFIG_64BIT 140 PG_arch_2, 141 #endif 142 __NR_PAGEFLAGS, 143 144 /* Filesystems */ 145 PG_checked = PG_owner_priv_1, 146 147 /* SwapBacked */ 148 PG_swapcache = PG_owner_priv_1, /* Swap page: swp_entry_t in private */ 149 150 /* Two page bits are conscripted by FS-Cache to maintain local caching 151 * state. These bits are set on pages belonging to the netfs's inodes 152 * when those inodes are being locally cached. 153 */ 154 PG_fscache = PG_private_2, /* page backed by cache */ 155 156 /* XEN */ 157 /* Pinned in Xen as a read-only pagetable page. */ 158 PG_pinned = PG_owner_priv_1, 159 /* Pinned as part of domain save (see xen_mm_pin_all()). */ 160 PG_savepinned = PG_dirty, 161 /* Has a grant mapping of another (foreign) domain's page. */ 162 PG_foreign = PG_owner_priv_1, 163 /* Remapped by swiotlb-xen. */ 164 PG_xen_remapped = PG_owner_priv_1, 165 166 /* SLOB */ 167 PG_slob_free = PG_private, 168 169 /* Compound pages. Stored in first tail page's flags */ 170 PG_double_map = PG_private_2, 171 172 /* non-lru isolated movable page */ 173 PG_isolated = PG_reclaim, 174 175 /* Only valid for buddy pages. Used to track pages that are reported */ 176 PG_reported = PG_uptodate, 177 }; 178 179 #ifndef __GENERATING_BOUNDS_H 180 181 struct page; /* forward declaration */ 182 183 static inline struct page *compound_head(struct page *page) 184 { 185 unsigned long head = READ_ONCE(page->compound_head); 186 187 if (unlikely(head & 1)) 188 return (struct page *) (head - 1); 189 return page; 190 } 191 192 static __always_inline int PageTail(struct page *page) 193 { 194 return READ_ONCE(page->compound_head) & 1; 195 } 196 197 static __always_inline int PageCompound(struct page *page) 198 { 199 return test_bit(PG_head, &page->flags) || PageTail(page); 200 } 201 202 #define PAGE_POISON_PATTERN -1l 203 static inline int PagePoisoned(const struct page *page) 204 { 205 return page->flags == PAGE_POISON_PATTERN; 206 } 207 208 #ifdef CONFIG_DEBUG_VM 209 void page_init_poison(struct page *page, size_t size); 210 #else 211 static inline void page_init_poison(struct page *page, size_t size) 212 { 213 } 214 #endif 215 216 /* 217 * Page flags policies wrt compound pages 218 * 219 * PF_POISONED_CHECK 220 * check if this struct page poisoned/uninitialized 221 * 222 * PF_ANY: 223 * the page flag is relevant for small, head and tail pages. 224 * 225 * PF_HEAD: 226 * for compound page all operations related to the page flag applied to 227 * head page. 228 * 229 * PF_ONLY_HEAD: 230 * for compound page, callers only ever operate on the head page. 231 * 232 * PF_NO_TAIL: 233 * modifications of the page flag must be done on small or head pages, 234 * checks can be done on tail pages too. 235 * 236 * PF_NO_COMPOUND: 237 * the page flag is not relevant for compound pages. 238 */ 239 #define PF_POISONED_CHECK(page) ({ \ 240 VM_BUG_ON_PGFLAGS(PagePoisoned(page), page); \ 241 page; }) 242 #define PF_ANY(page, enforce) PF_POISONED_CHECK(page) 243 #define PF_HEAD(page, enforce) PF_POISONED_CHECK(compound_head(page)) 244 #define PF_ONLY_HEAD(page, enforce) ({ \ 245 VM_BUG_ON_PGFLAGS(PageTail(page), page); \ 246 PF_POISONED_CHECK(page); }) 247 #define PF_NO_TAIL(page, enforce) ({ \ 248 VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page); \ 249 PF_POISONED_CHECK(compound_head(page)); }) 250 #define PF_NO_COMPOUND(page, enforce) ({ \ 251 VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \ 252 PF_POISONED_CHECK(page); }) 253 254 /* 255 * Macros to create function definitions for page flags 256 */ 257 #define TESTPAGEFLAG(uname, lname, policy) \ 258 static __always_inline int Page##uname(struct page *page) \ 259 { return test_bit(PG_##lname, &policy(page, 0)->flags); } 260 261 #define SETPAGEFLAG(uname, lname, policy) \ 262 static __always_inline void SetPage##uname(struct page *page) \ 263 { set_bit(PG_##lname, &policy(page, 1)->flags); } 264 265 #define CLEARPAGEFLAG(uname, lname, policy) \ 266 static __always_inline void ClearPage##uname(struct page *page) \ 267 { clear_bit(PG_##lname, &policy(page, 1)->flags); } 268 269 #define __SETPAGEFLAG(uname, lname, policy) \ 270 static __always_inline void __SetPage##uname(struct page *page) \ 271 { __set_bit(PG_##lname, &policy(page, 1)->flags); } 272 273 #define __CLEARPAGEFLAG(uname, lname, policy) \ 274 static __always_inline void __ClearPage##uname(struct page *page) \ 275 { __clear_bit(PG_##lname, &policy(page, 1)->flags); } 276 277 #define TESTSETFLAG(uname, lname, policy) \ 278 static __always_inline int TestSetPage##uname(struct page *page) \ 279 { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); } 280 281 #define TESTCLEARFLAG(uname, lname, policy) \ 282 static __always_inline int TestClearPage##uname(struct page *page) \ 283 { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); } 284 285 #define PAGEFLAG(uname, lname, policy) \ 286 TESTPAGEFLAG(uname, lname, policy) \ 287 SETPAGEFLAG(uname, lname, policy) \ 288 CLEARPAGEFLAG(uname, lname, policy) 289 290 #define __PAGEFLAG(uname, lname, policy) \ 291 TESTPAGEFLAG(uname, lname, policy) \ 292 __SETPAGEFLAG(uname, lname, policy) \ 293 __CLEARPAGEFLAG(uname, lname, policy) 294 295 #define TESTSCFLAG(uname, lname, policy) \ 296 TESTSETFLAG(uname, lname, policy) \ 297 TESTCLEARFLAG(uname, lname, policy) 298 299 #define TESTPAGEFLAG_FALSE(uname) \ 300 static inline int Page##uname(const struct page *page) { return 0; } 301 302 #define SETPAGEFLAG_NOOP(uname) \ 303 static inline void SetPage##uname(struct page *page) { } 304 305 #define CLEARPAGEFLAG_NOOP(uname) \ 306 static inline void ClearPage##uname(struct page *page) { } 307 308 #define __CLEARPAGEFLAG_NOOP(uname) \ 309 static inline void __ClearPage##uname(struct page *page) { } 310 311 #define TESTSETFLAG_FALSE(uname) \ 312 static inline int TestSetPage##uname(struct page *page) { return 0; } 313 314 #define TESTCLEARFLAG_FALSE(uname) \ 315 static inline int TestClearPage##uname(struct page *page) { return 0; } 316 317 #define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname) \ 318 SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname) 319 320 #define TESTSCFLAG_FALSE(uname) \ 321 TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname) 322 323 __PAGEFLAG(Locked, locked, PF_NO_TAIL) 324 PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) __CLEARPAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) 325 PAGEFLAG(Error, error, PF_NO_TAIL) TESTCLEARFLAG(Error, error, PF_NO_TAIL) 326 PAGEFLAG(Referenced, referenced, PF_HEAD) 327 TESTCLEARFLAG(Referenced, referenced, PF_HEAD) 328 __SETPAGEFLAG(Referenced, referenced, PF_HEAD) 329 PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD) 330 __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD) 331 PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD) 332 PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD) 333 TESTCLEARFLAG(Active, active, PF_HEAD) 334 PAGEFLAG(Workingset, workingset, PF_HEAD) 335 TESTCLEARFLAG(Workingset, workingset, PF_HEAD) 336 __PAGEFLAG(Slab, slab, PF_NO_TAIL) 337 __PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL) 338 PAGEFLAG(Checked, checked, PF_NO_COMPOUND) /* Used by some filesystems */ 339 340 /* Xen */ 341 PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND) 342 TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND) 343 PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND); 344 PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND); 345 PAGEFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND) 346 TESTCLEARFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND) 347 348 PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 349 __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 350 __SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 351 PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 352 __CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 353 __SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 354 355 /* 356 * Private page markings that may be used by the filesystem that owns the page 357 * for its own purposes. 358 * - PG_private and PG_private_2 cause releasepage() and co to be invoked 359 */ 360 PAGEFLAG(Private, private, PF_ANY) __SETPAGEFLAG(Private, private, PF_ANY) 361 __CLEARPAGEFLAG(Private, private, PF_ANY) 362 PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY) 363 PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY) 364 TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY) 365 366 /* 367 * Only test-and-set exist for PG_writeback. The unconditional operators are 368 * risky: they bypass page accounting. 369 */ 370 TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL) 371 TESTSCFLAG(Writeback, writeback, PF_NO_TAIL) 372 PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL) 373 374 /* PG_readahead is only used for reads; PG_reclaim is only for writes */ 375 PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL) 376 TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL) 377 PAGEFLAG(Readahead, reclaim, PF_NO_COMPOUND) 378 TESTCLEARFLAG(Readahead, reclaim, PF_NO_COMPOUND) 379 380 #ifdef CONFIG_HIGHMEM 381 /* 382 * Must use a macro here due to header dependency issues. page_zone() is not 383 * available at this point. 384 */ 385 #define PageHighMem(__p) is_highmem_idx(page_zonenum(__p)) 386 #else 387 PAGEFLAG_FALSE(HighMem) 388 #endif 389 390 #ifdef CONFIG_SWAP 391 static __always_inline int PageSwapCache(struct page *page) 392 { 393 #ifdef CONFIG_THP_SWAP 394 page = compound_head(page); 395 #endif 396 return PageSwapBacked(page) && test_bit(PG_swapcache, &page->flags); 397 398 } 399 SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL) 400 CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL) 401 #else 402 PAGEFLAG_FALSE(SwapCache) 403 #endif 404 405 PAGEFLAG(Unevictable, unevictable, PF_HEAD) 406 __CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD) 407 TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD) 408 409 #ifdef CONFIG_MMU 410 PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL) 411 __CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL) 412 TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL) 413 #else 414 PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked) 415 TESTSCFLAG_FALSE(Mlocked) 416 #endif 417 418 #ifdef CONFIG_ARCH_USES_PG_UNCACHED 419 PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND) 420 #else 421 PAGEFLAG_FALSE(Uncached) 422 #endif 423 424 #ifdef CONFIG_MEMORY_FAILURE 425 PAGEFLAG(HWPoison, hwpoison, PF_ANY) 426 TESTSCFLAG(HWPoison, hwpoison, PF_ANY) 427 #define __PG_HWPOISON (1UL << PG_hwpoison) 428 extern bool set_hwpoison_free_buddy_page(struct page *page); 429 #else 430 PAGEFLAG_FALSE(HWPoison) 431 static inline bool set_hwpoison_free_buddy_page(struct page *page) 432 { 433 return 0; 434 } 435 #define __PG_HWPOISON 0 436 #endif 437 438 #if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT) 439 TESTPAGEFLAG(Young, young, PF_ANY) 440 SETPAGEFLAG(Young, young, PF_ANY) 441 TESTCLEARFLAG(Young, young, PF_ANY) 442 PAGEFLAG(Idle, idle, PF_ANY) 443 #endif 444 445 /* 446 * PageReported() is used to track reported free pages within the Buddy 447 * allocator. We can use the non-atomic version of the test and set 448 * operations as both should be shielded with the zone lock to prevent 449 * any possible races on the setting or clearing of the bit. 450 */ 451 __PAGEFLAG(Reported, reported, PF_NO_COMPOUND) 452 453 /* 454 * On an anonymous page mapped into a user virtual memory area, 455 * page->mapping points to its anon_vma, not to a struct address_space; 456 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 457 * 458 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 459 * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON 460 * bit; and then page->mapping points, not to an anon_vma, but to a private 461 * structure which KSM associates with that merged page. See ksm.h. 462 * 463 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable 464 * page and then page->mapping points a struct address_space. 465 * 466 * Please note that, confusingly, "page_mapping" refers to the inode 467 * address_space which maps the page from disk; whereas "page_mapped" 468 * refers to user virtual address space into which the page is mapped. 469 */ 470 #define PAGE_MAPPING_ANON 0x1 471 #define PAGE_MAPPING_MOVABLE 0x2 472 #define PAGE_MAPPING_KSM (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE) 473 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE) 474 475 static __always_inline int PageMappingFlags(struct page *page) 476 { 477 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0; 478 } 479 480 static __always_inline int PageAnon(struct page *page) 481 { 482 page = compound_head(page); 483 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 484 } 485 486 static __always_inline int __PageMovable(struct page *page) 487 { 488 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) == 489 PAGE_MAPPING_MOVABLE; 490 } 491 492 #ifdef CONFIG_KSM 493 /* 494 * A KSM page is one of those write-protected "shared pages" or "merged pages" 495 * which KSM maps into multiple mms, wherever identical anonymous page content 496 * is found in VM_MERGEABLE vmas. It's a PageAnon page, pointing not to any 497 * anon_vma, but to that page's node of the stable tree. 498 */ 499 static __always_inline int PageKsm(struct page *page) 500 { 501 page = compound_head(page); 502 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) == 503 PAGE_MAPPING_KSM; 504 } 505 #else 506 TESTPAGEFLAG_FALSE(Ksm) 507 #endif 508 509 u64 stable_page_flags(struct page *page); 510 511 static inline int PageUptodate(struct page *page) 512 { 513 int ret; 514 page = compound_head(page); 515 ret = test_bit(PG_uptodate, &(page)->flags); 516 /* 517 * Must ensure that the data we read out of the page is loaded 518 * _after_ we've loaded page->flags to check for PageUptodate. 519 * We can skip the barrier if the page is not uptodate, because 520 * we wouldn't be reading anything from it. 521 * 522 * See SetPageUptodate() for the other side of the story. 523 */ 524 if (ret) 525 smp_rmb(); 526 527 return ret; 528 } 529 530 static __always_inline void __SetPageUptodate(struct page *page) 531 { 532 VM_BUG_ON_PAGE(PageTail(page), page); 533 smp_wmb(); 534 __set_bit(PG_uptodate, &page->flags); 535 } 536 537 static __always_inline void SetPageUptodate(struct page *page) 538 { 539 VM_BUG_ON_PAGE(PageTail(page), page); 540 /* 541 * Memory barrier must be issued before setting the PG_uptodate bit, 542 * so that all previous stores issued in order to bring the page 543 * uptodate are actually visible before PageUptodate becomes true. 544 */ 545 smp_wmb(); 546 set_bit(PG_uptodate, &page->flags); 547 } 548 549 CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL) 550 551 int test_clear_page_writeback(struct page *page); 552 int __test_set_page_writeback(struct page *page, bool keep_write); 553 554 #define test_set_page_writeback(page) \ 555 __test_set_page_writeback(page, false) 556 #define test_set_page_writeback_keepwrite(page) \ 557 __test_set_page_writeback(page, true) 558 559 static inline void set_page_writeback(struct page *page) 560 { 561 test_set_page_writeback(page); 562 } 563 564 static inline void set_page_writeback_keepwrite(struct page *page) 565 { 566 test_set_page_writeback_keepwrite(page); 567 } 568 569 __PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY) 570 571 static __always_inline void set_compound_head(struct page *page, struct page *head) 572 { 573 WRITE_ONCE(page->compound_head, (unsigned long)head + 1); 574 } 575 576 static __always_inline void clear_compound_head(struct page *page) 577 { 578 WRITE_ONCE(page->compound_head, 0); 579 } 580 581 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 582 static inline void ClearPageCompound(struct page *page) 583 { 584 BUG_ON(!PageHead(page)); 585 ClearPageHead(page); 586 } 587 #endif 588 589 #define PG_head_mask ((1UL << PG_head)) 590 591 #ifdef CONFIG_HUGETLB_PAGE 592 int PageHuge(struct page *page); 593 int PageHeadHuge(struct page *page); 594 bool page_huge_active(struct page *page); 595 #else 596 TESTPAGEFLAG_FALSE(Huge) 597 TESTPAGEFLAG_FALSE(HeadHuge) 598 599 static inline bool page_huge_active(struct page *page) 600 { 601 return 0; 602 } 603 #endif 604 605 606 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 607 /* 608 * PageHuge() only returns true for hugetlbfs pages, but not for 609 * normal or transparent huge pages. 610 * 611 * PageTransHuge() returns true for both transparent huge and 612 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be 613 * called only in the core VM paths where hugetlbfs pages can't exist. 614 */ 615 static inline int PageTransHuge(struct page *page) 616 { 617 VM_BUG_ON_PAGE(PageTail(page), page); 618 return PageHead(page); 619 } 620 621 /* 622 * PageTransCompound returns true for both transparent huge pages 623 * and hugetlbfs pages, so it should only be called when it's known 624 * that hugetlbfs pages aren't involved. 625 */ 626 static inline int PageTransCompound(struct page *page) 627 { 628 return PageCompound(page); 629 } 630 631 /* 632 * PageTransCompoundMap is the same as PageTransCompound, but it also 633 * guarantees the primary MMU has the entire compound page mapped 634 * through pmd_trans_huge, which in turn guarantees the secondary MMUs 635 * can also map the entire compound page. This allows the secondary 636 * MMUs to call get_user_pages() only once for each compound page and 637 * to immediately map the entire compound page with a single secondary 638 * MMU fault. If there will be a pmd split later, the secondary MMUs 639 * will get an update through the MMU notifier invalidation through 640 * split_huge_pmd(). 641 * 642 * Unlike PageTransCompound, this is safe to be called only while 643 * split_huge_pmd() cannot run from under us, like if protected by the 644 * MMU notifier, otherwise it may result in page->_mapcount check false 645 * positives. 646 * 647 * We have to treat page cache THP differently since every subpage of it 648 * would get _mapcount inc'ed once it is PMD mapped. But, it may be PTE 649 * mapped in the current process so comparing subpage's _mapcount to 650 * compound_mapcount to filter out PTE mapped case. 651 */ 652 static inline int PageTransCompoundMap(struct page *page) 653 { 654 struct page *head; 655 656 if (!PageTransCompound(page)) 657 return 0; 658 659 if (PageAnon(page)) 660 return atomic_read(&page->_mapcount) < 0; 661 662 head = compound_head(page); 663 /* File THP is PMD mapped and not PTE mapped */ 664 return atomic_read(&page->_mapcount) == 665 atomic_read(compound_mapcount_ptr(head)); 666 } 667 668 /* 669 * PageTransTail returns true for both transparent huge pages 670 * and hugetlbfs pages, so it should only be called when it's known 671 * that hugetlbfs pages aren't involved. 672 */ 673 static inline int PageTransTail(struct page *page) 674 { 675 return PageTail(page); 676 } 677 678 /* 679 * PageDoubleMap indicates that the compound page is mapped with PTEs as well 680 * as PMDs. 681 * 682 * This is required for optimization of rmap operations for THP: we can postpone 683 * per small page mapcount accounting (and its overhead from atomic operations) 684 * until the first PMD split. 685 * 686 * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up 687 * by one. This reference will go away with last compound_mapcount. 688 * 689 * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap(). 690 */ 691 static inline int PageDoubleMap(struct page *page) 692 { 693 return PageHead(page) && test_bit(PG_double_map, &page[1].flags); 694 } 695 696 static inline void SetPageDoubleMap(struct page *page) 697 { 698 VM_BUG_ON_PAGE(!PageHead(page), page); 699 set_bit(PG_double_map, &page[1].flags); 700 } 701 702 static inline void ClearPageDoubleMap(struct page *page) 703 { 704 VM_BUG_ON_PAGE(!PageHead(page), page); 705 clear_bit(PG_double_map, &page[1].flags); 706 } 707 static inline int TestSetPageDoubleMap(struct page *page) 708 { 709 VM_BUG_ON_PAGE(!PageHead(page), page); 710 return test_and_set_bit(PG_double_map, &page[1].flags); 711 } 712 713 static inline int TestClearPageDoubleMap(struct page *page) 714 { 715 VM_BUG_ON_PAGE(!PageHead(page), page); 716 return test_and_clear_bit(PG_double_map, &page[1].flags); 717 } 718 719 #else 720 TESTPAGEFLAG_FALSE(TransHuge) 721 TESTPAGEFLAG_FALSE(TransCompound) 722 TESTPAGEFLAG_FALSE(TransCompoundMap) 723 TESTPAGEFLAG_FALSE(TransTail) 724 PAGEFLAG_FALSE(DoubleMap) 725 TESTSETFLAG_FALSE(DoubleMap) 726 TESTCLEARFLAG_FALSE(DoubleMap) 727 #endif 728 729 /* 730 * For pages that are never mapped to userspace (and aren't PageSlab), 731 * page_type may be used. Because it is initialised to -1, we invert the 732 * sense of the bit, so __SetPageFoo *clears* the bit used for PageFoo, and 733 * __ClearPageFoo *sets* the bit used for PageFoo. We reserve a few high and 734 * low bits so that an underflow or overflow of page_mapcount() won't be 735 * mistaken for a page type value. 736 */ 737 738 #define PAGE_TYPE_BASE 0xf0000000 739 /* Reserve 0x0000007f to catch underflows of page_mapcount */ 740 #define PAGE_MAPCOUNT_RESERVE -128 741 #define PG_buddy 0x00000080 742 #define PG_offline 0x00000100 743 #define PG_kmemcg 0x00000200 744 #define PG_table 0x00000400 745 #define PG_guard 0x00000800 746 747 #define PageType(page, flag) \ 748 ((page->page_type & (PAGE_TYPE_BASE | flag)) == PAGE_TYPE_BASE) 749 750 static inline int page_has_type(struct page *page) 751 { 752 return (int)page->page_type < PAGE_MAPCOUNT_RESERVE; 753 } 754 755 #define PAGE_TYPE_OPS(uname, lname) \ 756 static __always_inline int Page##uname(struct page *page) \ 757 { \ 758 return PageType(page, PG_##lname); \ 759 } \ 760 static __always_inline void __SetPage##uname(struct page *page) \ 761 { \ 762 VM_BUG_ON_PAGE(!PageType(page, 0), page); \ 763 page->page_type &= ~PG_##lname; \ 764 } \ 765 static __always_inline void __ClearPage##uname(struct page *page) \ 766 { \ 767 VM_BUG_ON_PAGE(!Page##uname(page), page); \ 768 page->page_type |= PG_##lname; \ 769 } 770 771 /* 772 * PageBuddy() indicates that the page is free and in the buddy system 773 * (see mm/page_alloc.c). 774 */ 775 PAGE_TYPE_OPS(Buddy, buddy) 776 777 /* 778 * PageOffline() indicates that the page is logically offline although the 779 * containing section is online. (e.g. inflated in a balloon driver or 780 * not onlined when onlining the section). 781 * The content of these pages is effectively stale. Such pages should not 782 * be touched (read/write/dump/save) except by their owner. 783 * 784 * If a driver wants to allow to offline unmovable PageOffline() pages without 785 * putting them back to the buddy, it can do so via the memory notifier by 786 * decrementing the reference count in MEM_GOING_OFFLINE and incrementing the 787 * reference count in MEM_CANCEL_OFFLINE. When offlining, the PageOffline() 788 * pages (now with a reference count of zero) are treated like free pages, 789 * allowing the containing memory block to get offlined. A driver that 790 * relies on this feature is aware that re-onlining the memory block will 791 * require to re-set the pages PageOffline() and not giving them to the 792 * buddy via online_page_callback_t. 793 */ 794 PAGE_TYPE_OPS(Offline, offline) 795 796 /* 797 * If kmemcg is enabled, the buddy allocator will set PageKmemcg() on 798 * pages allocated with __GFP_ACCOUNT. It gets cleared on page free. 799 */ 800 PAGE_TYPE_OPS(Kmemcg, kmemcg) 801 802 /* 803 * Marks pages in use as page tables. 804 */ 805 PAGE_TYPE_OPS(Table, table) 806 807 /* 808 * Marks guardpages used with debug_pagealloc. 809 */ 810 PAGE_TYPE_OPS(Guard, guard) 811 812 extern bool is_free_buddy_page(struct page *page); 813 814 __PAGEFLAG(Isolated, isolated, PF_ANY); 815 816 /* 817 * If network-based swap is enabled, sl*b must keep track of whether pages 818 * were allocated from pfmemalloc reserves. 819 */ 820 static inline int PageSlabPfmemalloc(struct page *page) 821 { 822 VM_BUG_ON_PAGE(!PageSlab(page), page); 823 return PageActive(page); 824 } 825 826 static inline void SetPageSlabPfmemalloc(struct page *page) 827 { 828 VM_BUG_ON_PAGE(!PageSlab(page), page); 829 SetPageActive(page); 830 } 831 832 static inline void __ClearPageSlabPfmemalloc(struct page *page) 833 { 834 VM_BUG_ON_PAGE(!PageSlab(page), page); 835 __ClearPageActive(page); 836 } 837 838 static inline void ClearPageSlabPfmemalloc(struct page *page) 839 { 840 VM_BUG_ON_PAGE(!PageSlab(page), page); 841 ClearPageActive(page); 842 } 843 844 #ifdef CONFIG_MMU 845 #define __PG_MLOCKED (1UL << PG_mlocked) 846 #else 847 #define __PG_MLOCKED 0 848 #endif 849 850 /* 851 * Flags checked when a page is freed. Pages being freed should not have 852 * these flags set. It they are, there is a problem. 853 */ 854 #define PAGE_FLAGS_CHECK_AT_FREE \ 855 (1UL << PG_lru | 1UL << PG_locked | \ 856 1UL << PG_private | 1UL << PG_private_2 | \ 857 1UL << PG_writeback | 1UL << PG_reserved | \ 858 1UL << PG_slab | 1UL << PG_active | \ 859 1UL << PG_unevictable | __PG_MLOCKED) 860 861 /* 862 * Flags checked when a page is prepped for return by the page allocator. 863 * Pages being prepped should not have these flags set. It they are set, 864 * there has been a kernel bug or struct page corruption. 865 * 866 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's 867 * alloc-free cycle to prevent from reusing the page. 868 */ 869 #define PAGE_FLAGS_CHECK_AT_PREP \ 870 (((1UL << NR_PAGEFLAGS) - 1) & ~__PG_HWPOISON) 871 872 #define PAGE_FLAGS_PRIVATE \ 873 (1UL << PG_private | 1UL << PG_private_2) 874 /** 875 * page_has_private - Determine if page has private stuff 876 * @page: The page to be checked 877 * 878 * Determine if a page has private stuff, indicating that release routines 879 * should be invoked upon it. 880 */ 881 static inline int page_has_private(struct page *page) 882 { 883 return !!(page->flags & PAGE_FLAGS_PRIVATE); 884 } 885 886 #undef PF_ANY 887 #undef PF_HEAD 888 #undef PF_ONLY_HEAD 889 #undef PF_NO_TAIL 890 #undef PF_NO_COMPOUND 891 #endif /* !__GENERATING_BOUNDS_H */ 892 893 #endif /* PAGE_FLAGS_H */ 894