1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Macros for manipulating and testing page->flags 4 */ 5 6 #ifndef PAGE_FLAGS_H 7 #define PAGE_FLAGS_H 8 9 #include <linux/types.h> 10 #include <linux/bug.h> 11 #include <linux/mmdebug.h> 12 #ifndef __GENERATING_BOUNDS_H 13 #include <linux/mm_types.h> 14 #include <generated/bounds.h> 15 #endif /* !__GENERATING_BOUNDS_H */ 16 17 /* 18 * Various page->flags bits: 19 * 20 * PG_reserved is set for special pages. The "struct page" of such a page 21 * should in general not be touched (e.g. set dirty) except by its owner. 22 * Pages marked as PG_reserved include: 23 * - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS, 24 * initrd, HW tables) 25 * - Pages reserved or allocated early during boot (before the page allocator 26 * was initialized). This includes (depending on the architecture) the 27 * initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much 28 * much more. Once (if ever) freed, PG_reserved is cleared and they will 29 * be given to the page allocator. 30 * - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying 31 * to read/write these pages might end badly. Don't touch! 32 * - The zero page(s) 33 * - Pages not added to the page allocator when onlining a section because 34 * they were excluded via the online_page_callback() or because they are 35 * PG_hwpoison. 36 * - Pages allocated in the context of kexec/kdump (loaded kernel image, 37 * control pages, vmcoreinfo) 38 * - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are 39 * not marked PG_reserved (as they might be in use by somebody else who does 40 * not respect the caching strategy). 41 * - Pages part of an offline section (struct pages of offline sections should 42 * not be trusted as they will be initialized when first onlined). 43 * - MCA pages on ia64 44 * - Pages holding CPU notes for POWER Firmware Assisted Dump 45 * - Device memory (e.g. PMEM, DAX, HMM) 46 * Some PG_reserved pages will be excluded from the hibernation image. 47 * PG_reserved does in general not hinder anybody from dumping or swapping 48 * and is no longer required for remap_pfn_range(). ioremap might require it. 49 * Consequently, PG_reserved for a page mapped into user space can indicate 50 * the zero page, the vDSO, MMIO pages or device memory. 51 * 52 * The PG_private bitflag is set on pagecache pages if they contain filesystem 53 * specific data (which is normally at page->private). It can be used by 54 * private allocations for its own usage. 55 * 56 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O 57 * and cleared when writeback _starts_ or when read _completes_. PG_writeback 58 * is set before writeback starts and cleared when it finishes. 59 * 60 * PG_locked also pins a page in pagecache, and blocks truncation of the file 61 * while it is held. 62 * 63 * page_waitqueue(page) is a wait queue of all tasks waiting for the page 64 * to become unlocked. 65 * 66 * PG_swapbacked is set when a page uses swap as a backing storage. This are 67 * usually PageAnon or shmem pages but please note that even anonymous pages 68 * might lose their PG_swapbacked flag when they simply can be dropped (e.g. as 69 * a result of MADV_FREE). 70 * 71 * PG_uptodate tells whether the page's contents is valid. When a read 72 * completes, the page becomes uptodate, unless a disk I/O error happened. 73 * 74 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and 75 * file-backed pagecache (see mm/vmscan.c). 76 * 77 * PG_error is set to indicate that an I/O error occurred on this page. 78 * 79 * PG_arch_1 is an architecture specific page state bit. The generic code 80 * guarantees that this bit is cleared for a page when it first is entered into 81 * the page cache. 82 * 83 * PG_hwpoison indicates that a page got corrupted in hardware and contains 84 * data with incorrect ECC bits that triggered a machine check. Accessing is 85 * not safe since it may cause another machine check. Don't touch! 86 */ 87 88 /* 89 * Don't use the pageflags directly. Use the PageFoo macros. 90 * 91 * The page flags field is split into two parts, the main flags area 92 * which extends from the low bits upwards, and the fields area which 93 * extends from the high bits downwards. 94 * 95 * | FIELD | ... | FLAGS | 96 * N-1 ^ 0 97 * (NR_PAGEFLAGS) 98 * 99 * The fields area is reserved for fields mapping zone, node (for NUMA) and 100 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like 101 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP). 102 */ 103 enum pageflags { 104 PG_locked, /* Page is locked. Don't touch. */ 105 PG_referenced, 106 PG_uptodate, 107 PG_dirty, 108 PG_lru, 109 PG_active, 110 PG_workingset, 111 PG_waiters, /* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */ 112 PG_error, 113 PG_slab, 114 PG_owner_priv_1, /* Owner use. If pagecache, fs may use*/ 115 PG_arch_1, 116 PG_reserved, 117 PG_private, /* If pagecache, has fs-private data */ 118 PG_private_2, /* If pagecache, has fs aux data */ 119 PG_writeback, /* Page is under writeback */ 120 PG_head, /* A head page */ 121 PG_mappedtodisk, /* Has blocks allocated on-disk */ 122 PG_reclaim, /* To be reclaimed asap */ 123 PG_swapbacked, /* Page is backed by RAM/swap */ 124 PG_unevictable, /* Page is "unevictable" */ 125 #ifdef CONFIG_MMU 126 PG_mlocked, /* Page is vma mlocked */ 127 #endif 128 #ifdef CONFIG_ARCH_USES_PG_UNCACHED 129 PG_uncached, /* Page has been mapped as uncached */ 130 #endif 131 #ifdef CONFIG_MEMORY_FAILURE 132 PG_hwpoison, /* hardware poisoned page. Don't touch */ 133 #endif 134 #if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT) 135 PG_young, 136 PG_idle, 137 #endif 138 #ifdef CONFIG_64BIT 139 PG_arch_2, 140 #endif 141 #ifdef CONFIG_KASAN_HW_TAGS 142 PG_skip_kasan_poison, 143 #endif 144 __NR_PAGEFLAGS, 145 146 /* Filesystems */ 147 PG_checked = PG_owner_priv_1, 148 149 /* SwapBacked */ 150 PG_swapcache = PG_owner_priv_1, /* Swap page: swp_entry_t in private */ 151 152 /* Two page bits are conscripted by FS-Cache to maintain local caching 153 * state. These bits are set on pages belonging to the netfs's inodes 154 * when those inodes are being locally cached. 155 */ 156 PG_fscache = PG_private_2, /* page backed by cache */ 157 158 /* XEN */ 159 /* Pinned in Xen as a read-only pagetable page. */ 160 PG_pinned = PG_owner_priv_1, 161 /* Pinned as part of domain save (see xen_mm_pin_all()). */ 162 PG_savepinned = PG_dirty, 163 /* Has a grant mapping of another (foreign) domain's page. */ 164 PG_foreign = PG_owner_priv_1, 165 /* Remapped by swiotlb-xen. */ 166 PG_xen_remapped = PG_owner_priv_1, 167 168 /* SLOB */ 169 PG_slob_free = PG_private, 170 171 /* Compound pages. Stored in first tail page's flags */ 172 PG_double_map = PG_workingset, 173 174 #ifdef CONFIG_MEMORY_FAILURE 175 /* 176 * Compound pages. Stored in first tail page's flags. 177 * Indicates that at least one subpage is hwpoisoned in the 178 * THP. 179 */ 180 PG_has_hwpoisoned = PG_mappedtodisk, 181 #endif 182 183 /* non-lru isolated movable page */ 184 PG_isolated = PG_reclaim, 185 186 /* Only valid for buddy pages. Used to track pages that are reported */ 187 PG_reported = PG_uptodate, 188 }; 189 190 #define PAGEFLAGS_MASK ((1UL << NR_PAGEFLAGS) - 1) 191 192 #ifndef __GENERATING_BOUNDS_H 193 194 static inline unsigned long _compound_head(const struct page *page) 195 { 196 unsigned long head = READ_ONCE(page->compound_head); 197 198 if (unlikely(head & 1)) 199 return head - 1; 200 return (unsigned long)page; 201 } 202 203 #define compound_head(page) ((typeof(page))_compound_head(page)) 204 205 static __always_inline int PageTail(struct page *page) 206 { 207 return READ_ONCE(page->compound_head) & 1; 208 } 209 210 static __always_inline int PageCompound(struct page *page) 211 { 212 return test_bit(PG_head, &page->flags) || PageTail(page); 213 } 214 215 #define PAGE_POISON_PATTERN -1l 216 static inline int PagePoisoned(const struct page *page) 217 { 218 return page->flags == PAGE_POISON_PATTERN; 219 } 220 221 #ifdef CONFIG_DEBUG_VM 222 void page_init_poison(struct page *page, size_t size); 223 #else 224 static inline void page_init_poison(struct page *page, size_t size) 225 { 226 } 227 #endif 228 229 /* 230 * Page flags policies wrt compound pages 231 * 232 * PF_POISONED_CHECK 233 * check if this struct page poisoned/uninitialized 234 * 235 * PF_ANY: 236 * the page flag is relevant for small, head and tail pages. 237 * 238 * PF_HEAD: 239 * for compound page all operations related to the page flag applied to 240 * head page. 241 * 242 * PF_ONLY_HEAD: 243 * for compound page, callers only ever operate on the head page. 244 * 245 * PF_NO_TAIL: 246 * modifications of the page flag must be done on small or head pages, 247 * checks can be done on tail pages too. 248 * 249 * PF_NO_COMPOUND: 250 * the page flag is not relevant for compound pages. 251 * 252 * PF_SECOND: 253 * the page flag is stored in the first tail page. 254 */ 255 #define PF_POISONED_CHECK(page) ({ \ 256 VM_BUG_ON_PGFLAGS(PagePoisoned(page), page); \ 257 page; }) 258 #define PF_ANY(page, enforce) PF_POISONED_CHECK(page) 259 #define PF_HEAD(page, enforce) PF_POISONED_CHECK(compound_head(page)) 260 #define PF_ONLY_HEAD(page, enforce) ({ \ 261 VM_BUG_ON_PGFLAGS(PageTail(page), page); \ 262 PF_POISONED_CHECK(page); }) 263 #define PF_NO_TAIL(page, enforce) ({ \ 264 VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page); \ 265 PF_POISONED_CHECK(compound_head(page)); }) 266 #define PF_NO_COMPOUND(page, enforce) ({ \ 267 VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \ 268 PF_POISONED_CHECK(page); }) 269 #define PF_SECOND(page, enforce) ({ \ 270 VM_BUG_ON_PGFLAGS(!PageHead(page), page); \ 271 PF_POISONED_CHECK(&page[1]); }) 272 273 /* 274 * Macros to create function definitions for page flags 275 */ 276 #define TESTPAGEFLAG(uname, lname, policy) \ 277 static __always_inline int Page##uname(struct page *page) \ 278 { return test_bit(PG_##lname, &policy(page, 0)->flags); } 279 280 #define SETPAGEFLAG(uname, lname, policy) \ 281 static __always_inline void SetPage##uname(struct page *page) \ 282 { set_bit(PG_##lname, &policy(page, 1)->flags); } 283 284 #define CLEARPAGEFLAG(uname, lname, policy) \ 285 static __always_inline void ClearPage##uname(struct page *page) \ 286 { clear_bit(PG_##lname, &policy(page, 1)->flags); } 287 288 #define __SETPAGEFLAG(uname, lname, policy) \ 289 static __always_inline void __SetPage##uname(struct page *page) \ 290 { __set_bit(PG_##lname, &policy(page, 1)->flags); } 291 292 #define __CLEARPAGEFLAG(uname, lname, policy) \ 293 static __always_inline void __ClearPage##uname(struct page *page) \ 294 { __clear_bit(PG_##lname, &policy(page, 1)->flags); } 295 296 #define TESTSETFLAG(uname, lname, policy) \ 297 static __always_inline int TestSetPage##uname(struct page *page) \ 298 { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); } 299 300 #define TESTCLEARFLAG(uname, lname, policy) \ 301 static __always_inline int TestClearPage##uname(struct page *page) \ 302 { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); } 303 304 #define PAGEFLAG(uname, lname, policy) \ 305 TESTPAGEFLAG(uname, lname, policy) \ 306 SETPAGEFLAG(uname, lname, policy) \ 307 CLEARPAGEFLAG(uname, lname, policy) 308 309 #define __PAGEFLAG(uname, lname, policy) \ 310 TESTPAGEFLAG(uname, lname, policy) \ 311 __SETPAGEFLAG(uname, lname, policy) \ 312 __CLEARPAGEFLAG(uname, lname, policy) 313 314 #define TESTSCFLAG(uname, lname, policy) \ 315 TESTSETFLAG(uname, lname, policy) \ 316 TESTCLEARFLAG(uname, lname, policy) 317 318 #define TESTPAGEFLAG_FALSE(uname) \ 319 static inline int Page##uname(const struct page *page) { return 0; } 320 321 #define SETPAGEFLAG_NOOP(uname) \ 322 static inline void SetPage##uname(struct page *page) { } 323 324 #define CLEARPAGEFLAG_NOOP(uname) \ 325 static inline void ClearPage##uname(struct page *page) { } 326 327 #define __CLEARPAGEFLAG_NOOP(uname) \ 328 static inline void __ClearPage##uname(struct page *page) { } 329 330 #define TESTSETFLAG_FALSE(uname) \ 331 static inline int TestSetPage##uname(struct page *page) { return 0; } 332 333 #define TESTCLEARFLAG_FALSE(uname) \ 334 static inline int TestClearPage##uname(struct page *page) { return 0; } 335 336 #define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname) \ 337 SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname) 338 339 #define TESTSCFLAG_FALSE(uname) \ 340 TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname) 341 342 __PAGEFLAG(Locked, locked, PF_NO_TAIL) 343 PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) __CLEARPAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) 344 PAGEFLAG(Error, error, PF_NO_TAIL) TESTCLEARFLAG(Error, error, PF_NO_TAIL) 345 PAGEFLAG(Referenced, referenced, PF_HEAD) 346 TESTCLEARFLAG(Referenced, referenced, PF_HEAD) 347 __SETPAGEFLAG(Referenced, referenced, PF_HEAD) 348 PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD) 349 __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD) 350 PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD) 351 TESTCLEARFLAG(LRU, lru, PF_HEAD) 352 PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD) 353 TESTCLEARFLAG(Active, active, PF_HEAD) 354 PAGEFLAG(Workingset, workingset, PF_HEAD) 355 TESTCLEARFLAG(Workingset, workingset, PF_HEAD) 356 __PAGEFLAG(Slab, slab, PF_NO_TAIL) 357 __PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL) 358 PAGEFLAG(Checked, checked, PF_NO_COMPOUND) /* Used by some filesystems */ 359 360 /* Xen */ 361 PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND) 362 TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND) 363 PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND); 364 PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND); 365 PAGEFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND) 366 TESTCLEARFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND) 367 368 PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 369 __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 370 __SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 371 PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 372 __CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 373 __SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 374 375 /* 376 * Private page markings that may be used by the filesystem that owns the page 377 * for its own purposes. 378 * - PG_private and PG_private_2 cause releasepage() and co to be invoked 379 */ 380 PAGEFLAG(Private, private, PF_ANY) 381 PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY) 382 PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY) 383 TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY) 384 385 /* 386 * Only test-and-set exist for PG_writeback. The unconditional operators are 387 * risky: they bypass page accounting. 388 */ 389 TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL) 390 TESTSCFLAG(Writeback, writeback, PF_NO_TAIL) 391 PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL) 392 393 /* PG_readahead is only used for reads; PG_reclaim is only for writes */ 394 PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL) 395 TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL) 396 PAGEFLAG(Readahead, reclaim, PF_NO_COMPOUND) 397 TESTCLEARFLAG(Readahead, reclaim, PF_NO_COMPOUND) 398 399 #ifdef CONFIG_HIGHMEM 400 /* 401 * Must use a macro here due to header dependency issues. page_zone() is not 402 * available at this point. 403 */ 404 #define PageHighMem(__p) is_highmem_idx(page_zonenum(__p)) 405 #else 406 PAGEFLAG_FALSE(HighMem) 407 #endif 408 409 #ifdef CONFIG_SWAP 410 static __always_inline int PageSwapCache(struct page *page) 411 { 412 #ifdef CONFIG_THP_SWAP 413 page = compound_head(page); 414 #endif 415 return PageSwapBacked(page) && test_bit(PG_swapcache, &page->flags); 416 417 } 418 SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL) 419 CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL) 420 #else 421 PAGEFLAG_FALSE(SwapCache) 422 #endif 423 424 PAGEFLAG(Unevictable, unevictable, PF_HEAD) 425 __CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD) 426 TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD) 427 428 #ifdef CONFIG_MMU 429 PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL) 430 __CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL) 431 TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL) 432 #else 433 PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked) 434 TESTSCFLAG_FALSE(Mlocked) 435 #endif 436 437 #ifdef CONFIG_ARCH_USES_PG_UNCACHED 438 PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND) 439 #else 440 PAGEFLAG_FALSE(Uncached) 441 #endif 442 443 #ifdef CONFIG_MEMORY_FAILURE 444 PAGEFLAG(HWPoison, hwpoison, PF_ANY) 445 TESTSCFLAG(HWPoison, hwpoison, PF_ANY) 446 #define __PG_HWPOISON (1UL << PG_hwpoison) 447 extern bool take_page_off_buddy(struct page *page); 448 #else 449 PAGEFLAG_FALSE(HWPoison) 450 #define __PG_HWPOISON 0 451 #endif 452 453 #if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT) 454 TESTPAGEFLAG(Young, young, PF_ANY) 455 SETPAGEFLAG(Young, young, PF_ANY) 456 TESTCLEARFLAG(Young, young, PF_ANY) 457 PAGEFLAG(Idle, idle, PF_ANY) 458 #endif 459 460 #ifdef CONFIG_KASAN_HW_TAGS 461 PAGEFLAG(SkipKASanPoison, skip_kasan_poison, PF_HEAD) 462 #else 463 PAGEFLAG_FALSE(SkipKASanPoison) 464 #endif 465 466 /* 467 * PageReported() is used to track reported free pages within the Buddy 468 * allocator. We can use the non-atomic version of the test and set 469 * operations as both should be shielded with the zone lock to prevent 470 * any possible races on the setting or clearing of the bit. 471 */ 472 __PAGEFLAG(Reported, reported, PF_NO_COMPOUND) 473 474 /* 475 * On an anonymous page mapped into a user virtual memory area, 476 * page->mapping points to its anon_vma, not to a struct address_space; 477 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 478 * 479 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 480 * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON 481 * bit; and then page->mapping points, not to an anon_vma, but to a private 482 * structure which KSM associates with that merged page. See ksm.h. 483 * 484 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable 485 * page and then page->mapping points a struct address_space. 486 * 487 * Please note that, confusingly, "page_mapping" refers to the inode 488 * address_space which maps the page from disk; whereas "page_mapped" 489 * refers to user virtual address space into which the page is mapped. 490 */ 491 #define PAGE_MAPPING_ANON 0x1 492 #define PAGE_MAPPING_MOVABLE 0x2 493 #define PAGE_MAPPING_KSM (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE) 494 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE) 495 496 static __always_inline int PageMappingFlags(struct page *page) 497 { 498 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0; 499 } 500 501 static __always_inline int PageAnon(struct page *page) 502 { 503 page = compound_head(page); 504 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 505 } 506 507 static __always_inline int __PageMovable(struct page *page) 508 { 509 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) == 510 PAGE_MAPPING_MOVABLE; 511 } 512 513 #ifdef CONFIG_KSM 514 /* 515 * A KSM page is one of those write-protected "shared pages" or "merged pages" 516 * which KSM maps into multiple mms, wherever identical anonymous page content 517 * is found in VM_MERGEABLE vmas. It's a PageAnon page, pointing not to any 518 * anon_vma, but to that page's node of the stable tree. 519 */ 520 static __always_inline int PageKsm(struct page *page) 521 { 522 page = compound_head(page); 523 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) == 524 PAGE_MAPPING_KSM; 525 } 526 #else 527 TESTPAGEFLAG_FALSE(Ksm) 528 #endif 529 530 u64 stable_page_flags(struct page *page); 531 532 static inline int PageUptodate(struct page *page) 533 { 534 int ret; 535 page = compound_head(page); 536 ret = test_bit(PG_uptodate, &(page)->flags); 537 /* 538 * Must ensure that the data we read out of the page is loaded 539 * _after_ we've loaded page->flags to check for PageUptodate. 540 * We can skip the barrier if the page is not uptodate, because 541 * we wouldn't be reading anything from it. 542 * 543 * See SetPageUptodate() for the other side of the story. 544 */ 545 if (ret) 546 smp_rmb(); 547 548 return ret; 549 } 550 551 static __always_inline void __SetPageUptodate(struct page *page) 552 { 553 VM_BUG_ON_PAGE(PageTail(page), page); 554 smp_wmb(); 555 __set_bit(PG_uptodate, &page->flags); 556 } 557 558 static __always_inline void SetPageUptodate(struct page *page) 559 { 560 VM_BUG_ON_PAGE(PageTail(page), page); 561 /* 562 * Memory barrier must be issued before setting the PG_uptodate bit, 563 * so that all previous stores issued in order to bring the page 564 * uptodate are actually visible before PageUptodate becomes true. 565 */ 566 smp_wmb(); 567 set_bit(PG_uptodate, &page->flags); 568 } 569 570 CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL) 571 572 int test_clear_page_writeback(struct page *page); 573 int __test_set_page_writeback(struct page *page, bool keep_write); 574 575 #define test_set_page_writeback(page) \ 576 __test_set_page_writeback(page, false) 577 #define test_set_page_writeback_keepwrite(page) \ 578 __test_set_page_writeback(page, true) 579 580 static inline void set_page_writeback(struct page *page) 581 { 582 test_set_page_writeback(page); 583 } 584 585 static inline void set_page_writeback_keepwrite(struct page *page) 586 { 587 test_set_page_writeback_keepwrite(page); 588 } 589 590 __PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY) 591 592 static __always_inline void set_compound_head(struct page *page, struct page *head) 593 { 594 WRITE_ONCE(page->compound_head, (unsigned long)head + 1); 595 } 596 597 static __always_inline void clear_compound_head(struct page *page) 598 { 599 WRITE_ONCE(page->compound_head, 0); 600 } 601 602 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 603 static inline void ClearPageCompound(struct page *page) 604 { 605 BUG_ON(!PageHead(page)); 606 ClearPageHead(page); 607 } 608 #endif 609 610 #define PG_head_mask ((1UL << PG_head)) 611 612 #ifdef CONFIG_HUGETLB_PAGE 613 int PageHuge(struct page *page); 614 int PageHeadHuge(struct page *page); 615 #else 616 TESTPAGEFLAG_FALSE(Huge) 617 TESTPAGEFLAG_FALSE(HeadHuge) 618 #endif 619 620 621 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 622 /* 623 * PageHuge() only returns true for hugetlbfs pages, but not for 624 * normal or transparent huge pages. 625 * 626 * PageTransHuge() returns true for both transparent huge and 627 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be 628 * called only in the core VM paths where hugetlbfs pages can't exist. 629 */ 630 static inline int PageTransHuge(struct page *page) 631 { 632 VM_BUG_ON_PAGE(PageTail(page), page); 633 return PageHead(page); 634 } 635 636 /* 637 * PageTransCompound returns true for both transparent huge pages 638 * and hugetlbfs pages, so it should only be called when it's known 639 * that hugetlbfs pages aren't involved. 640 */ 641 static inline int PageTransCompound(struct page *page) 642 { 643 return PageCompound(page); 644 } 645 646 /* 647 * PageTransTail returns true for both transparent huge pages 648 * and hugetlbfs pages, so it should only be called when it's known 649 * that hugetlbfs pages aren't involved. 650 */ 651 static inline int PageTransTail(struct page *page) 652 { 653 return PageTail(page); 654 } 655 656 /* 657 * PageDoubleMap indicates that the compound page is mapped with PTEs as well 658 * as PMDs. 659 * 660 * This is required for optimization of rmap operations for THP: we can postpone 661 * per small page mapcount accounting (and its overhead from atomic operations) 662 * until the first PMD split. 663 * 664 * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up 665 * by one. This reference will go away with last compound_mapcount. 666 * 667 * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap(). 668 */ 669 PAGEFLAG(DoubleMap, double_map, PF_SECOND) 670 TESTSCFLAG(DoubleMap, double_map, PF_SECOND) 671 #else 672 TESTPAGEFLAG_FALSE(TransHuge) 673 TESTPAGEFLAG_FALSE(TransCompound) 674 TESTPAGEFLAG_FALSE(TransCompoundMap) 675 TESTPAGEFLAG_FALSE(TransTail) 676 PAGEFLAG_FALSE(DoubleMap) 677 TESTSCFLAG_FALSE(DoubleMap) 678 #endif 679 680 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 681 /* 682 * PageHasHWPoisoned indicates that at least one subpage is hwpoisoned in the 683 * compound page. 684 * 685 * This flag is set by hwpoison handler. Cleared by THP split or free page. 686 */ 687 PAGEFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND) 688 TESTSCFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND) 689 #else 690 PAGEFLAG_FALSE(HasHWPoisoned) 691 TESTSCFLAG_FALSE(HasHWPoisoned) 692 #endif 693 694 /* 695 * Check if a page is currently marked HWPoisoned. Note that this check is 696 * best effort only and inherently racy: there is no way to synchronize with 697 * failing hardware. 698 */ 699 static inline bool is_page_hwpoison(struct page *page) 700 { 701 if (PageHWPoison(page)) 702 return true; 703 return PageHuge(page) && PageHWPoison(compound_head(page)); 704 } 705 706 /* 707 * For pages that are never mapped to userspace (and aren't PageSlab), 708 * page_type may be used. Because it is initialised to -1, we invert the 709 * sense of the bit, so __SetPageFoo *clears* the bit used for PageFoo, and 710 * __ClearPageFoo *sets* the bit used for PageFoo. We reserve a few high and 711 * low bits so that an underflow or overflow of page_mapcount() won't be 712 * mistaken for a page type value. 713 */ 714 715 #define PAGE_TYPE_BASE 0xf0000000 716 /* Reserve 0x0000007f to catch underflows of page_mapcount */ 717 #define PAGE_MAPCOUNT_RESERVE -128 718 #define PG_buddy 0x00000080 719 #define PG_offline 0x00000100 720 #define PG_table 0x00000200 721 #define PG_guard 0x00000400 722 723 #define PageType(page, flag) \ 724 ((page->page_type & (PAGE_TYPE_BASE | flag)) == PAGE_TYPE_BASE) 725 726 static inline int page_has_type(struct page *page) 727 { 728 return (int)page->page_type < PAGE_MAPCOUNT_RESERVE; 729 } 730 731 #define PAGE_TYPE_OPS(uname, lname) \ 732 static __always_inline int Page##uname(struct page *page) \ 733 { \ 734 return PageType(page, PG_##lname); \ 735 } \ 736 static __always_inline void __SetPage##uname(struct page *page) \ 737 { \ 738 VM_BUG_ON_PAGE(!PageType(page, 0), page); \ 739 page->page_type &= ~PG_##lname; \ 740 } \ 741 static __always_inline void __ClearPage##uname(struct page *page) \ 742 { \ 743 VM_BUG_ON_PAGE(!Page##uname(page), page); \ 744 page->page_type |= PG_##lname; \ 745 } 746 747 /* 748 * PageBuddy() indicates that the page is free and in the buddy system 749 * (see mm/page_alloc.c). 750 */ 751 PAGE_TYPE_OPS(Buddy, buddy) 752 753 /* 754 * PageOffline() indicates that the page is logically offline although the 755 * containing section is online. (e.g. inflated in a balloon driver or 756 * not onlined when onlining the section). 757 * The content of these pages is effectively stale. Such pages should not 758 * be touched (read/write/dump/save) except by their owner. 759 * 760 * If a driver wants to allow to offline unmovable PageOffline() pages without 761 * putting them back to the buddy, it can do so via the memory notifier by 762 * decrementing the reference count in MEM_GOING_OFFLINE and incrementing the 763 * reference count in MEM_CANCEL_OFFLINE. When offlining, the PageOffline() 764 * pages (now with a reference count of zero) are treated like free pages, 765 * allowing the containing memory block to get offlined. A driver that 766 * relies on this feature is aware that re-onlining the memory block will 767 * require to re-set the pages PageOffline() and not giving them to the 768 * buddy via online_page_callback_t. 769 * 770 * There are drivers that mark a page PageOffline() and expect there won't be 771 * any further access to page content. PFN walkers that read content of random 772 * pages should check PageOffline() and synchronize with such drivers using 773 * page_offline_freeze()/page_offline_thaw(). 774 */ 775 PAGE_TYPE_OPS(Offline, offline) 776 777 extern void page_offline_freeze(void); 778 extern void page_offline_thaw(void); 779 extern void page_offline_begin(void); 780 extern void page_offline_end(void); 781 782 /* 783 * Marks pages in use as page tables. 784 */ 785 PAGE_TYPE_OPS(Table, table) 786 787 /* 788 * Marks guardpages used with debug_pagealloc. 789 */ 790 PAGE_TYPE_OPS(Guard, guard) 791 792 extern bool is_free_buddy_page(struct page *page); 793 794 __PAGEFLAG(Isolated, isolated, PF_ANY); 795 796 /* 797 * If network-based swap is enabled, sl*b must keep track of whether pages 798 * were allocated from pfmemalloc reserves. 799 */ 800 static inline int PageSlabPfmemalloc(struct page *page) 801 { 802 VM_BUG_ON_PAGE(!PageSlab(page), page); 803 return PageActive(page); 804 } 805 806 /* 807 * A version of PageSlabPfmemalloc() for opportunistic checks where the page 808 * might have been freed under us and not be a PageSlab anymore. 809 */ 810 static inline int __PageSlabPfmemalloc(struct page *page) 811 { 812 return PageActive(page); 813 } 814 815 static inline void SetPageSlabPfmemalloc(struct page *page) 816 { 817 VM_BUG_ON_PAGE(!PageSlab(page), page); 818 SetPageActive(page); 819 } 820 821 static inline void __ClearPageSlabPfmemalloc(struct page *page) 822 { 823 VM_BUG_ON_PAGE(!PageSlab(page), page); 824 __ClearPageActive(page); 825 } 826 827 static inline void ClearPageSlabPfmemalloc(struct page *page) 828 { 829 VM_BUG_ON_PAGE(!PageSlab(page), page); 830 ClearPageActive(page); 831 } 832 833 #ifdef CONFIG_MMU 834 #define __PG_MLOCKED (1UL << PG_mlocked) 835 #else 836 #define __PG_MLOCKED 0 837 #endif 838 839 /* 840 * Flags checked when a page is freed. Pages being freed should not have 841 * these flags set. If they are, there is a problem. 842 */ 843 #define PAGE_FLAGS_CHECK_AT_FREE \ 844 (1UL << PG_lru | 1UL << PG_locked | \ 845 1UL << PG_private | 1UL << PG_private_2 | \ 846 1UL << PG_writeback | 1UL << PG_reserved | \ 847 1UL << PG_slab | 1UL << PG_active | \ 848 1UL << PG_unevictable | __PG_MLOCKED) 849 850 /* 851 * Flags checked when a page is prepped for return by the page allocator. 852 * Pages being prepped should not have these flags set. If they are set, 853 * there has been a kernel bug or struct page corruption. 854 * 855 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's 856 * alloc-free cycle to prevent from reusing the page. 857 */ 858 #define PAGE_FLAGS_CHECK_AT_PREP \ 859 (PAGEFLAGS_MASK & ~__PG_HWPOISON) 860 861 #define PAGE_FLAGS_PRIVATE \ 862 (1UL << PG_private | 1UL << PG_private_2) 863 /** 864 * page_has_private - Determine if page has private stuff 865 * @page: The page to be checked 866 * 867 * Determine if a page has private stuff, indicating that release routines 868 * should be invoked upon it. 869 */ 870 static inline int page_has_private(struct page *page) 871 { 872 return !!(page->flags & PAGE_FLAGS_PRIVATE); 873 } 874 875 #undef PF_ANY 876 #undef PF_HEAD 877 #undef PF_ONLY_HEAD 878 #undef PF_NO_TAIL 879 #undef PF_NO_COMPOUND 880 #undef PF_SECOND 881 #endif /* !__GENERATING_BOUNDS_H */ 882 883 #endif /* PAGE_FLAGS_H */ 884