1 /* 2 * Macros for manipulating and testing page->flags 3 */ 4 5 #ifndef PAGE_FLAGS_H 6 #define PAGE_FLAGS_H 7 8 #include <linux/types.h> 9 #include <linux/bug.h> 10 #include <linux/mmdebug.h> 11 #ifndef __GENERATING_BOUNDS_H 12 #include <linux/mm_types.h> 13 #include <generated/bounds.h> 14 #endif /* !__GENERATING_BOUNDS_H */ 15 16 /* 17 * Various page->flags bits: 18 * 19 * PG_reserved is set for special pages, which can never be swapped out. Some 20 * of them might not even exist (eg empty_bad_page)... 21 * 22 * The PG_private bitflag is set on pagecache pages if they contain filesystem 23 * specific data (which is normally at page->private). It can be used by 24 * private allocations for its own usage. 25 * 26 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O 27 * and cleared when writeback _starts_ or when read _completes_. PG_writeback 28 * is set before writeback starts and cleared when it finishes. 29 * 30 * PG_locked also pins a page in pagecache, and blocks truncation of the file 31 * while it is held. 32 * 33 * page_waitqueue(page) is a wait queue of all tasks waiting for the page 34 * to become unlocked. 35 * 36 * PG_uptodate tells whether the page's contents is valid. When a read 37 * completes, the page becomes uptodate, unless a disk I/O error happened. 38 * 39 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and 40 * file-backed pagecache (see mm/vmscan.c). 41 * 42 * PG_error is set to indicate that an I/O error occurred on this page. 43 * 44 * PG_arch_1 is an architecture specific page state bit. The generic code 45 * guarantees that this bit is cleared for a page when it first is entered into 46 * the page cache. 47 * 48 * PG_highmem pages are not permanently mapped into the kernel virtual address 49 * space, they need to be kmapped separately for doing IO on the pages. The 50 * struct page (these bits with information) are always mapped into kernel 51 * address space... 52 * 53 * PG_hwpoison indicates that a page got corrupted in hardware and contains 54 * data with incorrect ECC bits that triggered a machine check. Accessing is 55 * not safe since it may cause another machine check. Don't touch! 56 */ 57 58 /* 59 * Don't use the *_dontuse flags. Use the macros. Otherwise you'll break 60 * locked- and dirty-page accounting. 61 * 62 * The page flags field is split into two parts, the main flags area 63 * which extends from the low bits upwards, and the fields area which 64 * extends from the high bits downwards. 65 * 66 * | FIELD | ... | FLAGS | 67 * N-1 ^ 0 68 * (NR_PAGEFLAGS) 69 * 70 * The fields area is reserved for fields mapping zone, node (for NUMA) and 71 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like 72 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP). 73 */ 74 enum pageflags { 75 PG_locked, /* Page is locked. Don't touch. */ 76 PG_error, 77 PG_referenced, 78 PG_uptodate, 79 PG_dirty, 80 PG_lru, 81 PG_active, 82 PG_slab, 83 PG_owner_priv_1, /* Owner use. If pagecache, fs may use*/ 84 PG_arch_1, 85 PG_reserved, 86 PG_private, /* If pagecache, has fs-private data */ 87 PG_private_2, /* If pagecache, has fs aux data */ 88 PG_writeback, /* Page is under writeback */ 89 #ifdef CONFIG_PAGEFLAGS_EXTENDED 90 PG_head, /* A head page */ 91 PG_tail, /* A tail page */ 92 #else 93 PG_compound, /* A compound page */ 94 #endif 95 PG_swapcache, /* Swap page: swp_entry_t in private */ 96 PG_mappedtodisk, /* Has blocks allocated on-disk */ 97 PG_reclaim, /* To be reclaimed asap */ 98 PG_swapbacked, /* Page is backed by RAM/swap */ 99 PG_unevictable, /* Page is "unevictable" */ 100 #ifdef CONFIG_MMU 101 PG_mlocked, /* Page is vma mlocked */ 102 #endif 103 #ifdef CONFIG_ARCH_USES_PG_UNCACHED 104 PG_uncached, /* Page has been mapped as uncached */ 105 #endif 106 #ifdef CONFIG_MEMORY_FAILURE 107 PG_hwpoison, /* hardware poisoned page. Don't touch */ 108 #endif 109 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 110 PG_compound_lock, 111 #endif 112 __NR_PAGEFLAGS, 113 114 /* Filesystems */ 115 PG_checked = PG_owner_priv_1, 116 117 /* Two page bits are conscripted by FS-Cache to maintain local caching 118 * state. These bits are set on pages belonging to the netfs's inodes 119 * when those inodes are being locally cached. 120 */ 121 PG_fscache = PG_private_2, /* page backed by cache */ 122 123 /* XEN */ 124 /* Pinned in Xen as a read-only pagetable page. */ 125 PG_pinned = PG_owner_priv_1, 126 /* Pinned as part of domain save (see xen_mm_pin_all()). */ 127 PG_savepinned = PG_dirty, 128 /* Has a grant mapping of another (foreign) domain's page. */ 129 PG_foreign = PG_owner_priv_1, 130 131 /* SLOB */ 132 PG_slob_free = PG_private, 133 }; 134 135 #ifndef __GENERATING_BOUNDS_H 136 137 /* 138 * Macros to create function definitions for page flags 139 */ 140 #define TESTPAGEFLAG(uname, lname) \ 141 static inline int Page##uname(const struct page *page) \ 142 { return test_bit(PG_##lname, &page->flags); } 143 144 #define SETPAGEFLAG(uname, lname) \ 145 static inline void SetPage##uname(struct page *page) \ 146 { set_bit(PG_##lname, &page->flags); } 147 148 #define CLEARPAGEFLAG(uname, lname) \ 149 static inline void ClearPage##uname(struct page *page) \ 150 { clear_bit(PG_##lname, &page->flags); } 151 152 #define __SETPAGEFLAG(uname, lname) \ 153 static inline void __SetPage##uname(struct page *page) \ 154 { __set_bit(PG_##lname, &page->flags); } 155 156 #define __CLEARPAGEFLAG(uname, lname) \ 157 static inline void __ClearPage##uname(struct page *page) \ 158 { __clear_bit(PG_##lname, &page->flags); } 159 160 #define TESTSETFLAG(uname, lname) \ 161 static inline int TestSetPage##uname(struct page *page) \ 162 { return test_and_set_bit(PG_##lname, &page->flags); } 163 164 #define TESTCLEARFLAG(uname, lname) \ 165 static inline int TestClearPage##uname(struct page *page) \ 166 { return test_and_clear_bit(PG_##lname, &page->flags); } 167 168 #define __TESTCLEARFLAG(uname, lname) \ 169 static inline int __TestClearPage##uname(struct page *page) \ 170 { return __test_and_clear_bit(PG_##lname, &page->flags); } 171 172 #define PAGEFLAG(uname, lname) TESTPAGEFLAG(uname, lname) \ 173 SETPAGEFLAG(uname, lname) CLEARPAGEFLAG(uname, lname) 174 175 #define __PAGEFLAG(uname, lname) TESTPAGEFLAG(uname, lname) \ 176 __SETPAGEFLAG(uname, lname) __CLEARPAGEFLAG(uname, lname) 177 178 #define TESTSCFLAG(uname, lname) \ 179 TESTSETFLAG(uname, lname) TESTCLEARFLAG(uname, lname) 180 181 #define TESTPAGEFLAG_FALSE(uname) \ 182 static inline int Page##uname(const struct page *page) { return 0; } 183 184 #define SETPAGEFLAG_NOOP(uname) \ 185 static inline void SetPage##uname(struct page *page) { } 186 187 #define CLEARPAGEFLAG_NOOP(uname) \ 188 static inline void ClearPage##uname(struct page *page) { } 189 190 #define __CLEARPAGEFLAG_NOOP(uname) \ 191 static inline void __ClearPage##uname(struct page *page) { } 192 193 #define TESTSETFLAG_FALSE(uname) \ 194 static inline int TestSetPage##uname(struct page *page) { return 0; } 195 196 #define TESTCLEARFLAG_FALSE(uname) \ 197 static inline int TestClearPage##uname(struct page *page) { return 0; } 198 199 #define __TESTCLEARFLAG_FALSE(uname) \ 200 static inline int __TestClearPage##uname(struct page *page) { return 0; } 201 202 #define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname) \ 203 SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname) 204 205 #define TESTSCFLAG_FALSE(uname) \ 206 TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname) 207 208 struct page; /* forward declaration */ 209 210 TESTPAGEFLAG(Locked, locked) 211 PAGEFLAG(Error, error) TESTCLEARFLAG(Error, error) 212 PAGEFLAG(Referenced, referenced) TESTCLEARFLAG(Referenced, referenced) 213 __SETPAGEFLAG(Referenced, referenced) 214 PAGEFLAG(Dirty, dirty) TESTSCFLAG(Dirty, dirty) __CLEARPAGEFLAG(Dirty, dirty) 215 PAGEFLAG(LRU, lru) __CLEARPAGEFLAG(LRU, lru) 216 PAGEFLAG(Active, active) __CLEARPAGEFLAG(Active, active) 217 TESTCLEARFLAG(Active, active) 218 __PAGEFLAG(Slab, slab) 219 PAGEFLAG(Checked, checked) /* Used by some filesystems */ 220 PAGEFLAG(Pinned, pinned) TESTSCFLAG(Pinned, pinned) /* Xen */ 221 PAGEFLAG(SavePinned, savepinned); /* Xen */ 222 PAGEFLAG(Foreign, foreign); /* Xen */ 223 PAGEFLAG(Reserved, reserved) __CLEARPAGEFLAG(Reserved, reserved) 224 PAGEFLAG(SwapBacked, swapbacked) __CLEARPAGEFLAG(SwapBacked, swapbacked) 225 __SETPAGEFLAG(SwapBacked, swapbacked) 226 227 __PAGEFLAG(SlobFree, slob_free) 228 229 /* 230 * Private page markings that may be used by the filesystem that owns the page 231 * for its own purposes. 232 * - PG_private and PG_private_2 cause releasepage() and co to be invoked 233 */ 234 PAGEFLAG(Private, private) __SETPAGEFLAG(Private, private) 235 __CLEARPAGEFLAG(Private, private) 236 PAGEFLAG(Private2, private_2) TESTSCFLAG(Private2, private_2) 237 PAGEFLAG(OwnerPriv1, owner_priv_1) TESTCLEARFLAG(OwnerPriv1, owner_priv_1) 238 239 /* 240 * Only test-and-set exist for PG_writeback. The unconditional operators are 241 * risky: they bypass page accounting. 242 */ 243 TESTPAGEFLAG(Writeback, writeback) TESTSCFLAG(Writeback, writeback) 244 PAGEFLAG(MappedToDisk, mappedtodisk) 245 246 /* PG_readahead is only used for reads; PG_reclaim is only for writes */ 247 PAGEFLAG(Reclaim, reclaim) TESTCLEARFLAG(Reclaim, reclaim) 248 PAGEFLAG(Readahead, reclaim) TESTCLEARFLAG(Readahead, reclaim) 249 250 #ifdef CONFIG_HIGHMEM 251 /* 252 * Must use a macro here due to header dependency issues. page_zone() is not 253 * available at this point. 254 */ 255 #define PageHighMem(__p) is_highmem(page_zone(__p)) 256 #else 257 PAGEFLAG_FALSE(HighMem) 258 #endif 259 260 #ifdef CONFIG_SWAP 261 PAGEFLAG(SwapCache, swapcache) 262 #else 263 PAGEFLAG_FALSE(SwapCache) 264 #endif 265 266 PAGEFLAG(Unevictable, unevictable) __CLEARPAGEFLAG(Unevictable, unevictable) 267 TESTCLEARFLAG(Unevictable, unevictable) 268 269 #ifdef CONFIG_MMU 270 PAGEFLAG(Mlocked, mlocked) __CLEARPAGEFLAG(Mlocked, mlocked) 271 TESTSCFLAG(Mlocked, mlocked) __TESTCLEARFLAG(Mlocked, mlocked) 272 #else 273 PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked) 274 TESTSCFLAG_FALSE(Mlocked) __TESTCLEARFLAG_FALSE(Mlocked) 275 #endif 276 277 #ifdef CONFIG_ARCH_USES_PG_UNCACHED 278 PAGEFLAG(Uncached, uncached) 279 #else 280 PAGEFLAG_FALSE(Uncached) 281 #endif 282 283 #ifdef CONFIG_MEMORY_FAILURE 284 PAGEFLAG(HWPoison, hwpoison) 285 TESTSCFLAG(HWPoison, hwpoison) 286 #define __PG_HWPOISON (1UL << PG_hwpoison) 287 #else 288 PAGEFLAG_FALSE(HWPoison) 289 #define __PG_HWPOISON 0 290 #endif 291 292 /* 293 * On an anonymous page mapped into a user virtual memory area, 294 * page->mapping points to its anon_vma, not to a struct address_space; 295 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 296 * 297 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 298 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit; 299 * and then page->mapping points, not to an anon_vma, but to a private 300 * structure which KSM associates with that merged page. See ksm.h. 301 * 302 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used. 303 * 304 * Please note that, confusingly, "page_mapping" refers to the inode 305 * address_space which maps the page from disk; whereas "page_mapped" 306 * refers to user virtual address space into which the page is mapped. 307 */ 308 #define PAGE_MAPPING_ANON 1 309 #define PAGE_MAPPING_KSM 2 310 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM) 311 312 static inline int PageAnon(struct page *page) 313 { 314 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 315 } 316 317 #ifdef CONFIG_KSM 318 /* 319 * A KSM page is one of those write-protected "shared pages" or "merged pages" 320 * which KSM maps into multiple mms, wherever identical anonymous page content 321 * is found in VM_MERGEABLE vmas. It's a PageAnon page, pointing not to any 322 * anon_vma, but to that page's node of the stable tree. 323 */ 324 static inline int PageKsm(struct page *page) 325 { 326 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) == 327 (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM); 328 } 329 #else 330 TESTPAGEFLAG_FALSE(Ksm) 331 #endif 332 333 u64 stable_page_flags(struct page *page); 334 335 static inline int PageUptodate(struct page *page) 336 { 337 int ret = test_bit(PG_uptodate, &(page)->flags); 338 339 /* 340 * Must ensure that the data we read out of the page is loaded 341 * _after_ we've loaded page->flags to check for PageUptodate. 342 * We can skip the barrier if the page is not uptodate, because 343 * we wouldn't be reading anything from it. 344 * 345 * See SetPageUptodate() for the other side of the story. 346 */ 347 if (ret) 348 smp_rmb(); 349 350 return ret; 351 } 352 353 static inline void __SetPageUptodate(struct page *page) 354 { 355 smp_wmb(); 356 __set_bit(PG_uptodate, &(page)->flags); 357 } 358 359 static inline void SetPageUptodate(struct page *page) 360 { 361 /* 362 * Memory barrier must be issued before setting the PG_uptodate bit, 363 * so that all previous stores issued in order to bring the page 364 * uptodate are actually visible before PageUptodate becomes true. 365 */ 366 smp_wmb(); 367 set_bit(PG_uptodate, &(page)->flags); 368 } 369 370 CLEARPAGEFLAG(Uptodate, uptodate) 371 372 int test_clear_page_writeback(struct page *page); 373 int __test_set_page_writeback(struct page *page, bool keep_write); 374 375 #define test_set_page_writeback(page) \ 376 __test_set_page_writeback(page, false) 377 #define test_set_page_writeback_keepwrite(page) \ 378 __test_set_page_writeback(page, true) 379 380 static inline void set_page_writeback(struct page *page) 381 { 382 test_set_page_writeback(page); 383 } 384 385 static inline void set_page_writeback_keepwrite(struct page *page) 386 { 387 test_set_page_writeback_keepwrite(page); 388 } 389 390 #ifdef CONFIG_PAGEFLAGS_EXTENDED 391 /* 392 * System with lots of page flags available. This allows separate 393 * flags for PageHead() and PageTail() checks of compound pages so that bit 394 * tests can be used in performance sensitive paths. PageCompound is 395 * generally not used in hot code paths except arch/powerpc/mm/init_64.c 396 * and arch/powerpc/kvm/book3s_64_vio_hv.c which use it to detect huge pages 397 * and avoid handling those in real mode. 398 */ 399 __PAGEFLAG(Head, head) CLEARPAGEFLAG(Head, head) 400 __PAGEFLAG(Tail, tail) 401 402 static inline int PageCompound(struct page *page) 403 { 404 return page->flags & ((1L << PG_head) | (1L << PG_tail)); 405 406 } 407 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 408 static inline void ClearPageCompound(struct page *page) 409 { 410 BUG_ON(!PageHead(page)); 411 ClearPageHead(page); 412 } 413 #endif 414 415 #define PG_head_mask ((1L << PG_head)) 416 417 #else 418 /* 419 * Reduce page flag use as much as possible by overlapping 420 * compound page flags with the flags used for page cache pages. Possible 421 * because PageCompound is always set for compound pages and not for 422 * pages on the LRU and/or pagecache. 423 */ 424 TESTPAGEFLAG(Compound, compound) 425 __SETPAGEFLAG(Head, compound) __CLEARPAGEFLAG(Head, compound) 426 427 /* 428 * PG_reclaim is used in combination with PG_compound to mark the 429 * head and tail of a compound page. This saves one page flag 430 * but makes it impossible to use compound pages for the page cache. 431 * The PG_reclaim bit would have to be used for reclaim or readahead 432 * if compound pages enter the page cache. 433 * 434 * PG_compound & PG_reclaim => Tail page 435 * PG_compound & ~PG_reclaim => Head page 436 */ 437 #define PG_head_mask ((1L << PG_compound)) 438 #define PG_head_tail_mask ((1L << PG_compound) | (1L << PG_reclaim)) 439 440 static inline int PageHead(struct page *page) 441 { 442 return ((page->flags & PG_head_tail_mask) == PG_head_mask); 443 } 444 445 static inline int PageTail(struct page *page) 446 { 447 return ((page->flags & PG_head_tail_mask) == PG_head_tail_mask); 448 } 449 450 static inline void __SetPageTail(struct page *page) 451 { 452 page->flags |= PG_head_tail_mask; 453 } 454 455 static inline void __ClearPageTail(struct page *page) 456 { 457 page->flags &= ~PG_head_tail_mask; 458 } 459 460 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 461 static inline void ClearPageCompound(struct page *page) 462 { 463 BUG_ON((page->flags & PG_head_tail_mask) != (1 << PG_compound)); 464 clear_bit(PG_compound, &page->flags); 465 } 466 #endif 467 468 #endif /* !PAGEFLAGS_EXTENDED */ 469 470 #ifdef CONFIG_HUGETLB_PAGE 471 int PageHuge(struct page *page); 472 int PageHeadHuge(struct page *page); 473 bool page_huge_active(struct page *page); 474 #else 475 TESTPAGEFLAG_FALSE(Huge) 476 TESTPAGEFLAG_FALSE(HeadHuge) 477 478 static inline bool page_huge_active(struct page *page) 479 { 480 return 0; 481 } 482 #endif 483 484 485 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 486 /* 487 * PageHuge() only returns true for hugetlbfs pages, but not for 488 * normal or transparent huge pages. 489 * 490 * PageTransHuge() returns true for both transparent huge and 491 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be 492 * called only in the core VM paths where hugetlbfs pages can't exist. 493 */ 494 static inline int PageTransHuge(struct page *page) 495 { 496 VM_BUG_ON_PAGE(PageTail(page), page); 497 return PageHead(page); 498 } 499 500 /* 501 * PageTransCompound returns true for both transparent huge pages 502 * and hugetlbfs pages, so it should only be called when it's known 503 * that hugetlbfs pages aren't involved. 504 */ 505 static inline int PageTransCompound(struct page *page) 506 { 507 return PageCompound(page); 508 } 509 510 /* 511 * PageTransTail returns true for both transparent huge pages 512 * and hugetlbfs pages, so it should only be called when it's known 513 * that hugetlbfs pages aren't involved. 514 */ 515 static inline int PageTransTail(struct page *page) 516 { 517 return PageTail(page); 518 } 519 520 #else 521 522 static inline int PageTransHuge(struct page *page) 523 { 524 return 0; 525 } 526 527 static inline int PageTransCompound(struct page *page) 528 { 529 return 0; 530 } 531 532 static inline int PageTransTail(struct page *page) 533 { 534 return 0; 535 } 536 #endif 537 538 /* 539 * PageBuddy() indicate that the page is free and in the buddy system 540 * (see mm/page_alloc.c). 541 * 542 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to 543 * -2 so that an underflow of the page_mapcount() won't be mistaken 544 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very 545 * efficiently by most CPU architectures. 546 */ 547 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128) 548 549 static inline int PageBuddy(struct page *page) 550 { 551 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE; 552 } 553 554 static inline void __SetPageBuddy(struct page *page) 555 { 556 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page); 557 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE); 558 } 559 560 static inline void __ClearPageBuddy(struct page *page) 561 { 562 VM_BUG_ON_PAGE(!PageBuddy(page), page); 563 atomic_set(&page->_mapcount, -1); 564 } 565 566 #define PAGE_BALLOON_MAPCOUNT_VALUE (-256) 567 568 static inline int PageBalloon(struct page *page) 569 { 570 return atomic_read(&page->_mapcount) == PAGE_BALLOON_MAPCOUNT_VALUE; 571 } 572 573 static inline void __SetPageBalloon(struct page *page) 574 { 575 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page); 576 atomic_set(&page->_mapcount, PAGE_BALLOON_MAPCOUNT_VALUE); 577 } 578 579 static inline void __ClearPageBalloon(struct page *page) 580 { 581 VM_BUG_ON_PAGE(!PageBalloon(page), page); 582 atomic_set(&page->_mapcount, -1); 583 } 584 585 /* 586 * If network-based swap is enabled, sl*b must keep track of whether pages 587 * were allocated from pfmemalloc reserves. 588 */ 589 static inline int PageSlabPfmemalloc(struct page *page) 590 { 591 VM_BUG_ON_PAGE(!PageSlab(page), page); 592 return PageActive(page); 593 } 594 595 static inline void SetPageSlabPfmemalloc(struct page *page) 596 { 597 VM_BUG_ON_PAGE(!PageSlab(page), page); 598 SetPageActive(page); 599 } 600 601 static inline void __ClearPageSlabPfmemalloc(struct page *page) 602 { 603 VM_BUG_ON_PAGE(!PageSlab(page), page); 604 __ClearPageActive(page); 605 } 606 607 static inline void ClearPageSlabPfmemalloc(struct page *page) 608 { 609 VM_BUG_ON_PAGE(!PageSlab(page), page); 610 ClearPageActive(page); 611 } 612 613 #ifdef CONFIG_MMU 614 #define __PG_MLOCKED (1 << PG_mlocked) 615 #else 616 #define __PG_MLOCKED 0 617 #endif 618 619 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 620 #define __PG_COMPOUND_LOCK (1 << PG_compound_lock) 621 #else 622 #define __PG_COMPOUND_LOCK 0 623 #endif 624 625 /* 626 * Flags checked when a page is freed. Pages being freed should not have 627 * these flags set. It they are, there is a problem. 628 */ 629 #define PAGE_FLAGS_CHECK_AT_FREE \ 630 (1 << PG_lru | 1 << PG_locked | \ 631 1 << PG_private | 1 << PG_private_2 | \ 632 1 << PG_writeback | 1 << PG_reserved | \ 633 1 << PG_slab | 1 << PG_swapcache | 1 << PG_active | \ 634 1 << PG_unevictable | __PG_MLOCKED | \ 635 __PG_COMPOUND_LOCK) 636 637 /* 638 * Flags checked when a page is prepped for return by the page allocator. 639 * Pages being prepped should not have these flags set. It they are set, 640 * there has been a kernel bug or struct page corruption. 641 * 642 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's 643 * alloc-free cycle to prevent from reusing the page. 644 */ 645 #define PAGE_FLAGS_CHECK_AT_PREP \ 646 (((1 << NR_PAGEFLAGS) - 1) & ~__PG_HWPOISON) 647 648 #define PAGE_FLAGS_PRIVATE \ 649 (1 << PG_private | 1 << PG_private_2) 650 /** 651 * page_has_private - Determine if page has private stuff 652 * @page: The page to be checked 653 * 654 * Determine if a page has private stuff, indicating that release routines 655 * should be invoked upon it. 656 */ 657 static inline int page_has_private(struct page *page) 658 { 659 return !!(page->flags & PAGE_FLAGS_PRIVATE); 660 } 661 662 #endif /* !__GENERATING_BOUNDS_H */ 663 664 #endif /* PAGE_FLAGS_H */ 665