1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Macros for manipulating and testing page->flags 4 */ 5 6 #ifndef PAGE_FLAGS_H 7 #define PAGE_FLAGS_H 8 9 #include <linux/types.h> 10 #include <linux/bug.h> 11 #include <linux/mmdebug.h> 12 #ifndef __GENERATING_BOUNDS_H 13 #include <linux/mm_types.h> 14 #include <generated/bounds.h> 15 #endif /* !__GENERATING_BOUNDS_H */ 16 17 /* 18 * Various page->flags bits: 19 * 20 * PG_reserved is set for special pages, which can never be swapped out. Some 21 * of them might not even exist... 22 * 23 * The PG_private bitflag is set on pagecache pages if they contain filesystem 24 * specific data (which is normally at page->private). It can be used by 25 * private allocations for its own usage. 26 * 27 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O 28 * and cleared when writeback _starts_ or when read _completes_. PG_writeback 29 * is set before writeback starts and cleared when it finishes. 30 * 31 * PG_locked also pins a page in pagecache, and blocks truncation of the file 32 * while it is held. 33 * 34 * page_waitqueue(page) is a wait queue of all tasks waiting for the page 35 * to become unlocked. 36 * 37 * PG_uptodate tells whether the page's contents is valid. When a read 38 * completes, the page becomes uptodate, unless a disk I/O error happened. 39 * 40 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and 41 * file-backed pagecache (see mm/vmscan.c). 42 * 43 * PG_error is set to indicate that an I/O error occurred on this page. 44 * 45 * PG_arch_1 is an architecture specific page state bit. The generic code 46 * guarantees that this bit is cleared for a page when it first is entered into 47 * the page cache. 48 * 49 * PG_hwpoison indicates that a page got corrupted in hardware and contains 50 * data with incorrect ECC bits that triggered a machine check. Accessing is 51 * not safe since it may cause another machine check. Don't touch! 52 */ 53 54 /* 55 * Don't use the *_dontuse flags. Use the macros. Otherwise you'll break 56 * locked- and dirty-page accounting. 57 * 58 * The page flags field is split into two parts, the main flags area 59 * which extends from the low bits upwards, and the fields area which 60 * extends from the high bits downwards. 61 * 62 * | FIELD | ... | FLAGS | 63 * N-1 ^ 0 64 * (NR_PAGEFLAGS) 65 * 66 * The fields area is reserved for fields mapping zone, node (for NUMA) and 67 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like 68 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP). 69 */ 70 enum pageflags { 71 PG_locked, /* Page is locked. Don't touch. */ 72 PG_error, 73 PG_referenced, 74 PG_uptodate, 75 PG_dirty, 76 PG_lru, 77 PG_active, 78 PG_waiters, /* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */ 79 PG_slab, 80 PG_owner_priv_1, /* Owner use. If pagecache, fs may use*/ 81 PG_arch_1, 82 PG_reserved, 83 PG_private, /* If pagecache, has fs-private data */ 84 PG_private_2, /* If pagecache, has fs aux data */ 85 PG_writeback, /* Page is under writeback */ 86 PG_head, /* A head page */ 87 PG_mappedtodisk, /* Has blocks allocated on-disk */ 88 PG_reclaim, /* To be reclaimed asap */ 89 PG_swapbacked, /* Page is backed by RAM/swap */ 90 PG_unevictable, /* Page is "unevictable" */ 91 #ifdef CONFIG_MMU 92 PG_mlocked, /* Page is vma mlocked */ 93 #endif 94 #ifdef CONFIG_ARCH_USES_PG_UNCACHED 95 PG_uncached, /* Page has been mapped as uncached */ 96 #endif 97 #ifdef CONFIG_MEMORY_FAILURE 98 PG_hwpoison, /* hardware poisoned page. Don't touch */ 99 #endif 100 #if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT) 101 PG_young, 102 PG_idle, 103 #endif 104 __NR_PAGEFLAGS, 105 106 /* Filesystems */ 107 PG_checked = PG_owner_priv_1, 108 109 /* SwapBacked */ 110 PG_swapcache = PG_owner_priv_1, /* Swap page: swp_entry_t in private */ 111 112 /* Two page bits are conscripted by FS-Cache to maintain local caching 113 * state. These bits are set on pages belonging to the netfs's inodes 114 * when those inodes are being locally cached. 115 */ 116 PG_fscache = PG_private_2, /* page backed by cache */ 117 118 /* XEN */ 119 /* Pinned in Xen as a read-only pagetable page. */ 120 PG_pinned = PG_owner_priv_1, 121 /* Pinned as part of domain save (see xen_mm_pin_all()). */ 122 PG_savepinned = PG_dirty, 123 /* Has a grant mapping of another (foreign) domain's page. */ 124 PG_foreign = PG_owner_priv_1, 125 126 /* SLOB */ 127 PG_slob_free = PG_private, 128 129 /* Compound pages. Stored in first tail page's flags */ 130 PG_double_map = PG_private_2, 131 132 /* non-lru isolated movable page */ 133 PG_isolated = PG_reclaim, 134 }; 135 136 #ifndef __GENERATING_BOUNDS_H 137 138 struct page; /* forward declaration */ 139 140 static inline struct page *compound_head(struct page *page) 141 { 142 unsigned long head = READ_ONCE(page->compound_head); 143 144 if (unlikely(head & 1)) 145 return (struct page *) (head - 1); 146 return page; 147 } 148 149 static __always_inline int PageTail(struct page *page) 150 { 151 return READ_ONCE(page->compound_head) & 1; 152 } 153 154 static __always_inline int PageCompound(struct page *page) 155 { 156 return test_bit(PG_head, &page->flags) || PageTail(page); 157 } 158 159 #define PAGE_POISON_PATTERN -1l 160 static inline int PagePoisoned(const struct page *page) 161 { 162 return page->flags == PAGE_POISON_PATTERN; 163 } 164 165 /* 166 * Page flags policies wrt compound pages 167 * 168 * PF_POISONED_CHECK 169 * check if this struct page poisoned/uninitialized 170 * 171 * PF_ANY: 172 * the page flag is relevant for small, head and tail pages. 173 * 174 * PF_HEAD: 175 * for compound page all operations related to the page flag applied to 176 * head page. 177 * 178 * PF_ONLY_HEAD: 179 * for compound page, callers only ever operate on the head page. 180 * 181 * PF_NO_TAIL: 182 * modifications of the page flag must be done on small or head pages, 183 * checks can be done on tail pages too. 184 * 185 * PF_NO_COMPOUND: 186 * the page flag is not relevant for compound pages. 187 */ 188 #define PF_POISONED_CHECK(page) ({ \ 189 VM_BUG_ON_PGFLAGS(PagePoisoned(page), page); \ 190 page; }) 191 #define PF_ANY(page, enforce) PF_POISONED_CHECK(page) 192 #define PF_HEAD(page, enforce) PF_POISONED_CHECK(compound_head(page)) 193 #define PF_ONLY_HEAD(page, enforce) ({ \ 194 VM_BUG_ON_PGFLAGS(PageTail(page), page); \ 195 PF_POISONED_CHECK(page); }) 196 #define PF_NO_TAIL(page, enforce) ({ \ 197 VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page); \ 198 PF_POISONED_CHECK(compound_head(page)); }) 199 #define PF_NO_COMPOUND(page, enforce) ({ \ 200 VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \ 201 PF_POISONED_CHECK(page); }) 202 203 /* 204 * Macros to create function definitions for page flags 205 */ 206 #define TESTPAGEFLAG(uname, lname, policy) \ 207 static __always_inline int Page##uname(struct page *page) \ 208 { return test_bit(PG_##lname, &policy(page, 0)->flags); } 209 210 #define SETPAGEFLAG(uname, lname, policy) \ 211 static __always_inline void SetPage##uname(struct page *page) \ 212 { set_bit(PG_##lname, &policy(page, 1)->flags); } 213 214 #define CLEARPAGEFLAG(uname, lname, policy) \ 215 static __always_inline void ClearPage##uname(struct page *page) \ 216 { clear_bit(PG_##lname, &policy(page, 1)->flags); } 217 218 #define __SETPAGEFLAG(uname, lname, policy) \ 219 static __always_inline void __SetPage##uname(struct page *page) \ 220 { __set_bit(PG_##lname, &policy(page, 1)->flags); } 221 222 #define __CLEARPAGEFLAG(uname, lname, policy) \ 223 static __always_inline void __ClearPage##uname(struct page *page) \ 224 { __clear_bit(PG_##lname, &policy(page, 1)->flags); } 225 226 #define TESTSETFLAG(uname, lname, policy) \ 227 static __always_inline int TestSetPage##uname(struct page *page) \ 228 { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); } 229 230 #define TESTCLEARFLAG(uname, lname, policy) \ 231 static __always_inline int TestClearPage##uname(struct page *page) \ 232 { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); } 233 234 #define PAGEFLAG(uname, lname, policy) \ 235 TESTPAGEFLAG(uname, lname, policy) \ 236 SETPAGEFLAG(uname, lname, policy) \ 237 CLEARPAGEFLAG(uname, lname, policy) 238 239 #define __PAGEFLAG(uname, lname, policy) \ 240 TESTPAGEFLAG(uname, lname, policy) \ 241 __SETPAGEFLAG(uname, lname, policy) \ 242 __CLEARPAGEFLAG(uname, lname, policy) 243 244 #define TESTSCFLAG(uname, lname, policy) \ 245 TESTSETFLAG(uname, lname, policy) \ 246 TESTCLEARFLAG(uname, lname, policy) 247 248 #define TESTPAGEFLAG_FALSE(uname) \ 249 static inline int Page##uname(const struct page *page) { return 0; } 250 251 #define SETPAGEFLAG_NOOP(uname) \ 252 static inline void SetPage##uname(struct page *page) { } 253 254 #define CLEARPAGEFLAG_NOOP(uname) \ 255 static inline void ClearPage##uname(struct page *page) { } 256 257 #define __CLEARPAGEFLAG_NOOP(uname) \ 258 static inline void __ClearPage##uname(struct page *page) { } 259 260 #define TESTSETFLAG_FALSE(uname) \ 261 static inline int TestSetPage##uname(struct page *page) { return 0; } 262 263 #define TESTCLEARFLAG_FALSE(uname) \ 264 static inline int TestClearPage##uname(struct page *page) { return 0; } 265 266 #define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname) \ 267 SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname) 268 269 #define TESTSCFLAG_FALSE(uname) \ 270 TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname) 271 272 __PAGEFLAG(Locked, locked, PF_NO_TAIL) 273 PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) __CLEARPAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) 274 PAGEFLAG(Error, error, PF_NO_COMPOUND) TESTCLEARFLAG(Error, error, PF_NO_COMPOUND) 275 PAGEFLAG(Referenced, referenced, PF_HEAD) 276 TESTCLEARFLAG(Referenced, referenced, PF_HEAD) 277 __SETPAGEFLAG(Referenced, referenced, PF_HEAD) 278 PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD) 279 __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD) 280 PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD) 281 PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD) 282 TESTCLEARFLAG(Active, active, PF_HEAD) 283 __PAGEFLAG(Slab, slab, PF_NO_TAIL) 284 __PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL) 285 PAGEFLAG(Checked, checked, PF_NO_COMPOUND) /* Used by some filesystems */ 286 287 /* Xen */ 288 PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND) 289 TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND) 290 PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND); 291 PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND); 292 293 PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 294 __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 295 PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 296 __CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 297 __SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 298 299 /* 300 * Private page markings that may be used by the filesystem that owns the page 301 * for its own purposes. 302 * - PG_private and PG_private_2 cause releasepage() and co to be invoked 303 */ 304 PAGEFLAG(Private, private, PF_ANY) __SETPAGEFLAG(Private, private, PF_ANY) 305 __CLEARPAGEFLAG(Private, private, PF_ANY) 306 PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY) 307 PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY) 308 TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY) 309 310 /* 311 * Only test-and-set exist for PG_writeback. The unconditional operators are 312 * risky: they bypass page accounting. 313 */ 314 TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL) 315 TESTSCFLAG(Writeback, writeback, PF_NO_TAIL) 316 PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL) 317 318 /* PG_readahead is only used for reads; PG_reclaim is only for writes */ 319 PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL) 320 TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL) 321 PAGEFLAG(Readahead, reclaim, PF_NO_COMPOUND) 322 TESTCLEARFLAG(Readahead, reclaim, PF_NO_COMPOUND) 323 324 #ifdef CONFIG_HIGHMEM 325 /* 326 * Must use a macro here due to header dependency issues. page_zone() is not 327 * available at this point. 328 */ 329 #define PageHighMem(__p) is_highmem_idx(page_zonenum(__p)) 330 #else 331 PAGEFLAG_FALSE(HighMem) 332 #endif 333 334 #ifdef CONFIG_SWAP 335 static __always_inline int PageSwapCache(struct page *page) 336 { 337 #ifdef CONFIG_THP_SWAP 338 page = compound_head(page); 339 #endif 340 return PageSwapBacked(page) && test_bit(PG_swapcache, &page->flags); 341 342 } 343 SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL) 344 CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL) 345 #else 346 PAGEFLAG_FALSE(SwapCache) 347 #endif 348 349 PAGEFLAG(Unevictable, unevictable, PF_HEAD) 350 __CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD) 351 TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD) 352 353 #ifdef CONFIG_MMU 354 PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL) 355 __CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL) 356 TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL) 357 #else 358 PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked) 359 TESTSCFLAG_FALSE(Mlocked) 360 #endif 361 362 #ifdef CONFIG_ARCH_USES_PG_UNCACHED 363 PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND) 364 #else 365 PAGEFLAG_FALSE(Uncached) 366 #endif 367 368 #ifdef CONFIG_MEMORY_FAILURE 369 PAGEFLAG(HWPoison, hwpoison, PF_ANY) 370 TESTSCFLAG(HWPoison, hwpoison, PF_ANY) 371 #define __PG_HWPOISON (1UL << PG_hwpoison) 372 #else 373 PAGEFLAG_FALSE(HWPoison) 374 #define __PG_HWPOISON 0 375 #endif 376 377 #if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT) 378 TESTPAGEFLAG(Young, young, PF_ANY) 379 SETPAGEFLAG(Young, young, PF_ANY) 380 TESTCLEARFLAG(Young, young, PF_ANY) 381 PAGEFLAG(Idle, idle, PF_ANY) 382 #endif 383 384 /* 385 * On an anonymous page mapped into a user virtual memory area, 386 * page->mapping points to its anon_vma, not to a struct address_space; 387 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 388 * 389 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 390 * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON 391 * bit; and then page->mapping points, not to an anon_vma, but to a private 392 * structure which KSM associates with that merged page. See ksm.h. 393 * 394 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable 395 * page and then page->mapping points a struct address_space. 396 * 397 * Please note that, confusingly, "page_mapping" refers to the inode 398 * address_space which maps the page from disk; whereas "page_mapped" 399 * refers to user virtual address space into which the page is mapped. 400 */ 401 #define PAGE_MAPPING_ANON 0x1 402 #define PAGE_MAPPING_MOVABLE 0x2 403 #define PAGE_MAPPING_KSM (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE) 404 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE) 405 406 static __always_inline int PageMappingFlags(struct page *page) 407 { 408 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0; 409 } 410 411 static __always_inline int PageAnon(struct page *page) 412 { 413 page = compound_head(page); 414 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 415 } 416 417 static __always_inline int __PageMovable(struct page *page) 418 { 419 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) == 420 PAGE_MAPPING_MOVABLE; 421 } 422 423 #ifdef CONFIG_KSM 424 /* 425 * A KSM page is one of those write-protected "shared pages" or "merged pages" 426 * which KSM maps into multiple mms, wherever identical anonymous page content 427 * is found in VM_MERGEABLE vmas. It's a PageAnon page, pointing not to any 428 * anon_vma, but to that page's node of the stable tree. 429 */ 430 static __always_inline int PageKsm(struct page *page) 431 { 432 page = compound_head(page); 433 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) == 434 PAGE_MAPPING_KSM; 435 } 436 #else 437 TESTPAGEFLAG_FALSE(Ksm) 438 #endif 439 440 u64 stable_page_flags(struct page *page); 441 442 static inline int PageUptodate(struct page *page) 443 { 444 int ret; 445 page = compound_head(page); 446 ret = test_bit(PG_uptodate, &(page)->flags); 447 /* 448 * Must ensure that the data we read out of the page is loaded 449 * _after_ we've loaded page->flags to check for PageUptodate. 450 * We can skip the barrier if the page is not uptodate, because 451 * we wouldn't be reading anything from it. 452 * 453 * See SetPageUptodate() for the other side of the story. 454 */ 455 if (ret) 456 smp_rmb(); 457 458 return ret; 459 } 460 461 static __always_inline void __SetPageUptodate(struct page *page) 462 { 463 VM_BUG_ON_PAGE(PageTail(page), page); 464 smp_wmb(); 465 __set_bit(PG_uptodate, &page->flags); 466 } 467 468 static __always_inline void SetPageUptodate(struct page *page) 469 { 470 VM_BUG_ON_PAGE(PageTail(page), page); 471 /* 472 * Memory barrier must be issued before setting the PG_uptodate bit, 473 * so that all previous stores issued in order to bring the page 474 * uptodate are actually visible before PageUptodate becomes true. 475 */ 476 smp_wmb(); 477 set_bit(PG_uptodate, &page->flags); 478 } 479 480 CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL) 481 482 int test_clear_page_writeback(struct page *page); 483 int __test_set_page_writeback(struct page *page, bool keep_write); 484 485 #define test_set_page_writeback(page) \ 486 __test_set_page_writeback(page, false) 487 #define test_set_page_writeback_keepwrite(page) \ 488 __test_set_page_writeback(page, true) 489 490 static inline void set_page_writeback(struct page *page) 491 { 492 test_set_page_writeback(page); 493 } 494 495 static inline void set_page_writeback_keepwrite(struct page *page) 496 { 497 test_set_page_writeback_keepwrite(page); 498 } 499 500 __PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY) 501 502 static __always_inline void set_compound_head(struct page *page, struct page *head) 503 { 504 WRITE_ONCE(page->compound_head, (unsigned long)head + 1); 505 } 506 507 static __always_inline void clear_compound_head(struct page *page) 508 { 509 WRITE_ONCE(page->compound_head, 0); 510 } 511 512 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 513 static inline void ClearPageCompound(struct page *page) 514 { 515 BUG_ON(!PageHead(page)); 516 ClearPageHead(page); 517 } 518 #endif 519 520 #define PG_head_mask ((1UL << PG_head)) 521 522 #ifdef CONFIG_HUGETLB_PAGE 523 int PageHuge(struct page *page); 524 int PageHeadHuge(struct page *page); 525 bool page_huge_active(struct page *page); 526 #else 527 TESTPAGEFLAG_FALSE(Huge) 528 TESTPAGEFLAG_FALSE(HeadHuge) 529 530 static inline bool page_huge_active(struct page *page) 531 { 532 return 0; 533 } 534 #endif 535 536 537 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 538 /* 539 * PageHuge() only returns true for hugetlbfs pages, but not for 540 * normal or transparent huge pages. 541 * 542 * PageTransHuge() returns true for both transparent huge and 543 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be 544 * called only in the core VM paths where hugetlbfs pages can't exist. 545 */ 546 static inline int PageTransHuge(struct page *page) 547 { 548 VM_BUG_ON_PAGE(PageTail(page), page); 549 return PageHead(page); 550 } 551 552 /* 553 * PageTransCompound returns true for both transparent huge pages 554 * and hugetlbfs pages, so it should only be called when it's known 555 * that hugetlbfs pages aren't involved. 556 */ 557 static inline int PageTransCompound(struct page *page) 558 { 559 return PageCompound(page); 560 } 561 562 /* 563 * PageTransCompoundMap is the same as PageTransCompound, but it also 564 * guarantees the primary MMU has the entire compound page mapped 565 * through pmd_trans_huge, which in turn guarantees the secondary MMUs 566 * can also map the entire compound page. This allows the secondary 567 * MMUs to call get_user_pages() only once for each compound page and 568 * to immediately map the entire compound page with a single secondary 569 * MMU fault. If there will be a pmd split later, the secondary MMUs 570 * will get an update through the MMU notifier invalidation through 571 * split_huge_pmd(). 572 * 573 * Unlike PageTransCompound, this is safe to be called only while 574 * split_huge_pmd() cannot run from under us, like if protected by the 575 * MMU notifier, otherwise it may result in page->_mapcount < 0 false 576 * positives. 577 */ 578 static inline int PageTransCompoundMap(struct page *page) 579 { 580 return PageTransCompound(page) && atomic_read(&page->_mapcount) < 0; 581 } 582 583 /* 584 * PageTransTail returns true for both transparent huge pages 585 * and hugetlbfs pages, so it should only be called when it's known 586 * that hugetlbfs pages aren't involved. 587 */ 588 static inline int PageTransTail(struct page *page) 589 { 590 return PageTail(page); 591 } 592 593 /* 594 * PageDoubleMap indicates that the compound page is mapped with PTEs as well 595 * as PMDs. 596 * 597 * This is required for optimization of rmap operations for THP: we can postpone 598 * per small page mapcount accounting (and its overhead from atomic operations) 599 * until the first PMD split. 600 * 601 * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up 602 * by one. This reference will go away with last compound_mapcount. 603 * 604 * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap(). 605 */ 606 static inline int PageDoubleMap(struct page *page) 607 { 608 return PageHead(page) && test_bit(PG_double_map, &page[1].flags); 609 } 610 611 static inline void SetPageDoubleMap(struct page *page) 612 { 613 VM_BUG_ON_PAGE(!PageHead(page), page); 614 set_bit(PG_double_map, &page[1].flags); 615 } 616 617 static inline void ClearPageDoubleMap(struct page *page) 618 { 619 VM_BUG_ON_PAGE(!PageHead(page), page); 620 clear_bit(PG_double_map, &page[1].flags); 621 } 622 static inline int TestSetPageDoubleMap(struct page *page) 623 { 624 VM_BUG_ON_PAGE(!PageHead(page), page); 625 return test_and_set_bit(PG_double_map, &page[1].flags); 626 } 627 628 static inline int TestClearPageDoubleMap(struct page *page) 629 { 630 VM_BUG_ON_PAGE(!PageHead(page), page); 631 return test_and_clear_bit(PG_double_map, &page[1].flags); 632 } 633 634 #else 635 TESTPAGEFLAG_FALSE(TransHuge) 636 TESTPAGEFLAG_FALSE(TransCompound) 637 TESTPAGEFLAG_FALSE(TransCompoundMap) 638 TESTPAGEFLAG_FALSE(TransTail) 639 PAGEFLAG_FALSE(DoubleMap) 640 TESTSETFLAG_FALSE(DoubleMap) 641 TESTCLEARFLAG_FALSE(DoubleMap) 642 #endif 643 644 /* 645 * For pages that are never mapped to userspace, page->mapcount may be 646 * used for storing extra information about page type. Any value used 647 * for this purpose must be <= -2, but it's better start not too close 648 * to -2 so that an underflow of the page_mapcount() won't be mistaken 649 * for a special page. 650 */ 651 #define PAGE_MAPCOUNT_OPS(uname, lname) \ 652 static __always_inline int Page##uname(struct page *page) \ 653 { \ 654 return atomic_read(&page->_mapcount) == \ 655 PAGE_##lname##_MAPCOUNT_VALUE; \ 656 } \ 657 static __always_inline void __SetPage##uname(struct page *page) \ 658 { \ 659 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page); \ 660 atomic_set(&page->_mapcount, PAGE_##lname##_MAPCOUNT_VALUE); \ 661 } \ 662 static __always_inline void __ClearPage##uname(struct page *page) \ 663 { \ 664 VM_BUG_ON_PAGE(!Page##uname(page), page); \ 665 atomic_set(&page->_mapcount, -1); \ 666 } 667 668 /* 669 * PageBuddy() indicate that the page is free and in the buddy system 670 * (see mm/page_alloc.c). 671 */ 672 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128) 673 PAGE_MAPCOUNT_OPS(Buddy, BUDDY) 674 675 /* 676 * PageBalloon() is set on pages that are on the balloon page list 677 * (see mm/balloon_compaction.c). 678 */ 679 #define PAGE_BALLOON_MAPCOUNT_VALUE (-256) 680 PAGE_MAPCOUNT_OPS(Balloon, BALLOON) 681 682 /* 683 * If kmemcg is enabled, the buddy allocator will set PageKmemcg() on 684 * pages allocated with __GFP_ACCOUNT. It gets cleared on page free. 685 */ 686 #define PAGE_KMEMCG_MAPCOUNT_VALUE (-512) 687 PAGE_MAPCOUNT_OPS(Kmemcg, KMEMCG) 688 689 extern bool is_free_buddy_page(struct page *page); 690 691 __PAGEFLAG(Isolated, isolated, PF_ANY); 692 693 /* 694 * If network-based swap is enabled, sl*b must keep track of whether pages 695 * were allocated from pfmemalloc reserves. 696 */ 697 static inline int PageSlabPfmemalloc(struct page *page) 698 { 699 VM_BUG_ON_PAGE(!PageSlab(page), page); 700 return PageActive(page); 701 } 702 703 static inline void SetPageSlabPfmemalloc(struct page *page) 704 { 705 VM_BUG_ON_PAGE(!PageSlab(page), page); 706 SetPageActive(page); 707 } 708 709 static inline void __ClearPageSlabPfmemalloc(struct page *page) 710 { 711 VM_BUG_ON_PAGE(!PageSlab(page), page); 712 __ClearPageActive(page); 713 } 714 715 static inline void ClearPageSlabPfmemalloc(struct page *page) 716 { 717 VM_BUG_ON_PAGE(!PageSlab(page), page); 718 ClearPageActive(page); 719 } 720 721 #ifdef CONFIG_MMU 722 #define __PG_MLOCKED (1UL << PG_mlocked) 723 #else 724 #define __PG_MLOCKED 0 725 #endif 726 727 /* 728 * Flags checked when a page is freed. Pages being freed should not have 729 * these flags set. It they are, there is a problem. 730 */ 731 #define PAGE_FLAGS_CHECK_AT_FREE \ 732 (1UL << PG_lru | 1UL << PG_locked | \ 733 1UL << PG_private | 1UL << PG_private_2 | \ 734 1UL << PG_writeback | 1UL << PG_reserved | \ 735 1UL << PG_slab | 1UL << PG_active | \ 736 1UL << PG_unevictable | __PG_MLOCKED) 737 738 /* 739 * Flags checked when a page is prepped for return by the page allocator. 740 * Pages being prepped should not have these flags set. It they are set, 741 * there has been a kernel bug or struct page corruption. 742 * 743 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's 744 * alloc-free cycle to prevent from reusing the page. 745 */ 746 #define PAGE_FLAGS_CHECK_AT_PREP \ 747 (((1UL << NR_PAGEFLAGS) - 1) & ~__PG_HWPOISON) 748 749 #define PAGE_FLAGS_PRIVATE \ 750 (1UL << PG_private | 1UL << PG_private_2) 751 /** 752 * page_has_private - Determine if page has private stuff 753 * @page: The page to be checked 754 * 755 * Determine if a page has private stuff, indicating that release routines 756 * should be invoked upon it. 757 */ 758 static inline int page_has_private(struct page *page) 759 { 760 return !!(page->flags & PAGE_FLAGS_PRIVATE); 761 } 762 763 #undef PF_ANY 764 #undef PF_HEAD 765 #undef PF_ONLY_HEAD 766 #undef PF_NO_TAIL 767 #undef PF_NO_COMPOUND 768 #endif /* !__GENERATING_BOUNDS_H */ 769 770 #endif /* PAGE_FLAGS_H */ 771