1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */ 2 #ifndef __LINUX_OVERFLOW_H 3 #define __LINUX_OVERFLOW_H 4 5 #include <linux/compiler.h> 6 #include <linux/limits.h> 7 #include <linux/const.h> 8 9 /* 10 * We need to compute the minimum and maximum values representable in a given 11 * type. These macros may also be useful elsewhere. It would seem more obvious 12 * to do something like: 13 * 14 * #define type_min(T) (T)(is_signed_type(T) ? (T)1 << (8*sizeof(T)-1) : 0) 15 * #define type_max(T) (T)(is_signed_type(T) ? ((T)1 << (8*sizeof(T)-1)) - 1 : ~(T)0) 16 * 17 * Unfortunately, the middle expressions, strictly speaking, have 18 * undefined behaviour, and at least some versions of gcc warn about 19 * the type_max expression (but not if -fsanitize=undefined is in 20 * effect; in that case, the warning is deferred to runtime...). 21 * 22 * The slightly excessive casting in type_min is to make sure the 23 * macros also produce sensible values for the exotic type _Bool. [The 24 * overflow checkers only almost work for _Bool, but that's 25 * a-feature-not-a-bug, since people shouldn't be doing arithmetic on 26 * _Bools. Besides, the gcc builtins don't allow _Bool* as third 27 * argument.] 28 * 29 * Idea stolen from 30 * https://mail-index.netbsd.org/tech-misc/2007/02/05/0000.html - 31 * credit to Christian Biere. 32 */ 33 #define __type_half_max(type) ((type)1 << (8*sizeof(type) - 1 - is_signed_type(type))) 34 #define type_max(T) ((T)((__type_half_max(T) - 1) + __type_half_max(T))) 35 #define type_min(T) ((T)((T)-type_max(T)-(T)1)) 36 37 /* 38 * Avoids triggering -Wtype-limits compilation warning, 39 * while using unsigned data types to check a < 0. 40 */ 41 #define is_non_negative(a) ((a) > 0 || (a) == 0) 42 #define is_negative(a) (!(is_non_negative(a))) 43 44 /* 45 * Allows for effectively applying __must_check to a macro so we can have 46 * both the type-agnostic benefits of the macros while also being able to 47 * enforce that the return value is, in fact, checked. 48 */ 49 static inline bool __must_check __must_check_overflow(bool overflow) 50 { 51 return unlikely(overflow); 52 } 53 54 /** 55 * check_add_overflow() - Calculate addition with overflow checking 56 * @a: first addend 57 * @b: second addend 58 * @d: pointer to store sum 59 * 60 * Returns true on wrap-around, false otherwise. 61 * 62 * *@d holds the results of the attempted addition, regardless of whether 63 * wrap-around occurred. 64 */ 65 #define check_add_overflow(a, b, d) \ 66 __must_check_overflow(__builtin_add_overflow(a, b, d)) 67 68 /** 69 * wrapping_add() - Intentionally perform a wrapping addition 70 * @type: type for result of calculation 71 * @a: first addend 72 * @b: second addend 73 * 74 * Return the potentially wrapped-around addition without 75 * tripping any wrap-around sanitizers that may be enabled. 76 */ 77 #define wrapping_add(type, a, b) \ 78 ({ \ 79 type __val; \ 80 __builtin_add_overflow(a, b, &__val); \ 81 __val; \ 82 }) 83 84 /** 85 * check_sub_overflow() - Calculate subtraction with overflow checking 86 * @a: minuend; value to subtract from 87 * @b: subtrahend; value to subtract from @a 88 * @d: pointer to store difference 89 * 90 * Returns true on wrap-around, false otherwise. 91 * 92 * *@d holds the results of the attempted subtraction, regardless of whether 93 * wrap-around occurred. 94 */ 95 #define check_sub_overflow(a, b, d) \ 96 __must_check_overflow(__builtin_sub_overflow(a, b, d)) 97 98 /** 99 * wrapping_sub() - Intentionally perform a wrapping subtraction 100 * @type: type for result of calculation 101 * @a: minuend; value to subtract from 102 * @b: subtrahend; value to subtract from @a 103 * 104 * Return the potentially wrapped-around subtraction without 105 * tripping any wrap-around sanitizers that may be enabled. 106 */ 107 #define wrapping_sub(type, a, b) \ 108 ({ \ 109 type __val; \ 110 __builtin_sub_overflow(a, b, &__val); \ 111 __val; \ 112 }) 113 114 /** 115 * check_mul_overflow() - Calculate multiplication with overflow checking 116 * @a: first factor 117 * @b: second factor 118 * @d: pointer to store product 119 * 120 * Returns true on wrap-around, false otherwise. 121 * 122 * *@d holds the results of the attempted multiplication, regardless of whether 123 * wrap-around occurred. 124 */ 125 #define check_mul_overflow(a, b, d) \ 126 __must_check_overflow(__builtin_mul_overflow(a, b, d)) 127 128 /** 129 * wrapping_mul() - Intentionally perform a wrapping multiplication 130 * @type: type for result of calculation 131 * @a: first factor 132 * @b: second factor 133 * 134 * Return the potentially wrapped-around multiplication without 135 * tripping any wrap-around sanitizers that may be enabled. 136 */ 137 #define wrapping_mul(type, a, b) \ 138 ({ \ 139 type __val; \ 140 __builtin_mul_overflow(a, b, &__val); \ 141 __val; \ 142 }) 143 144 /** 145 * check_shl_overflow() - Calculate a left-shifted value and check overflow 146 * @a: Value to be shifted 147 * @s: How many bits left to shift 148 * @d: Pointer to where to store the result 149 * 150 * Computes *@d = (@a << @s) 151 * 152 * Returns true if '*@d' cannot hold the result or when '@a << @s' doesn't 153 * make sense. Example conditions: 154 * 155 * - '@a << @s' causes bits to be lost when stored in *@d. 156 * - '@s' is garbage (e.g. negative) or so large that the result of 157 * '@a << @s' is guaranteed to be 0. 158 * - '@a' is negative. 159 * - '@a << @s' sets the sign bit, if any, in '*@d'. 160 * 161 * '*@d' will hold the results of the attempted shift, but is not 162 * considered "safe for use" if true is returned. 163 */ 164 #define check_shl_overflow(a, s, d) __must_check_overflow(({ \ 165 typeof(a) _a = a; \ 166 typeof(s) _s = s; \ 167 typeof(d) _d = d; \ 168 u64 _a_full = _a; \ 169 unsigned int _to_shift = \ 170 is_non_negative(_s) && _s < 8 * sizeof(*d) ? _s : 0; \ 171 *_d = (_a_full << _to_shift); \ 172 (_to_shift != _s || is_negative(*_d) || is_negative(_a) || \ 173 (*_d >> _to_shift) != _a); \ 174 })) 175 176 #define __overflows_type_constexpr(x, T) ( \ 177 is_unsigned_type(typeof(x)) ? \ 178 (x) > type_max(typeof(T)) : \ 179 is_unsigned_type(typeof(T)) ? \ 180 (x) < 0 || (x) > type_max(typeof(T)) : \ 181 (x) < type_min(typeof(T)) || (x) > type_max(typeof(T))) 182 183 #define __overflows_type(x, T) ({ \ 184 typeof(T) v = 0; \ 185 check_add_overflow((x), v, &v); \ 186 }) 187 188 /** 189 * overflows_type - helper for checking the overflows between value, variables, 190 * or data type 191 * 192 * @n: source constant value or variable to be checked 193 * @T: destination variable or data type proposed to store @x 194 * 195 * Compares the @x expression for whether or not it can safely fit in 196 * the storage of the type in @T. @x and @T can have different types. 197 * If @x is a constant expression, this will also resolve to a constant 198 * expression. 199 * 200 * Returns: true if overflow can occur, false otherwise. 201 */ 202 #define overflows_type(n, T) \ 203 __builtin_choose_expr(__is_constexpr(n), \ 204 __overflows_type_constexpr(n, T), \ 205 __overflows_type(n, T)) 206 207 /** 208 * castable_to_type - like __same_type(), but also allows for casted literals 209 * 210 * @n: variable or constant value 211 * @T: variable or data type 212 * 213 * Unlike the __same_type() macro, this allows a constant value as the 214 * first argument. If this value would not overflow into an assignment 215 * of the second argument's type, it returns true. Otherwise, this falls 216 * back to __same_type(). 217 */ 218 #define castable_to_type(n, T) \ 219 __builtin_choose_expr(__is_constexpr(n), \ 220 !__overflows_type_constexpr(n, T), \ 221 __same_type(n, T)) 222 223 /** 224 * size_mul() - Calculate size_t multiplication with saturation at SIZE_MAX 225 * @factor1: first factor 226 * @factor2: second factor 227 * 228 * Returns: calculate @factor1 * @factor2, both promoted to size_t, 229 * with any overflow causing the return value to be SIZE_MAX. The 230 * lvalue must be size_t to avoid implicit type conversion. 231 */ 232 static inline size_t __must_check size_mul(size_t factor1, size_t factor2) 233 { 234 size_t bytes; 235 236 if (check_mul_overflow(factor1, factor2, &bytes)) 237 return SIZE_MAX; 238 239 return bytes; 240 } 241 242 /** 243 * size_add() - Calculate size_t addition with saturation at SIZE_MAX 244 * @addend1: first addend 245 * @addend2: second addend 246 * 247 * Returns: calculate @addend1 + @addend2, both promoted to size_t, 248 * with any overflow causing the return value to be SIZE_MAX. The 249 * lvalue must be size_t to avoid implicit type conversion. 250 */ 251 static inline size_t __must_check size_add(size_t addend1, size_t addend2) 252 { 253 size_t bytes; 254 255 if (check_add_overflow(addend1, addend2, &bytes)) 256 return SIZE_MAX; 257 258 return bytes; 259 } 260 261 /** 262 * size_sub() - Calculate size_t subtraction with saturation at SIZE_MAX 263 * @minuend: value to subtract from 264 * @subtrahend: value to subtract from @minuend 265 * 266 * Returns: calculate @minuend - @subtrahend, both promoted to size_t, 267 * with any overflow causing the return value to be SIZE_MAX. For 268 * composition with the size_add() and size_mul() helpers, neither 269 * argument may be SIZE_MAX (or the result with be forced to SIZE_MAX). 270 * The lvalue must be size_t to avoid implicit type conversion. 271 */ 272 static inline size_t __must_check size_sub(size_t minuend, size_t subtrahend) 273 { 274 size_t bytes; 275 276 if (minuend == SIZE_MAX || subtrahend == SIZE_MAX || 277 check_sub_overflow(minuend, subtrahend, &bytes)) 278 return SIZE_MAX; 279 280 return bytes; 281 } 282 283 /** 284 * array_size() - Calculate size of 2-dimensional array. 285 * @a: dimension one 286 * @b: dimension two 287 * 288 * Calculates size of 2-dimensional array: @a * @b. 289 * 290 * Returns: number of bytes needed to represent the array or SIZE_MAX on 291 * overflow. 292 */ 293 #define array_size(a, b) size_mul(a, b) 294 295 /** 296 * array3_size() - Calculate size of 3-dimensional array. 297 * @a: dimension one 298 * @b: dimension two 299 * @c: dimension three 300 * 301 * Calculates size of 3-dimensional array: @a * @b * @c. 302 * 303 * Returns: number of bytes needed to represent the array or SIZE_MAX on 304 * overflow. 305 */ 306 #define array3_size(a, b, c) size_mul(size_mul(a, b), c) 307 308 /** 309 * flex_array_size() - Calculate size of a flexible array member 310 * within an enclosing structure. 311 * @p: Pointer to the structure. 312 * @member: Name of the flexible array member. 313 * @count: Number of elements in the array. 314 * 315 * Calculates size of a flexible array of @count number of @member 316 * elements, at the end of structure @p. 317 * 318 * Return: number of bytes needed or SIZE_MAX on overflow. 319 */ 320 #define flex_array_size(p, member, count) \ 321 __builtin_choose_expr(__is_constexpr(count), \ 322 (count) * sizeof(*(p)->member) + __must_be_array((p)->member), \ 323 size_mul(count, sizeof(*(p)->member) + __must_be_array((p)->member))) 324 325 /** 326 * struct_size() - Calculate size of structure with trailing flexible array. 327 * @p: Pointer to the structure. 328 * @member: Name of the array member. 329 * @count: Number of elements in the array. 330 * 331 * Calculates size of memory needed for structure of @p followed by an 332 * array of @count number of @member elements. 333 * 334 * Return: number of bytes needed or SIZE_MAX on overflow. 335 */ 336 #define struct_size(p, member, count) \ 337 __builtin_choose_expr(__is_constexpr(count), \ 338 sizeof(*(p)) + flex_array_size(p, member, count), \ 339 size_add(sizeof(*(p)), flex_array_size(p, member, count))) 340 341 /** 342 * struct_size_t() - Calculate size of structure with trailing flexible array 343 * @type: structure type name. 344 * @member: Name of the array member. 345 * @count: Number of elements in the array. 346 * 347 * Calculates size of memory needed for structure @type followed by an 348 * array of @count number of @member elements. Prefer using struct_size() 349 * when possible instead, to keep calculations associated with a specific 350 * instance variable of type @type. 351 * 352 * Return: number of bytes needed or SIZE_MAX on overflow. 353 */ 354 #define struct_size_t(type, member, count) \ 355 struct_size((type *)NULL, member, count) 356 357 /** 358 * _DEFINE_FLEX() - helper macro for DEFINE_FLEX() family. 359 * Enables caller macro to pass (different) initializer. 360 * 361 * @type: structure type name, including "struct" keyword. 362 * @name: Name for a variable to define. 363 * @member: Name of the array member. 364 * @count: Number of elements in the array; must be compile-time const. 365 * @initializer: initializer expression (could be empty for no init). 366 */ 367 #define _DEFINE_FLEX(type, name, member, count, initializer) \ 368 _Static_assert(__builtin_constant_p(count), \ 369 "onstack flex array members require compile-time const count"); \ 370 union { \ 371 u8 bytes[struct_size_t(type, member, count)]; \ 372 type obj; \ 373 } name##_u initializer; \ 374 type *name = (type *)&name##_u 375 376 /** 377 * DEFINE_FLEX() - Define an on-stack instance of structure with a trailing 378 * flexible array member. 379 * 380 * @type: structure type name, including "struct" keyword. 381 * @name: Name for a variable to define. 382 * @member: Name of the array member. 383 * @count: Number of elements in the array; must be compile-time const. 384 * 385 * Define a zeroed, on-stack, instance of @type structure with a trailing 386 * flexible array member. 387 * Use __struct_size(@name) to get compile-time size of it afterwards. 388 */ 389 #define DEFINE_FLEX(type, name, member, count) \ 390 _DEFINE_FLEX(type, name, member, count, = {}) 391 392 #endif /* __LINUX_OVERFLOW_H */ 393