1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */ 2 #ifndef __LINUX_OVERFLOW_H 3 #define __LINUX_OVERFLOW_H 4 5 #include <linux/compiler.h> 6 #include <linux/limits.h> 7 #include <linux/const.h> 8 9 /* 10 * We need to compute the minimum and maximum values representable in a given 11 * type. These macros may also be useful elsewhere. It would seem more obvious 12 * to do something like: 13 * 14 * #define type_min(T) (T)(is_signed_type(T) ? (T)1 << (8*sizeof(T)-1) : 0) 15 * #define type_max(T) (T)(is_signed_type(T) ? ((T)1 << (8*sizeof(T)-1)) - 1 : ~(T)0) 16 * 17 * Unfortunately, the middle expressions, strictly speaking, have 18 * undefined behaviour, and at least some versions of gcc warn about 19 * the type_max expression (but not if -fsanitize=undefined is in 20 * effect; in that case, the warning is deferred to runtime...). 21 * 22 * The slightly excessive casting in type_min is to make sure the 23 * macros also produce sensible values for the exotic type _Bool. [The 24 * overflow checkers only almost work for _Bool, but that's 25 * a-feature-not-a-bug, since people shouldn't be doing arithmetic on 26 * _Bools. Besides, the gcc builtins don't allow _Bool* as third 27 * argument.] 28 * 29 * Idea stolen from 30 * https://mail-index.netbsd.org/tech-misc/2007/02/05/0000.html - 31 * credit to Christian Biere. 32 */ 33 #define __type_half_max(type) ((type)1 << (8*sizeof(type) - 1 - is_signed_type(type))) 34 #define type_max(T) ((T)((__type_half_max(T) - 1) + __type_half_max(T))) 35 #define type_min(T) ((T)((T)-type_max(T)-(T)1)) 36 37 /* 38 * Avoids triggering -Wtype-limits compilation warning, 39 * while using unsigned data types to check a < 0. 40 */ 41 #define is_non_negative(a) ((a) > 0 || (a) == 0) 42 #define is_negative(a) (!(is_non_negative(a))) 43 44 /* 45 * Allows for effectively applying __must_check to a macro so we can have 46 * both the type-agnostic benefits of the macros while also being able to 47 * enforce that the return value is, in fact, checked. 48 */ 49 static inline bool __must_check __must_check_overflow(bool overflow) 50 { 51 return unlikely(overflow); 52 } 53 54 /** 55 * check_add_overflow() - Calculate addition with overflow checking 56 * @a: first addend 57 * @b: second addend 58 * @d: pointer to store sum 59 * 60 * Returns true on wrap-around, false otherwise. 61 * 62 * *@d holds the results of the attempted addition, regardless of whether 63 * wrap-around occurred. 64 */ 65 #define check_add_overflow(a, b, d) \ 66 __must_check_overflow(__builtin_add_overflow(a, b, d)) 67 68 /** 69 * wrapping_add() - Intentionally perform a wrapping addition 70 * @type: type for result of calculation 71 * @a: first addend 72 * @b: second addend 73 * 74 * Return the potentially wrapped-around addition without 75 * tripping any wrap-around sanitizers that may be enabled. 76 */ 77 #define wrapping_add(type, a, b) \ 78 ({ \ 79 type __val; \ 80 __builtin_add_overflow(a, b, &__val); \ 81 __val; \ 82 }) 83 84 /** 85 * wrapping_assign_add() - Intentionally perform a wrapping increment assignment 86 * @var: variable to be incremented 87 * @offset: amount to add 88 * 89 * Increments @var by @offset with wrap-around. Returns the resulting 90 * value of @var. Will not trip any wrap-around sanitizers. 91 * 92 * Returns the new value of @var. 93 */ 94 #define wrapping_assign_add(var, offset) \ 95 ({ \ 96 typeof(var) *__ptr = &(var); \ 97 *__ptr = wrapping_add(typeof(var), *__ptr, offset); \ 98 }) 99 100 /** 101 * check_sub_overflow() - Calculate subtraction with overflow checking 102 * @a: minuend; value to subtract from 103 * @b: subtrahend; value to subtract from @a 104 * @d: pointer to store difference 105 * 106 * Returns true on wrap-around, false otherwise. 107 * 108 * *@d holds the results of the attempted subtraction, regardless of whether 109 * wrap-around occurred. 110 */ 111 #define check_sub_overflow(a, b, d) \ 112 __must_check_overflow(__builtin_sub_overflow(a, b, d)) 113 114 /** 115 * wrapping_sub() - Intentionally perform a wrapping subtraction 116 * @type: type for result of calculation 117 * @a: minuend; value to subtract from 118 * @b: subtrahend; value to subtract from @a 119 * 120 * Return the potentially wrapped-around subtraction without 121 * tripping any wrap-around sanitizers that may be enabled. 122 */ 123 #define wrapping_sub(type, a, b) \ 124 ({ \ 125 type __val; \ 126 __builtin_sub_overflow(a, b, &__val); \ 127 __val; \ 128 }) 129 130 /** 131 * wrapping_assign_sub() - Intentionally perform a wrapping decrement assign 132 * @var: variable to be decremented 133 * @offset: amount to subtract 134 * 135 * Decrements @var by @offset with wrap-around. Returns the resulting 136 * value of @var. Will not trip any wrap-around sanitizers. 137 * 138 * Returns the new value of @var. 139 */ 140 #define wrapping_assign_sub(var, offset) \ 141 ({ \ 142 typeof(var) *__ptr = &(var); \ 143 *__ptr = wrapping_sub(typeof(var), *__ptr, offset); \ 144 }) 145 146 /** 147 * check_mul_overflow() - Calculate multiplication with overflow checking 148 * @a: first factor 149 * @b: second factor 150 * @d: pointer to store product 151 * 152 * Returns true on wrap-around, false otherwise. 153 * 154 * *@d holds the results of the attempted multiplication, regardless of whether 155 * wrap-around occurred. 156 */ 157 #define check_mul_overflow(a, b, d) \ 158 __must_check_overflow(__builtin_mul_overflow(a, b, d)) 159 160 /** 161 * wrapping_mul() - Intentionally perform a wrapping multiplication 162 * @type: type for result of calculation 163 * @a: first factor 164 * @b: second factor 165 * 166 * Return the potentially wrapped-around multiplication without 167 * tripping any wrap-around sanitizers that may be enabled. 168 */ 169 #define wrapping_mul(type, a, b) \ 170 ({ \ 171 type __val; \ 172 __builtin_mul_overflow(a, b, &__val); \ 173 __val; \ 174 }) 175 176 /** 177 * check_shl_overflow() - Calculate a left-shifted value and check overflow 178 * @a: Value to be shifted 179 * @s: How many bits left to shift 180 * @d: Pointer to where to store the result 181 * 182 * Computes *@d = (@a << @s) 183 * 184 * Returns true if '*@d' cannot hold the result or when '@a << @s' doesn't 185 * make sense. Example conditions: 186 * 187 * - '@a << @s' causes bits to be lost when stored in *@d. 188 * - '@s' is garbage (e.g. negative) or so large that the result of 189 * '@a << @s' is guaranteed to be 0. 190 * - '@a' is negative. 191 * - '@a << @s' sets the sign bit, if any, in '*@d'. 192 * 193 * '*@d' will hold the results of the attempted shift, but is not 194 * considered "safe for use" if true is returned. 195 */ 196 #define check_shl_overflow(a, s, d) __must_check_overflow(({ \ 197 typeof(a) _a = a; \ 198 typeof(s) _s = s; \ 199 typeof(d) _d = d; \ 200 u64 _a_full = _a; \ 201 unsigned int _to_shift = \ 202 is_non_negative(_s) && _s < 8 * sizeof(*d) ? _s : 0; \ 203 *_d = (_a_full << _to_shift); \ 204 (_to_shift != _s || is_negative(*_d) || is_negative(_a) || \ 205 (*_d >> _to_shift) != _a); \ 206 })) 207 208 #define __overflows_type_constexpr(x, T) ( \ 209 is_unsigned_type(typeof(x)) ? \ 210 (x) > type_max(typeof(T)) : \ 211 is_unsigned_type(typeof(T)) ? \ 212 (x) < 0 || (x) > type_max(typeof(T)) : \ 213 (x) < type_min(typeof(T)) || (x) > type_max(typeof(T))) 214 215 #define __overflows_type(x, T) ({ \ 216 typeof(T) v = 0; \ 217 check_add_overflow((x), v, &v); \ 218 }) 219 220 /** 221 * overflows_type - helper for checking the overflows between value, variables, 222 * or data type 223 * 224 * @n: source constant value or variable to be checked 225 * @T: destination variable or data type proposed to store @x 226 * 227 * Compares the @x expression for whether or not it can safely fit in 228 * the storage of the type in @T. @x and @T can have different types. 229 * If @x is a constant expression, this will also resolve to a constant 230 * expression. 231 * 232 * Returns: true if overflow can occur, false otherwise. 233 */ 234 #define overflows_type(n, T) \ 235 __builtin_choose_expr(__is_constexpr(n), \ 236 __overflows_type_constexpr(n, T), \ 237 __overflows_type(n, T)) 238 239 /** 240 * castable_to_type - like __same_type(), but also allows for casted literals 241 * 242 * @n: variable or constant value 243 * @T: variable or data type 244 * 245 * Unlike the __same_type() macro, this allows a constant value as the 246 * first argument. If this value would not overflow into an assignment 247 * of the second argument's type, it returns true. Otherwise, this falls 248 * back to __same_type(). 249 */ 250 #define castable_to_type(n, T) \ 251 __builtin_choose_expr(__is_constexpr(n), \ 252 !__overflows_type_constexpr(n, T), \ 253 __same_type(n, T)) 254 255 /** 256 * size_mul() - Calculate size_t multiplication with saturation at SIZE_MAX 257 * @factor1: first factor 258 * @factor2: second factor 259 * 260 * Returns: calculate @factor1 * @factor2, both promoted to size_t, 261 * with any overflow causing the return value to be SIZE_MAX. The 262 * lvalue must be size_t to avoid implicit type conversion. 263 */ 264 static inline size_t __must_check size_mul(size_t factor1, size_t factor2) 265 { 266 size_t bytes; 267 268 if (check_mul_overflow(factor1, factor2, &bytes)) 269 return SIZE_MAX; 270 271 return bytes; 272 } 273 274 /** 275 * size_add() - Calculate size_t addition with saturation at SIZE_MAX 276 * @addend1: first addend 277 * @addend2: second addend 278 * 279 * Returns: calculate @addend1 + @addend2, both promoted to size_t, 280 * with any overflow causing the return value to be SIZE_MAX. The 281 * lvalue must be size_t to avoid implicit type conversion. 282 */ 283 static inline size_t __must_check size_add(size_t addend1, size_t addend2) 284 { 285 size_t bytes; 286 287 if (check_add_overflow(addend1, addend2, &bytes)) 288 return SIZE_MAX; 289 290 return bytes; 291 } 292 293 /** 294 * size_sub() - Calculate size_t subtraction with saturation at SIZE_MAX 295 * @minuend: value to subtract from 296 * @subtrahend: value to subtract from @minuend 297 * 298 * Returns: calculate @minuend - @subtrahend, both promoted to size_t, 299 * with any overflow causing the return value to be SIZE_MAX. For 300 * composition with the size_add() and size_mul() helpers, neither 301 * argument may be SIZE_MAX (or the result with be forced to SIZE_MAX). 302 * The lvalue must be size_t to avoid implicit type conversion. 303 */ 304 static inline size_t __must_check size_sub(size_t minuend, size_t subtrahend) 305 { 306 size_t bytes; 307 308 if (minuend == SIZE_MAX || subtrahend == SIZE_MAX || 309 check_sub_overflow(minuend, subtrahend, &bytes)) 310 return SIZE_MAX; 311 312 return bytes; 313 } 314 315 /** 316 * array_size() - Calculate size of 2-dimensional array. 317 * @a: dimension one 318 * @b: dimension two 319 * 320 * Calculates size of 2-dimensional array: @a * @b. 321 * 322 * Returns: number of bytes needed to represent the array or SIZE_MAX on 323 * overflow. 324 */ 325 #define array_size(a, b) size_mul(a, b) 326 327 /** 328 * array3_size() - Calculate size of 3-dimensional array. 329 * @a: dimension one 330 * @b: dimension two 331 * @c: dimension three 332 * 333 * Calculates size of 3-dimensional array: @a * @b * @c. 334 * 335 * Returns: number of bytes needed to represent the array or SIZE_MAX on 336 * overflow. 337 */ 338 #define array3_size(a, b, c) size_mul(size_mul(a, b), c) 339 340 /** 341 * flex_array_size() - Calculate size of a flexible array member 342 * within an enclosing structure. 343 * @p: Pointer to the structure. 344 * @member: Name of the flexible array member. 345 * @count: Number of elements in the array. 346 * 347 * Calculates size of a flexible array of @count number of @member 348 * elements, at the end of structure @p. 349 * 350 * Return: number of bytes needed or SIZE_MAX on overflow. 351 */ 352 #define flex_array_size(p, member, count) \ 353 __builtin_choose_expr(__is_constexpr(count), \ 354 (count) * sizeof(*(p)->member) + __must_be_array((p)->member), \ 355 size_mul(count, sizeof(*(p)->member) + __must_be_array((p)->member))) 356 357 /** 358 * struct_size() - Calculate size of structure with trailing flexible array. 359 * @p: Pointer to the structure. 360 * @member: Name of the array member. 361 * @count: Number of elements in the array. 362 * 363 * Calculates size of memory needed for structure of @p followed by an 364 * array of @count number of @member elements. 365 * 366 * Return: number of bytes needed or SIZE_MAX on overflow. 367 */ 368 #define struct_size(p, member, count) \ 369 __builtin_choose_expr(__is_constexpr(count), \ 370 sizeof(*(p)) + flex_array_size(p, member, count), \ 371 size_add(sizeof(*(p)), flex_array_size(p, member, count))) 372 373 /** 374 * struct_size_t() - Calculate size of structure with trailing flexible array 375 * @type: structure type name. 376 * @member: Name of the array member. 377 * @count: Number of elements in the array. 378 * 379 * Calculates size of memory needed for structure @type followed by an 380 * array of @count number of @member elements. Prefer using struct_size() 381 * when possible instead, to keep calculations associated with a specific 382 * instance variable of type @type. 383 * 384 * Return: number of bytes needed or SIZE_MAX on overflow. 385 */ 386 #define struct_size_t(type, member, count) \ 387 struct_size((type *)NULL, member, count) 388 389 /** 390 * _DEFINE_FLEX() - helper macro for DEFINE_FLEX() family. 391 * Enables caller macro to pass (different) initializer. 392 * 393 * @type: structure type name, including "struct" keyword. 394 * @name: Name for a variable to define. 395 * @member: Name of the array member. 396 * @count: Number of elements in the array; must be compile-time const. 397 * @initializer: initializer expression (could be empty for no init). 398 */ 399 #define _DEFINE_FLEX(type, name, member, count, initializer) \ 400 _Static_assert(__builtin_constant_p(count), \ 401 "onstack flex array members require compile-time const count"); \ 402 union { \ 403 u8 bytes[struct_size_t(type, member, count)]; \ 404 type obj; \ 405 } name##_u initializer; \ 406 type *name = (type *)&name##_u 407 408 /** 409 * DEFINE_FLEX() - Define an on-stack instance of structure with a trailing 410 * flexible array member. 411 * 412 * @type: structure type name, including "struct" keyword. 413 * @name: Name for a variable to define. 414 * @member: Name of the array member. 415 * @count: Number of elements in the array; must be compile-time const. 416 * 417 * Define a zeroed, on-stack, instance of @type structure with a trailing 418 * flexible array member. 419 * Use __struct_size(@name) to get compile-time size of it afterwards. 420 */ 421 #define DEFINE_FLEX(type, name, member, count) \ 422 _DEFINE_FLEX(type, name, member, count, = {}) 423 424 #endif /* __LINUX_OVERFLOW_H */ 425