xref: /linux-6.15/include/linux/objpool.h (revision b4edb8d2)
1*b4edb8d2Swuqiang.matt /* SPDX-License-Identifier: GPL-2.0 */
2*b4edb8d2Swuqiang.matt 
3*b4edb8d2Swuqiang.matt #ifndef _LINUX_OBJPOOL_H
4*b4edb8d2Swuqiang.matt #define _LINUX_OBJPOOL_H
5*b4edb8d2Swuqiang.matt 
6*b4edb8d2Swuqiang.matt #include <linux/types.h>
7*b4edb8d2Swuqiang.matt #include <linux/refcount.h>
8*b4edb8d2Swuqiang.matt 
9*b4edb8d2Swuqiang.matt /*
10*b4edb8d2Swuqiang.matt  * objpool: ring-array based lockless MPMC queue
11*b4edb8d2Swuqiang.matt  *
12*b4edb8d2Swuqiang.matt  * Copyright: [email protected],[email protected]
13*b4edb8d2Swuqiang.matt  *
14*b4edb8d2Swuqiang.matt  * objpool is a scalable implementation of high performance queue for
15*b4edb8d2Swuqiang.matt  * object allocation and reclamation, such as kretprobe instances.
16*b4edb8d2Swuqiang.matt  *
17*b4edb8d2Swuqiang.matt  * With leveraging percpu ring-array to mitigate hot spots of memory
18*b4edb8d2Swuqiang.matt  * contention, it delivers near-linear scalability for high parallel
19*b4edb8d2Swuqiang.matt  * scenarios. The objpool is best suited for the following cases:
20*b4edb8d2Swuqiang.matt  * 1) Memory allocation or reclamation are prohibited or too expensive
21*b4edb8d2Swuqiang.matt  * 2) Consumers are of different priorities, such as irqs and threads
22*b4edb8d2Swuqiang.matt  *
23*b4edb8d2Swuqiang.matt  * Limitations:
24*b4edb8d2Swuqiang.matt  * 1) Maximum objects (capacity) is fixed after objpool creation
25*b4edb8d2Swuqiang.matt  * 2) All pre-allocated objects are managed in percpu ring array,
26*b4edb8d2Swuqiang.matt  *    which consumes more memory than linked lists
27*b4edb8d2Swuqiang.matt  */
28*b4edb8d2Swuqiang.matt 
29*b4edb8d2Swuqiang.matt /**
30*b4edb8d2Swuqiang.matt  * struct objpool_slot - percpu ring array of objpool
31*b4edb8d2Swuqiang.matt  * @head: head sequence of the local ring array (to retrieve at)
32*b4edb8d2Swuqiang.matt  * @tail: tail sequence of the local ring array (to append at)
33*b4edb8d2Swuqiang.matt  * @last: the last sequence number marked as ready for retrieve
34*b4edb8d2Swuqiang.matt  * @mask: bits mask for modulo capacity to compute array indexes
35*b4edb8d2Swuqiang.matt  * @entries: object entries on this slot
36*b4edb8d2Swuqiang.matt  *
37*b4edb8d2Swuqiang.matt  * Represents a cpu-local array-based ring buffer, its size is specialized
38*b4edb8d2Swuqiang.matt  * during initialization of object pool. The percpu objpool node is to be
39*b4edb8d2Swuqiang.matt  * allocated from local memory for NUMA system, and to be kept compact in
40*b4edb8d2Swuqiang.matt  * continuous memory: CPU assigned number of objects are stored just after
41*b4edb8d2Swuqiang.matt  * the body of objpool_node.
42*b4edb8d2Swuqiang.matt  *
43*b4edb8d2Swuqiang.matt  * Real size of the ring array is far too smaller than the value range of
44*b4edb8d2Swuqiang.matt  * head and tail, typed as uint32_t: [0, 2^32), so only lower bits (mask)
45*b4edb8d2Swuqiang.matt  * of head and tail are used as the actual position in the ring array. In
46*b4edb8d2Swuqiang.matt  * general the ring array is acting like a small sliding window, which is
47*b4edb8d2Swuqiang.matt  * always moving forward in the loop of [0, 2^32).
48*b4edb8d2Swuqiang.matt  */
49*b4edb8d2Swuqiang.matt struct objpool_slot {
50*b4edb8d2Swuqiang.matt 	uint32_t            head;
51*b4edb8d2Swuqiang.matt 	uint32_t            tail;
52*b4edb8d2Swuqiang.matt 	uint32_t            last;
53*b4edb8d2Swuqiang.matt 	uint32_t            mask;
54*b4edb8d2Swuqiang.matt 	void               *entries[];
55*b4edb8d2Swuqiang.matt } __packed;
56*b4edb8d2Swuqiang.matt 
57*b4edb8d2Swuqiang.matt struct objpool_head;
58*b4edb8d2Swuqiang.matt 
59*b4edb8d2Swuqiang.matt /*
60*b4edb8d2Swuqiang.matt  * caller-specified callback for object initial setup, it's only called
61*b4edb8d2Swuqiang.matt  * once for each object (just after the memory allocation of the object)
62*b4edb8d2Swuqiang.matt  */
63*b4edb8d2Swuqiang.matt typedef int (*objpool_init_obj_cb)(void *obj, void *context);
64*b4edb8d2Swuqiang.matt 
65*b4edb8d2Swuqiang.matt /* caller-specified cleanup callback for objpool destruction */
66*b4edb8d2Swuqiang.matt typedef int (*objpool_fini_cb)(struct objpool_head *head, void *context);
67*b4edb8d2Swuqiang.matt 
68*b4edb8d2Swuqiang.matt /**
69*b4edb8d2Swuqiang.matt  * struct objpool_head - object pooling metadata
70*b4edb8d2Swuqiang.matt  * @obj_size:   object size, aligned to sizeof(void *)
71*b4edb8d2Swuqiang.matt  * @nr_objs:    total objs (to be pre-allocated with objpool)
72*b4edb8d2Swuqiang.matt  * @nr_cpus:    local copy of nr_cpu_ids
73*b4edb8d2Swuqiang.matt  * @capacity:   max objs can be managed by one objpool_slot
74*b4edb8d2Swuqiang.matt  * @gfp:        gfp flags for kmalloc & vmalloc
75*b4edb8d2Swuqiang.matt  * @ref:        refcount of objpool
76*b4edb8d2Swuqiang.matt  * @flags:      flags for objpool management
77*b4edb8d2Swuqiang.matt  * @cpu_slots:  pointer to the array of objpool_slot
78*b4edb8d2Swuqiang.matt  * @release:    resource cleanup callback
79*b4edb8d2Swuqiang.matt  * @context:    caller-provided context
80*b4edb8d2Swuqiang.matt  */
81*b4edb8d2Swuqiang.matt struct objpool_head {
82*b4edb8d2Swuqiang.matt 	int                     obj_size;
83*b4edb8d2Swuqiang.matt 	int                     nr_objs;
84*b4edb8d2Swuqiang.matt 	int                     nr_cpus;
85*b4edb8d2Swuqiang.matt 	int                     capacity;
86*b4edb8d2Swuqiang.matt 	gfp_t                   gfp;
87*b4edb8d2Swuqiang.matt 	refcount_t              ref;
88*b4edb8d2Swuqiang.matt 	unsigned long           flags;
89*b4edb8d2Swuqiang.matt 	struct objpool_slot   **cpu_slots;
90*b4edb8d2Swuqiang.matt 	objpool_fini_cb         release;
91*b4edb8d2Swuqiang.matt 	void                   *context;
92*b4edb8d2Swuqiang.matt };
93*b4edb8d2Swuqiang.matt 
94*b4edb8d2Swuqiang.matt #define OBJPOOL_NR_OBJECT_MAX	(1UL << 24) /* maximum numbers of total objects */
95*b4edb8d2Swuqiang.matt #define OBJPOOL_OBJECT_SIZE_MAX	(1UL << 16) /* maximum size of an object */
96*b4edb8d2Swuqiang.matt 
97*b4edb8d2Swuqiang.matt /**
98*b4edb8d2Swuqiang.matt  * objpool_init() - initialize objpool and pre-allocated objects
99*b4edb8d2Swuqiang.matt  * @pool:    the object pool to be initialized, declared by caller
100*b4edb8d2Swuqiang.matt  * @nr_objs: total objects to be pre-allocated by this object pool
101*b4edb8d2Swuqiang.matt  * @object_size: size of an object (should be > 0)
102*b4edb8d2Swuqiang.matt  * @gfp:     flags for memory allocation (via kmalloc or vmalloc)
103*b4edb8d2Swuqiang.matt  * @context: user context for object initialization callback
104*b4edb8d2Swuqiang.matt  * @objinit: object initialization callback for extra setup
105*b4edb8d2Swuqiang.matt  * @release: cleanup callback for extra cleanup task
106*b4edb8d2Swuqiang.matt  *
107*b4edb8d2Swuqiang.matt  * return value: 0 for success, otherwise error code
108*b4edb8d2Swuqiang.matt  *
109*b4edb8d2Swuqiang.matt  * All pre-allocated objects are to be zeroed after memory allocation.
110*b4edb8d2Swuqiang.matt  * Caller could do extra initialization in objinit callback. objinit()
111*b4edb8d2Swuqiang.matt  * will be called just after slot allocation and called only once for
112*b4edb8d2Swuqiang.matt  * each object. After that the objpool won't touch any content of the
113*b4edb8d2Swuqiang.matt  * objects. It's caller's duty to perform reinitialization after each
114*b4edb8d2Swuqiang.matt  * pop (object allocation) or do clearance before each push (object
115*b4edb8d2Swuqiang.matt  * reclamation).
116*b4edb8d2Swuqiang.matt  */
117*b4edb8d2Swuqiang.matt int objpool_init(struct objpool_head *pool, int nr_objs, int object_size,
118*b4edb8d2Swuqiang.matt 		 gfp_t gfp, void *context, objpool_init_obj_cb objinit,
119*b4edb8d2Swuqiang.matt 		 objpool_fini_cb release);
120*b4edb8d2Swuqiang.matt 
121*b4edb8d2Swuqiang.matt /**
122*b4edb8d2Swuqiang.matt  * objpool_pop() - allocate an object from objpool
123*b4edb8d2Swuqiang.matt  * @pool: object pool
124*b4edb8d2Swuqiang.matt  *
125*b4edb8d2Swuqiang.matt  * return value: object ptr or NULL if failed
126*b4edb8d2Swuqiang.matt  */
127*b4edb8d2Swuqiang.matt void *objpool_pop(struct objpool_head *pool);
128*b4edb8d2Swuqiang.matt 
129*b4edb8d2Swuqiang.matt /**
130*b4edb8d2Swuqiang.matt  * objpool_push() - reclaim the object and return back to objpool
131*b4edb8d2Swuqiang.matt  * @obj:  object ptr to be pushed to objpool
132*b4edb8d2Swuqiang.matt  * @pool: object pool
133*b4edb8d2Swuqiang.matt  *
134*b4edb8d2Swuqiang.matt  * return: 0 or error code (it fails only when user tries to push
135*b4edb8d2Swuqiang.matt  * the same object multiple times or wrong "objects" into objpool)
136*b4edb8d2Swuqiang.matt  */
137*b4edb8d2Swuqiang.matt int objpool_push(void *obj, struct objpool_head *pool);
138*b4edb8d2Swuqiang.matt 
139*b4edb8d2Swuqiang.matt /**
140*b4edb8d2Swuqiang.matt  * objpool_drop() - discard the object and deref objpool
141*b4edb8d2Swuqiang.matt  * @obj:  object ptr to be discarded
142*b4edb8d2Swuqiang.matt  * @pool: object pool
143*b4edb8d2Swuqiang.matt  *
144*b4edb8d2Swuqiang.matt  * return: 0 if objpool was released; -EAGAIN if there are still
145*b4edb8d2Swuqiang.matt  *         outstanding objects
146*b4edb8d2Swuqiang.matt  *
147*b4edb8d2Swuqiang.matt  * objpool_drop is normally for the release of outstanding objects
148*b4edb8d2Swuqiang.matt  * after objpool cleanup (objpool_fini). Thinking of this example:
149*b4edb8d2Swuqiang.matt  * kretprobe is unregistered and objpool_fini() is called to release
150*b4edb8d2Swuqiang.matt  * all remained objects, but there are still objects being used by
151*b4edb8d2Swuqiang.matt  * unfinished kretprobes (like blockable function: sys_accept). So
152*b4edb8d2Swuqiang.matt  * only when the last outstanding object is dropped could the whole
153*b4edb8d2Swuqiang.matt  * objpool be released along with the call of objpool_drop()
154*b4edb8d2Swuqiang.matt  */
155*b4edb8d2Swuqiang.matt int objpool_drop(void *obj, struct objpool_head *pool);
156*b4edb8d2Swuqiang.matt 
157*b4edb8d2Swuqiang.matt /**
158*b4edb8d2Swuqiang.matt  * objpool_free() - release objpool forcely (all objects to be freed)
159*b4edb8d2Swuqiang.matt  * @pool: object pool to be released
160*b4edb8d2Swuqiang.matt  */
161*b4edb8d2Swuqiang.matt void objpool_free(struct objpool_head *pool);
162*b4edb8d2Swuqiang.matt 
163*b4edb8d2Swuqiang.matt /**
164*b4edb8d2Swuqiang.matt  * objpool_fini() - deref object pool (also releasing unused objects)
165*b4edb8d2Swuqiang.matt  * @pool: object pool to be dereferenced
166*b4edb8d2Swuqiang.matt  *
167*b4edb8d2Swuqiang.matt  * objpool_fini() will try to release all remained free objects and
168*b4edb8d2Swuqiang.matt  * then drop an extra reference of the objpool. If all objects are
169*b4edb8d2Swuqiang.matt  * already returned to objpool (so called synchronous use cases),
170*b4edb8d2Swuqiang.matt  * the objpool itself will be freed together. But if there are still
171*b4edb8d2Swuqiang.matt  * outstanding objects (so called asynchronous use cases, such like
172*b4edb8d2Swuqiang.matt  * blockable kretprobe), the objpool won't be released until all
173*b4edb8d2Swuqiang.matt  * the outstanding objects are dropped, but the caller must assure
174*b4edb8d2Swuqiang.matt  * there are no concurrent objpool_push() on the fly. Normally RCU
175*b4edb8d2Swuqiang.matt  * is being required to make sure all ongoing objpool_push() must
176*b4edb8d2Swuqiang.matt  * be finished before calling objpool_fini(), so does test_objpool,
177*b4edb8d2Swuqiang.matt  * kretprobe or rethook
178*b4edb8d2Swuqiang.matt  */
179*b4edb8d2Swuqiang.matt void objpool_fini(struct objpool_head *pool);
180*b4edb8d2Swuqiang.matt 
181*b4edb8d2Swuqiang.matt #endif /* _LINUX_OBJPOOL_H */
182