1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the Interfaces handler. 8 * 9 * Version: @(#)dev.h 1.0.10 08/12/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <[email protected]> 13 * Corey Minyard <[email protected]> 14 * Donald J. Becker, <[email protected]> 15 * Alan Cox, <[email protected]> 16 * Bjorn Ekwall. <[email protected]> 17 * Pekka Riikonen <[email protected]> 18 * 19 * Moved to /usr/include/linux for NET3 20 */ 21 #ifndef _LINUX_NETDEVICE_H 22 #define _LINUX_NETDEVICE_H 23 24 #include <linux/timer.h> 25 #include <linux/bug.h> 26 #include <linux/delay.h> 27 #include <linux/atomic.h> 28 #include <linux/prefetch.h> 29 #include <asm/cache.h> 30 #include <asm/byteorder.h> 31 #include <asm/local.h> 32 33 #include <linux/percpu.h> 34 #include <linux/rculist.h> 35 #include <linux/workqueue.h> 36 #include <linux/dynamic_queue_limits.h> 37 38 #include <net/net_namespace.h> 39 #ifdef CONFIG_DCB 40 #include <net/dcbnl.h> 41 #endif 42 #include <net/netprio_cgroup.h> 43 44 #include <linux/netdev_features.h> 45 #include <linux/neighbour.h> 46 #include <uapi/linux/netdevice.h> 47 #include <uapi/linux/if_bonding.h> 48 #include <uapi/linux/pkt_cls.h> 49 #include <uapi/linux/netdev.h> 50 #include <linux/hashtable.h> 51 #include <linux/rbtree.h> 52 #include <net/net_trackers.h> 53 #include <net/net_debug.h> 54 #include <net/dropreason-core.h> 55 56 struct netpoll_info; 57 struct device; 58 struct ethtool_ops; 59 struct kernel_hwtstamp_config; 60 struct phy_device; 61 struct dsa_port; 62 struct ip_tunnel_parm; 63 struct macsec_context; 64 struct macsec_ops; 65 struct netdev_name_node; 66 struct sd_flow_limit; 67 struct sfp_bus; 68 /* 802.11 specific */ 69 struct wireless_dev; 70 /* 802.15.4 specific */ 71 struct wpan_dev; 72 struct mpls_dev; 73 /* UDP Tunnel offloads */ 74 struct udp_tunnel_info; 75 struct udp_tunnel_nic_info; 76 struct udp_tunnel_nic; 77 struct bpf_prog; 78 struct xdp_buff; 79 struct xdp_frame; 80 struct xdp_metadata_ops; 81 struct xdp_md; 82 /* DPLL specific */ 83 struct dpll_pin; 84 85 typedef u32 xdp_features_t; 86 87 void synchronize_net(void); 88 void netdev_set_default_ethtool_ops(struct net_device *dev, 89 const struct ethtool_ops *ops); 90 void netdev_sw_irq_coalesce_default_on(struct net_device *dev); 91 92 /* Backlog congestion levels */ 93 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 94 #define NET_RX_DROP 1 /* packet dropped */ 95 96 #define MAX_NEST_DEV 8 97 98 /* 99 * Transmit return codes: transmit return codes originate from three different 100 * namespaces: 101 * 102 * - qdisc return codes 103 * - driver transmit return codes 104 * - errno values 105 * 106 * Drivers are allowed to return any one of those in their hard_start_xmit() 107 * function. Real network devices commonly used with qdiscs should only return 108 * the driver transmit return codes though - when qdiscs are used, the actual 109 * transmission happens asynchronously, so the value is not propagated to 110 * higher layers. Virtual network devices transmit synchronously; in this case 111 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 112 * others are propagated to higher layers. 113 */ 114 115 /* qdisc ->enqueue() return codes. */ 116 #define NET_XMIT_SUCCESS 0x00 117 #define NET_XMIT_DROP 0x01 /* skb dropped */ 118 #define NET_XMIT_CN 0x02 /* congestion notification */ 119 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 120 121 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 122 * indicates that the device will soon be dropping packets, or already drops 123 * some packets of the same priority; prompting us to send less aggressively. */ 124 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 125 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 126 127 /* Driver transmit return codes */ 128 #define NETDEV_TX_MASK 0xf0 129 130 enum netdev_tx { 131 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 132 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 133 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 134 }; 135 typedef enum netdev_tx netdev_tx_t; 136 137 /* 138 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 139 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 140 */ 141 static inline bool dev_xmit_complete(int rc) 142 { 143 /* 144 * Positive cases with an skb consumed by a driver: 145 * - successful transmission (rc == NETDEV_TX_OK) 146 * - error while transmitting (rc < 0) 147 * - error while queueing to a different device (rc & NET_XMIT_MASK) 148 */ 149 if (likely(rc < NET_XMIT_MASK)) 150 return true; 151 152 return false; 153 } 154 155 /* 156 * Compute the worst-case header length according to the protocols 157 * used. 158 */ 159 160 #if defined(CONFIG_HYPERV_NET) 161 # define LL_MAX_HEADER 128 162 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 163 # if defined(CONFIG_MAC80211_MESH) 164 # define LL_MAX_HEADER 128 165 # else 166 # define LL_MAX_HEADER 96 167 # endif 168 #else 169 # define LL_MAX_HEADER 32 170 #endif 171 172 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 173 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 174 #define MAX_HEADER LL_MAX_HEADER 175 #else 176 #define MAX_HEADER (LL_MAX_HEADER + 48) 177 #endif 178 179 /* 180 * Old network device statistics. Fields are native words 181 * (unsigned long) so they can be read and written atomically. 182 */ 183 184 #define NET_DEV_STAT(FIELD) \ 185 union { \ 186 unsigned long FIELD; \ 187 atomic_long_t __##FIELD; \ 188 } 189 190 struct net_device_stats { 191 NET_DEV_STAT(rx_packets); 192 NET_DEV_STAT(tx_packets); 193 NET_DEV_STAT(rx_bytes); 194 NET_DEV_STAT(tx_bytes); 195 NET_DEV_STAT(rx_errors); 196 NET_DEV_STAT(tx_errors); 197 NET_DEV_STAT(rx_dropped); 198 NET_DEV_STAT(tx_dropped); 199 NET_DEV_STAT(multicast); 200 NET_DEV_STAT(collisions); 201 NET_DEV_STAT(rx_length_errors); 202 NET_DEV_STAT(rx_over_errors); 203 NET_DEV_STAT(rx_crc_errors); 204 NET_DEV_STAT(rx_frame_errors); 205 NET_DEV_STAT(rx_fifo_errors); 206 NET_DEV_STAT(rx_missed_errors); 207 NET_DEV_STAT(tx_aborted_errors); 208 NET_DEV_STAT(tx_carrier_errors); 209 NET_DEV_STAT(tx_fifo_errors); 210 NET_DEV_STAT(tx_heartbeat_errors); 211 NET_DEV_STAT(tx_window_errors); 212 NET_DEV_STAT(rx_compressed); 213 NET_DEV_STAT(tx_compressed); 214 }; 215 #undef NET_DEV_STAT 216 217 /* per-cpu stats, allocated on demand. 218 * Try to fit them in a single cache line, for dev_get_stats() sake. 219 */ 220 struct net_device_core_stats { 221 unsigned long rx_dropped; 222 unsigned long tx_dropped; 223 unsigned long rx_nohandler; 224 unsigned long rx_otherhost_dropped; 225 } __aligned(4 * sizeof(unsigned long)); 226 227 #include <linux/cache.h> 228 #include <linux/skbuff.h> 229 230 #ifdef CONFIG_RPS 231 #include <linux/static_key.h> 232 extern struct static_key_false rps_needed; 233 extern struct static_key_false rfs_needed; 234 #endif 235 236 struct neighbour; 237 struct neigh_parms; 238 struct sk_buff; 239 240 struct netdev_hw_addr { 241 struct list_head list; 242 struct rb_node node; 243 unsigned char addr[MAX_ADDR_LEN]; 244 unsigned char type; 245 #define NETDEV_HW_ADDR_T_LAN 1 246 #define NETDEV_HW_ADDR_T_SAN 2 247 #define NETDEV_HW_ADDR_T_UNICAST 3 248 #define NETDEV_HW_ADDR_T_MULTICAST 4 249 bool global_use; 250 int sync_cnt; 251 int refcount; 252 int synced; 253 struct rcu_head rcu_head; 254 }; 255 256 struct netdev_hw_addr_list { 257 struct list_head list; 258 int count; 259 260 /* Auxiliary tree for faster lookup on addition and deletion */ 261 struct rb_root tree; 262 }; 263 264 #define netdev_hw_addr_list_count(l) ((l)->count) 265 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 266 #define netdev_hw_addr_list_for_each(ha, l) \ 267 list_for_each_entry(ha, &(l)->list, list) 268 269 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 270 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 271 #define netdev_for_each_uc_addr(ha, dev) \ 272 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 273 #define netdev_for_each_synced_uc_addr(_ha, _dev) \ 274 netdev_for_each_uc_addr((_ha), (_dev)) \ 275 if ((_ha)->sync_cnt) 276 277 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 278 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 279 #define netdev_for_each_mc_addr(ha, dev) \ 280 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 281 #define netdev_for_each_synced_mc_addr(_ha, _dev) \ 282 netdev_for_each_mc_addr((_ha), (_dev)) \ 283 if ((_ha)->sync_cnt) 284 285 struct hh_cache { 286 unsigned int hh_len; 287 seqlock_t hh_lock; 288 289 /* cached hardware header; allow for machine alignment needs. */ 290 #define HH_DATA_MOD 16 291 #define HH_DATA_OFF(__len) \ 292 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 293 #define HH_DATA_ALIGN(__len) \ 294 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 295 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 296 }; 297 298 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 299 * Alternative is: 300 * dev->hard_header_len ? (dev->hard_header_len + 301 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 302 * 303 * We could use other alignment values, but we must maintain the 304 * relationship HH alignment <= LL alignment. 305 */ 306 #define LL_RESERVED_SPACE(dev) \ 307 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \ 308 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 309 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 310 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \ 311 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 312 313 struct header_ops { 314 int (*create) (struct sk_buff *skb, struct net_device *dev, 315 unsigned short type, const void *daddr, 316 const void *saddr, unsigned int len); 317 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 318 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 319 void (*cache_update)(struct hh_cache *hh, 320 const struct net_device *dev, 321 const unsigned char *haddr); 322 bool (*validate)(const char *ll_header, unsigned int len); 323 __be16 (*parse_protocol)(const struct sk_buff *skb); 324 }; 325 326 /* These flag bits are private to the generic network queueing 327 * layer; they may not be explicitly referenced by any other 328 * code. 329 */ 330 331 enum netdev_state_t { 332 __LINK_STATE_START, 333 __LINK_STATE_PRESENT, 334 __LINK_STATE_NOCARRIER, 335 __LINK_STATE_LINKWATCH_PENDING, 336 __LINK_STATE_DORMANT, 337 __LINK_STATE_TESTING, 338 }; 339 340 struct gro_list { 341 struct list_head list; 342 int count; 343 }; 344 345 /* 346 * size of gro hash buckets, must less than bit number of 347 * napi_struct::gro_bitmask 348 */ 349 #define GRO_HASH_BUCKETS 8 350 351 /* 352 * Structure for NAPI scheduling similar to tasklet but with weighting 353 */ 354 struct napi_struct { 355 /* The poll_list must only be managed by the entity which 356 * changes the state of the NAPI_STATE_SCHED bit. This means 357 * whoever atomically sets that bit can add this napi_struct 358 * to the per-CPU poll_list, and whoever clears that bit 359 * can remove from the list right before clearing the bit. 360 */ 361 struct list_head poll_list; 362 363 unsigned long state; 364 int weight; 365 int defer_hard_irqs_count; 366 unsigned long gro_bitmask; 367 int (*poll)(struct napi_struct *, int); 368 #ifdef CONFIG_NETPOLL 369 /* CPU actively polling if netpoll is configured */ 370 int poll_owner; 371 #endif 372 /* CPU on which NAPI has been scheduled for processing */ 373 int list_owner; 374 struct net_device *dev; 375 struct gro_list gro_hash[GRO_HASH_BUCKETS]; 376 struct sk_buff *skb; 377 struct list_head rx_list; /* Pending GRO_NORMAL skbs */ 378 int rx_count; /* length of rx_list */ 379 unsigned int napi_id; 380 struct hrtimer timer; 381 struct task_struct *thread; 382 /* control-path-only fields follow */ 383 struct list_head dev_list; 384 struct hlist_node napi_hash_node; 385 }; 386 387 enum { 388 NAPI_STATE_SCHED, /* Poll is scheduled */ 389 NAPI_STATE_MISSED, /* reschedule a napi */ 390 NAPI_STATE_DISABLE, /* Disable pending */ 391 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 392 NAPI_STATE_LISTED, /* NAPI added to system lists */ 393 NAPI_STATE_NO_BUSY_POLL, /* Do not add in napi_hash, no busy polling */ 394 NAPI_STATE_IN_BUSY_POLL, /* sk_busy_loop() owns this NAPI */ 395 NAPI_STATE_PREFER_BUSY_POLL, /* prefer busy-polling over softirq processing*/ 396 NAPI_STATE_THREADED, /* The poll is performed inside its own thread*/ 397 NAPI_STATE_SCHED_THREADED, /* Napi is currently scheduled in threaded mode */ 398 }; 399 400 enum { 401 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 402 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 403 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 404 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 405 NAPIF_STATE_LISTED = BIT(NAPI_STATE_LISTED), 406 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 407 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 408 NAPIF_STATE_PREFER_BUSY_POLL = BIT(NAPI_STATE_PREFER_BUSY_POLL), 409 NAPIF_STATE_THREADED = BIT(NAPI_STATE_THREADED), 410 NAPIF_STATE_SCHED_THREADED = BIT(NAPI_STATE_SCHED_THREADED), 411 }; 412 413 enum gro_result { 414 GRO_MERGED, 415 GRO_MERGED_FREE, 416 GRO_HELD, 417 GRO_NORMAL, 418 GRO_CONSUMED, 419 }; 420 typedef enum gro_result gro_result_t; 421 422 /* 423 * enum rx_handler_result - Possible return values for rx_handlers. 424 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 425 * further. 426 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 427 * case skb->dev was changed by rx_handler. 428 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 429 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 430 * 431 * rx_handlers are functions called from inside __netif_receive_skb(), to do 432 * special processing of the skb, prior to delivery to protocol handlers. 433 * 434 * Currently, a net_device can only have a single rx_handler registered. Trying 435 * to register a second rx_handler will return -EBUSY. 436 * 437 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 438 * To unregister a rx_handler on a net_device, use 439 * netdev_rx_handler_unregister(). 440 * 441 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 442 * do with the skb. 443 * 444 * If the rx_handler consumed the skb in some way, it should return 445 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 446 * the skb to be delivered in some other way. 447 * 448 * If the rx_handler changed skb->dev, to divert the skb to another 449 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 450 * new device will be called if it exists. 451 * 452 * If the rx_handler decides the skb should be ignored, it should return 453 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 454 * are registered on exact device (ptype->dev == skb->dev). 455 * 456 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 457 * delivered, it should return RX_HANDLER_PASS. 458 * 459 * A device without a registered rx_handler will behave as if rx_handler 460 * returned RX_HANDLER_PASS. 461 */ 462 463 enum rx_handler_result { 464 RX_HANDLER_CONSUMED, 465 RX_HANDLER_ANOTHER, 466 RX_HANDLER_EXACT, 467 RX_HANDLER_PASS, 468 }; 469 typedef enum rx_handler_result rx_handler_result_t; 470 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 471 472 void __napi_schedule(struct napi_struct *n); 473 void __napi_schedule_irqoff(struct napi_struct *n); 474 475 static inline bool napi_disable_pending(struct napi_struct *n) 476 { 477 return test_bit(NAPI_STATE_DISABLE, &n->state); 478 } 479 480 static inline bool napi_prefer_busy_poll(struct napi_struct *n) 481 { 482 return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state); 483 } 484 485 /** 486 * napi_is_scheduled - test if NAPI is scheduled 487 * @n: NAPI context 488 * 489 * This check is "best-effort". With no locking implemented, 490 * a NAPI can be scheduled or terminate right after this check 491 * and produce not precise results. 492 * 493 * NAPI_STATE_SCHED is an internal state, napi_is_scheduled 494 * should not be used normally and napi_schedule should be 495 * used instead. 496 * 497 * Use only if the driver really needs to check if a NAPI 498 * is scheduled for example in the context of delayed timer 499 * that can be skipped if a NAPI is already scheduled. 500 * 501 * Return True if NAPI is scheduled, False otherwise. 502 */ 503 static inline bool napi_is_scheduled(struct napi_struct *n) 504 { 505 return test_bit(NAPI_STATE_SCHED, &n->state); 506 } 507 508 bool napi_schedule_prep(struct napi_struct *n); 509 510 /** 511 * napi_schedule - schedule NAPI poll 512 * @n: NAPI context 513 * 514 * Schedule NAPI poll routine to be called if it is not already 515 * running. 516 * Return true if we schedule a NAPI or false if not. 517 * Refer to napi_schedule_prep() for additional reason on why 518 * a NAPI might not be scheduled. 519 */ 520 static inline bool napi_schedule(struct napi_struct *n) 521 { 522 if (napi_schedule_prep(n)) { 523 __napi_schedule(n); 524 return true; 525 } 526 527 return false; 528 } 529 530 /** 531 * napi_schedule_irqoff - schedule NAPI poll 532 * @n: NAPI context 533 * 534 * Variant of napi_schedule(), assuming hard irqs are masked. 535 */ 536 static inline void napi_schedule_irqoff(struct napi_struct *n) 537 { 538 if (napi_schedule_prep(n)) 539 __napi_schedule_irqoff(n); 540 } 541 542 /** 543 * napi_complete_done - NAPI processing complete 544 * @n: NAPI context 545 * @work_done: number of packets processed 546 * 547 * Mark NAPI processing as complete. Should only be called if poll budget 548 * has not been completely consumed. 549 * Prefer over napi_complete(). 550 * Return false if device should avoid rearming interrupts. 551 */ 552 bool napi_complete_done(struct napi_struct *n, int work_done); 553 554 static inline bool napi_complete(struct napi_struct *n) 555 { 556 return napi_complete_done(n, 0); 557 } 558 559 int dev_set_threaded(struct net_device *dev, bool threaded); 560 561 /** 562 * napi_disable - prevent NAPI from scheduling 563 * @n: NAPI context 564 * 565 * Stop NAPI from being scheduled on this context. 566 * Waits till any outstanding processing completes. 567 */ 568 void napi_disable(struct napi_struct *n); 569 570 void napi_enable(struct napi_struct *n); 571 572 /** 573 * napi_synchronize - wait until NAPI is not running 574 * @n: NAPI context 575 * 576 * Wait until NAPI is done being scheduled on this context. 577 * Waits till any outstanding processing completes but 578 * does not disable future activations. 579 */ 580 static inline void napi_synchronize(const struct napi_struct *n) 581 { 582 if (IS_ENABLED(CONFIG_SMP)) 583 while (test_bit(NAPI_STATE_SCHED, &n->state)) 584 msleep(1); 585 else 586 barrier(); 587 } 588 589 /** 590 * napi_if_scheduled_mark_missed - if napi is running, set the 591 * NAPIF_STATE_MISSED 592 * @n: NAPI context 593 * 594 * If napi is running, set the NAPIF_STATE_MISSED, and return true if 595 * NAPI is scheduled. 596 **/ 597 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n) 598 { 599 unsigned long val, new; 600 601 val = READ_ONCE(n->state); 602 do { 603 if (val & NAPIF_STATE_DISABLE) 604 return true; 605 606 if (!(val & NAPIF_STATE_SCHED)) 607 return false; 608 609 new = val | NAPIF_STATE_MISSED; 610 } while (!try_cmpxchg(&n->state, &val, new)); 611 612 return true; 613 } 614 615 enum netdev_queue_state_t { 616 __QUEUE_STATE_DRV_XOFF, 617 __QUEUE_STATE_STACK_XOFF, 618 __QUEUE_STATE_FROZEN, 619 }; 620 621 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 622 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 623 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 624 625 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 626 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 627 QUEUE_STATE_FROZEN) 628 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 629 QUEUE_STATE_FROZEN) 630 631 /* 632 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 633 * netif_tx_* functions below are used to manipulate this flag. The 634 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 635 * queue independently. The netif_xmit_*stopped functions below are called 636 * to check if the queue has been stopped by the driver or stack (either 637 * of the XOFF bits are set in the state). Drivers should not need to call 638 * netif_xmit*stopped functions, they should only be using netif_tx_*. 639 */ 640 641 struct netdev_queue { 642 /* 643 * read-mostly part 644 */ 645 struct net_device *dev; 646 netdevice_tracker dev_tracker; 647 648 struct Qdisc __rcu *qdisc; 649 struct Qdisc __rcu *qdisc_sleeping; 650 #ifdef CONFIG_SYSFS 651 struct kobject kobj; 652 #endif 653 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 654 int numa_node; 655 #endif 656 unsigned long tx_maxrate; 657 /* 658 * Number of TX timeouts for this queue 659 * (/sys/class/net/DEV/Q/trans_timeout) 660 */ 661 atomic_long_t trans_timeout; 662 663 /* Subordinate device that the queue has been assigned to */ 664 struct net_device *sb_dev; 665 #ifdef CONFIG_XDP_SOCKETS 666 struct xsk_buff_pool *pool; 667 #endif 668 /* NAPI instance for the queue 669 * Readers and writers must hold RTNL 670 */ 671 struct napi_struct *napi; 672 /* 673 * write-mostly part 674 */ 675 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 676 int xmit_lock_owner; 677 /* 678 * Time (in jiffies) of last Tx 679 */ 680 unsigned long trans_start; 681 682 unsigned long state; 683 684 #ifdef CONFIG_BQL 685 struct dql dql; 686 #endif 687 } ____cacheline_aligned_in_smp; 688 689 extern int sysctl_fb_tunnels_only_for_init_net; 690 extern int sysctl_devconf_inherit_init_net; 691 692 /* 693 * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns 694 * == 1 : For initns only 695 * == 2 : For none. 696 */ 697 static inline bool net_has_fallback_tunnels(const struct net *net) 698 { 699 #if IS_ENABLED(CONFIG_SYSCTL) 700 int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net); 701 702 return !fb_tunnels_only_for_init_net || 703 (net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1); 704 #else 705 return true; 706 #endif 707 } 708 709 static inline int net_inherit_devconf(void) 710 { 711 #if IS_ENABLED(CONFIG_SYSCTL) 712 return READ_ONCE(sysctl_devconf_inherit_init_net); 713 #else 714 return 0; 715 #endif 716 } 717 718 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 719 { 720 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 721 return q->numa_node; 722 #else 723 return NUMA_NO_NODE; 724 #endif 725 } 726 727 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 728 { 729 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 730 q->numa_node = node; 731 #endif 732 } 733 734 #ifdef CONFIG_RPS 735 /* 736 * This structure holds an RPS map which can be of variable length. The 737 * map is an array of CPUs. 738 */ 739 struct rps_map { 740 unsigned int len; 741 struct rcu_head rcu; 742 u16 cpus[]; 743 }; 744 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 745 746 /* 747 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 748 * tail pointer for that CPU's input queue at the time of last enqueue, and 749 * a hardware filter index. 750 */ 751 struct rps_dev_flow { 752 u16 cpu; 753 u16 filter; 754 unsigned int last_qtail; 755 }; 756 #define RPS_NO_FILTER 0xffff 757 758 /* 759 * The rps_dev_flow_table structure contains a table of flow mappings. 760 */ 761 struct rps_dev_flow_table { 762 unsigned int mask; 763 struct rcu_head rcu; 764 struct rps_dev_flow flows[]; 765 }; 766 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 767 ((_num) * sizeof(struct rps_dev_flow))) 768 769 /* 770 * The rps_sock_flow_table contains mappings of flows to the last CPU 771 * on which they were processed by the application (set in recvmsg). 772 * Each entry is a 32bit value. Upper part is the high-order bits 773 * of flow hash, lower part is CPU number. 774 * rps_cpu_mask is used to partition the space, depending on number of 775 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 776 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 777 * meaning we use 32-6=26 bits for the hash. 778 */ 779 struct rps_sock_flow_table { 780 u32 mask; 781 782 u32 ents[] ____cacheline_aligned_in_smp; 783 }; 784 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 785 786 #define RPS_NO_CPU 0xffff 787 788 extern u32 rps_cpu_mask; 789 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 790 791 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 792 u32 hash) 793 { 794 if (table && hash) { 795 unsigned int index = hash & table->mask; 796 u32 val = hash & ~rps_cpu_mask; 797 798 /* We only give a hint, preemption can change CPU under us */ 799 val |= raw_smp_processor_id(); 800 801 /* The following WRITE_ONCE() is paired with the READ_ONCE() 802 * here, and another one in get_rps_cpu(). 803 */ 804 if (READ_ONCE(table->ents[index]) != val) 805 WRITE_ONCE(table->ents[index], val); 806 } 807 } 808 809 #ifdef CONFIG_RFS_ACCEL 810 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 811 u16 filter_id); 812 #endif 813 #endif /* CONFIG_RPS */ 814 815 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */ 816 enum xps_map_type { 817 XPS_CPUS = 0, 818 XPS_RXQS, 819 XPS_MAPS_MAX, 820 }; 821 822 #ifdef CONFIG_XPS 823 /* 824 * This structure holds an XPS map which can be of variable length. The 825 * map is an array of queues. 826 */ 827 struct xps_map { 828 unsigned int len; 829 unsigned int alloc_len; 830 struct rcu_head rcu; 831 u16 queues[]; 832 }; 833 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 834 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 835 - sizeof(struct xps_map)) / sizeof(u16)) 836 837 /* 838 * This structure holds all XPS maps for device. Maps are indexed by CPU. 839 * 840 * We keep track of the number of cpus/rxqs used when the struct is allocated, 841 * in nr_ids. This will help not accessing out-of-bound memory. 842 * 843 * We keep track of the number of traffic classes used when the struct is 844 * allocated, in num_tc. This will be used to navigate the maps, to ensure we're 845 * not crossing its upper bound, as the original dev->num_tc can be updated in 846 * the meantime. 847 */ 848 struct xps_dev_maps { 849 struct rcu_head rcu; 850 unsigned int nr_ids; 851 s16 num_tc; 852 struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */ 853 }; 854 855 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 856 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 857 858 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\ 859 (_rxqs * (_tcs) * sizeof(struct xps_map *))) 860 861 #endif /* CONFIG_XPS */ 862 863 #define TC_MAX_QUEUE 16 864 #define TC_BITMASK 15 865 /* HW offloaded queuing disciplines txq count and offset maps */ 866 struct netdev_tc_txq { 867 u16 count; 868 u16 offset; 869 }; 870 871 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 872 /* 873 * This structure is to hold information about the device 874 * configured to run FCoE protocol stack. 875 */ 876 struct netdev_fcoe_hbainfo { 877 char manufacturer[64]; 878 char serial_number[64]; 879 char hardware_version[64]; 880 char driver_version[64]; 881 char optionrom_version[64]; 882 char firmware_version[64]; 883 char model[256]; 884 char model_description[256]; 885 }; 886 #endif 887 888 #define MAX_PHYS_ITEM_ID_LEN 32 889 890 /* This structure holds a unique identifier to identify some 891 * physical item (port for example) used by a netdevice. 892 */ 893 struct netdev_phys_item_id { 894 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 895 unsigned char id_len; 896 }; 897 898 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 899 struct netdev_phys_item_id *b) 900 { 901 return a->id_len == b->id_len && 902 memcmp(a->id, b->id, a->id_len) == 0; 903 } 904 905 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 906 struct sk_buff *skb, 907 struct net_device *sb_dev); 908 909 enum net_device_path_type { 910 DEV_PATH_ETHERNET = 0, 911 DEV_PATH_VLAN, 912 DEV_PATH_BRIDGE, 913 DEV_PATH_PPPOE, 914 DEV_PATH_DSA, 915 DEV_PATH_MTK_WDMA, 916 }; 917 918 struct net_device_path { 919 enum net_device_path_type type; 920 const struct net_device *dev; 921 union { 922 struct { 923 u16 id; 924 __be16 proto; 925 u8 h_dest[ETH_ALEN]; 926 } encap; 927 struct { 928 enum { 929 DEV_PATH_BR_VLAN_KEEP, 930 DEV_PATH_BR_VLAN_TAG, 931 DEV_PATH_BR_VLAN_UNTAG, 932 DEV_PATH_BR_VLAN_UNTAG_HW, 933 } vlan_mode; 934 u16 vlan_id; 935 __be16 vlan_proto; 936 } bridge; 937 struct { 938 int port; 939 u16 proto; 940 } dsa; 941 struct { 942 u8 wdma_idx; 943 u8 queue; 944 u16 wcid; 945 u8 bss; 946 u8 amsdu; 947 } mtk_wdma; 948 }; 949 }; 950 951 #define NET_DEVICE_PATH_STACK_MAX 5 952 #define NET_DEVICE_PATH_VLAN_MAX 2 953 954 struct net_device_path_stack { 955 int num_paths; 956 struct net_device_path path[NET_DEVICE_PATH_STACK_MAX]; 957 }; 958 959 struct net_device_path_ctx { 960 const struct net_device *dev; 961 u8 daddr[ETH_ALEN]; 962 963 int num_vlans; 964 struct { 965 u16 id; 966 __be16 proto; 967 } vlan[NET_DEVICE_PATH_VLAN_MAX]; 968 }; 969 970 enum tc_setup_type { 971 TC_QUERY_CAPS, 972 TC_SETUP_QDISC_MQPRIO, 973 TC_SETUP_CLSU32, 974 TC_SETUP_CLSFLOWER, 975 TC_SETUP_CLSMATCHALL, 976 TC_SETUP_CLSBPF, 977 TC_SETUP_BLOCK, 978 TC_SETUP_QDISC_CBS, 979 TC_SETUP_QDISC_RED, 980 TC_SETUP_QDISC_PRIO, 981 TC_SETUP_QDISC_MQ, 982 TC_SETUP_QDISC_ETF, 983 TC_SETUP_ROOT_QDISC, 984 TC_SETUP_QDISC_GRED, 985 TC_SETUP_QDISC_TAPRIO, 986 TC_SETUP_FT, 987 TC_SETUP_QDISC_ETS, 988 TC_SETUP_QDISC_TBF, 989 TC_SETUP_QDISC_FIFO, 990 TC_SETUP_QDISC_HTB, 991 TC_SETUP_ACT, 992 }; 993 994 /* These structures hold the attributes of bpf state that are being passed 995 * to the netdevice through the bpf op. 996 */ 997 enum bpf_netdev_command { 998 /* Set or clear a bpf program used in the earliest stages of packet 999 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 1000 * is responsible for calling bpf_prog_put on any old progs that are 1001 * stored. In case of error, the callee need not release the new prog 1002 * reference, but on success it takes ownership and must bpf_prog_put 1003 * when it is no longer used. 1004 */ 1005 XDP_SETUP_PROG, 1006 XDP_SETUP_PROG_HW, 1007 /* BPF program for offload callbacks, invoked at program load time. */ 1008 BPF_OFFLOAD_MAP_ALLOC, 1009 BPF_OFFLOAD_MAP_FREE, 1010 XDP_SETUP_XSK_POOL, 1011 }; 1012 1013 struct bpf_prog_offload_ops; 1014 struct netlink_ext_ack; 1015 struct xdp_umem; 1016 struct xdp_dev_bulk_queue; 1017 struct bpf_xdp_link; 1018 1019 enum bpf_xdp_mode { 1020 XDP_MODE_SKB = 0, 1021 XDP_MODE_DRV = 1, 1022 XDP_MODE_HW = 2, 1023 __MAX_XDP_MODE 1024 }; 1025 1026 struct bpf_xdp_entity { 1027 struct bpf_prog *prog; 1028 struct bpf_xdp_link *link; 1029 }; 1030 1031 struct netdev_bpf { 1032 enum bpf_netdev_command command; 1033 union { 1034 /* XDP_SETUP_PROG */ 1035 struct { 1036 u32 flags; 1037 struct bpf_prog *prog; 1038 struct netlink_ext_ack *extack; 1039 }; 1040 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 1041 struct { 1042 struct bpf_offloaded_map *offmap; 1043 }; 1044 /* XDP_SETUP_XSK_POOL */ 1045 struct { 1046 struct xsk_buff_pool *pool; 1047 u16 queue_id; 1048 } xsk; 1049 }; 1050 }; 1051 1052 /* Flags for ndo_xsk_wakeup. */ 1053 #define XDP_WAKEUP_RX (1 << 0) 1054 #define XDP_WAKEUP_TX (1 << 1) 1055 1056 #ifdef CONFIG_XFRM_OFFLOAD 1057 struct xfrmdev_ops { 1058 int (*xdo_dev_state_add) (struct xfrm_state *x, struct netlink_ext_ack *extack); 1059 void (*xdo_dev_state_delete) (struct xfrm_state *x); 1060 void (*xdo_dev_state_free) (struct xfrm_state *x); 1061 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 1062 struct xfrm_state *x); 1063 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 1064 void (*xdo_dev_state_update_curlft) (struct xfrm_state *x); 1065 int (*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack); 1066 void (*xdo_dev_policy_delete) (struct xfrm_policy *x); 1067 void (*xdo_dev_policy_free) (struct xfrm_policy *x); 1068 }; 1069 #endif 1070 1071 struct dev_ifalias { 1072 struct rcu_head rcuhead; 1073 char ifalias[]; 1074 }; 1075 1076 struct devlink; 1077 struct tlsdev_ops; 1078 1079 struct netdev_net_notifier { 1080 struct list_head list; 1081 struct notifier_block *nb; 1082 }; 1083 1084 /* 1085 * This structure defines the management hooks for network devices. 1086 * The following hooks can be defined; unless noted otherwise, they are 1087 * optional and can be filled with a null pointer. 1088 * 1089 * int (*ndo_init)(struct net_device *dev); 1090 * This function is called once when a network device is registered. 1091 * The network device can use this for any late stage initialization 1092 * or semantic validation. It can fail with an error code which will 1093 * be propagated back to register_netdev. 1094 * 1095 * void (*ndo_uninit)(struct net_device *dev); 1096 * This function is called when device is unregistered or when registration 1097 * fails. It is not called if init fails. 1098 * 1099 * int (*ndo_open)(struct net_device *dev); 1100 * This function is called when a network device transitions to the up 1101 * state. 1102 * 1103 * int (*ndo_stop)(struct net_device *dev); 1104 * This function is called when a network device transitions to the down 1105 * state. 1106 * 1107 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1108 * struct net_device *dev); 1109 * Called when a packet needs to be transmitted. 1110 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 1111 * the queue before that can happen; it's for obsolete devices and weird 1112 * corner cases, but the stack really does a non-trivial amount 1113 * of useless work if you return NETDEV_TX_BUSY. 1114 * Required; cannot be NULL. 1115 * 1116 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1117 * struct net_device *dev 1118 * netdev_features_t features); 1119 * Called by core transmit path to determine if device is capable of 1120 * performing offload operations on a given packet. This is to give 1121 * the device an opportunity to implement any restrictions that cannot 1122 * be otherwise expressed by feature flags. The check is called with 1123 * the set of features that the stack has calculated and it returns 1124 * those the driver believes to be appropriate. 1125 * 1126 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 1127 * struct net_device *sb_dev); 1128 * Called to decide which queue to use when device supports multiple 1129 * transmit queues. 1130 * 1131 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 1132 * This function is called to allow device receiver to make 1133 * changes to configuration when multicast or promiscuous is enabled. 1134 * 1135 * void (*ndo_set_rx_mode)(struct net_device *dev); 1136 * This function is called device changes address list filtering. 1137 * If driver handles unicast address filtering, it should set 1138 * IFF_UNICAST_FLT in its priv_flags. 1139 * 1140 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 1141 * This function is called when the Media Access Control address 1142 * needs to be changed. If this interface is not defined, the 1143 * MAC address can not be changed. 1144 * 1145 * int (*ndo_validate_addr)(struct net_device *dev); 1146 * Test if Media Access Control address is valid for the device. 1147 * 1148 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1149 * Old-style ioctl entry point. This is used internally by the 1150 * appletalk and ieee802154 subsystems but is no longer called by 1151 * the device ioctl handler. 1152 * 1153 * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd); 1154 * Used by the bonding driver for its device specific ioctls: 1155 * SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE, 1156 * SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY 1157 * 1158 * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1159 * Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG, 1160 * SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP. 1161 * 1162 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 1163 * Used to set network devices bus interface parameters. This interface 1164 * is retained for legacy reasons; new devices should use the bus 1165 * interface (PCI) for low level management. 1166 * 1167 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 1168 * Called when a user wants to change the Maximum Transfer Unit 1169 * of a device. 1170 * 1171 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue); 1172 * Callback used when the transmitter has not made any progress 1173 * for dev->watchdog ticks. 1174 * 1175 * void (*ndo_get_stats64)(struct net_device *dev, 1176 * struct rtnl_link_stats64 *storage); 1177 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1178 * Called when a user wants to get the network device usage 1179 * statistics. Drivers must do one of the following: 1180 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 1181 * rtnl_link_stats64 structure passed by the caller. 1182 * 2. Define @ndo_get_stats to update a net_device_stats structure 1183 * (which should normally be dev->stats) and return a pointer to 1184 * it. The structure may be changed asynchronously only if each 1185 * field is written atomically. 1186 * 3. Update dev->stats asynchronously and atomically, and define 1187 * neither operation. 1188 * 1189 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 1190 * Return true if this device supports offload stats of this attr_id. 1191 * 1192 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 1193 * void *attr_data) 1194 * Get statistics for offload operations by attr_id. Write it into the 1195 * attr_data pointer. 1196 * 1197 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 1198 * If device supports VLAN filtering this function is called when a 1199 * VLAN id is registered. 1200 * 1201 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 1202 * If device supports VLAN filtering this function is called when a 1203 * VLAN id is unregistered. 1204 * 1205 * void (*ndo_poll_controller)(struct net_device *dev); 1206 * 1207 * SR-IOV management functions. 1208 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 1209 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 1210 * u8 qos, __be16 proto); 1211 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 1212 * int max_tx_rate); 1213 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 1214 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 1215 * int (*ndo_get_vf_config)(struct net_device *dev, 1216 * int vf, struct ifla_vf_info *ivf); 1217 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 1218 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 1219 * struct nlattr *port[]); 1220 * 1221 * Enable or disable the VF ability to query its RSS Redirection Table and 1222 * Hash Key. This is needed since on some devices VF share this information 1223 * with PF and querying it may introduce a theoretical security risk. 1224 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 1225 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 1226 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 1227 * void *type_data); 1228 * Called to setup any 'tc' scheduler, classifier or action on @dev. 1229 * This is always called from the stack with the rtnl lock held and netif 1230 * tx queues stopped. This allows the netdevice to perform queue 1231 * management safely. 1232 * 1233 * Fiber Channel over Ethernet (FCoE) offload functions. 1234 * int (*ndo_fcoe_enable)(struct net_device *dev); 1235 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1236 * so the underlying device can perform whatever needed configuration or 1237 * initialization to support acceleration of FCoE traffic. 1238 * 1239 * int (*ndo_fcoe_disable)(struct net_device *dev); 1240 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1241 * so the underlying device can perform whatever needed clean-ups to 1242 * stop supporting acceleration of FCoE traffic. 1243 * 1244 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1245 * struct scatterlist *sgl, unsigned int sgc); 1246 * Called when the FCoE Initiator wants to initialize an I/O that 1247 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1248 * perform necessary setup and returns 1 to indicate the device is set up 1249 * successfully to perform DDP on this I/O, otherwise this returns 0. 1250 * 1251 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1252 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1253 * indicated by the FC exchange id 'xid', so the underlying device can 1254 * clean up and reuse resources for later DDP requests. 1255 * 1256 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1257 * struct scatterlist *sgl, unsigned int sgc); 1258 * Called when the FCoE Target wants to initialize an I/O that 1259 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1260 * perform necessary setup and returns 1 to indicate the device is set up 1261 * successfully to perform DDP on this I/O, otherwise this returns 0. 1262 * 1263 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1264 * struct netdev_fcoe_hbainfo *hbainfo); 1265 * Called when the FCoE Protocol stack wants information on the underlying 1266 * device. This information is utilized by the FCoE protocol stack to 1267 * register attributes with Fiber Channel management service as per the 1268 * FC-GS Fabric Device Management Information(FDMI) specification. 1269 * 1270 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1271 * Called when the underlying device wants to override default World Wide 1272 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1273 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1274 * protocol stack to use. 1275 * 1276 * RFS acceleration. 1277 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1278 * u16 rxq_index, u32 flow_id); 1279 * Set hardware filter for RFS. rxq_index is the target queue index; 1280 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1281 * Return the filter ID on success, or a negative error code. 1282 * 1283 * Slave management functions (for bridge, bonding, etc). 1284 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1285 * Called to make another netdev an underling. 1286 * 1287 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1288 * Called to release previously enslaved netdev. 1289 * 1290 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev, 1291 * struct sk_buff *skb, 1292 * bool all_slaves); 1293 * Get the xmit slave of master device. If all_slaves is true, function 1294 * assume all the slaves can transmit. 1295 * 1296 * Feature/offload setting functions. 1297 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1298 * netdev_features_t features); 1299 * Adjusts the requested feature flags according to device-specific 1300 * constraints, and returns the resulting flags. Must not modify 1301 * the device state. 1302 * 1303 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1304 * Called to update device configuration to new features. Passed 1305 * feature set might be less than what was returned by ndo_fix_features()). 1306 * Must return >0 or -errno if it changed dev->features itself. 1307 * 1308 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1309 * struct net_device *dev, 1310 * const unsigned char *addr, u16 vid, u16 flags, 1311 * struct netlink_ext_ack *extack); 1312 * Adds an FDB entry to dev for addr. 1313 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1314 * struct net_device *dev, 1315 * const unsigned char *addr, u16 vid) 1316 * Deletes the FDB entry from dev coresponding to addr. 1317 * int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, struct net_device *dev, 1318 * struct netlink_ext_ack *extack); 1319 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1320 * struct net_device *dev, struct net_device *filter_dev, 1321 * int *idx) 1322 * Used to add FDB entries to dump requests. Implementers should add 1323 * entries to skb and update idx with the number of entries. 1324 * 1325 * int (*ndo_mdb_add)(struct net_device *dev, struct nlattr *tb[], 1326 * u16 nlmsg_flags, struct netlink_ext_ack *extack); 1327 * Adds an MDB entry to dev. 1328 * int (*ndo_mdb_del)(struct net_device *dev, struct nlattr *tb[], 1329 * struct netlink_ext_ack *extack); 1330 * Deletes the MDB entry from dev. 1331 * int (*ndo_mdb_dump)(struct net_device *dev, struct sk_buff *skb, 1332 * struct netlink_callback *cb); 1333 * Dumps MDB entries from dev. The first argument (marker) in the netlink 1334 * callback is used by core rtnetlink code. 1335 * 1336 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1337 * u16 flags, struct netlink_ext_ack *extack) 1338 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1339 * struct net_device *dev, u32 filter_mask, 1340 * int nlflags) 1341 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1342 * u16 flags); 1343 * 1344 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1345 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1346 * which do not represent real hardware may define this to allow their 1347 * userspace components to manage their virtual carrier state. Devices 1348 * that determine carrier state from physical hardware properties (eg 1349 * network cables) or protocol-dependent mechanisms (eg 1350 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1351 * 1352 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1353 * struct netdev_phys_item_id *ppid); 1354 * Called to get ID of physical port of this device. If driver does 1355 * not implement this, it is assumed that the hw is not able to have 1356 * multiple net devices on single physical port. 1357 * 1358 * int (*ndo_get_port_parent_id)(struct net_device *dev, 1359 * struct netdev_phys_item_id *ppid) 1360 * Called to get the parent ID of the physical port of this device. 1361 * 1362 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1363 * struct net_device *dev) 1364 * Called by upper layer devices to accelerate switching or other 1365 * station functionality into hardware. 'pdev is the lowerdev 1366 * to use for the offload and 'dev' is the net device that will 1367 * back the offload. Returns a pointer to the private structure 1368 * the upper layer will maintain. 1369 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1370 * Called by upper layer device to delete the station created 1371 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1372 * the station and priv is the structure returned by the add 1373 * operation. 1374 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1375 * int queue_index, u32 maxrate); 1376 * Called when a user wants to set a max-rate limitation of specific 1377 * TX queue. 1378 * int (*ndo_get_iflink)(const struct net_device *dev); 1379 * Called to get the iflink value of this device. 1380 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1381 * This function is used to get egress tunnel information for given skb. 1382 * This is useful for retrieving outer tunnel header parameters while 1383 * sampling packet. 1384 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1385 * This function is used to specify the headroom that the skb must 1386 * consider when allocation skb during packet reception. Setting 1387 * appropriate rx headroom value allows avoiding skb head copy on 1388 * forward. Setting a negative value resets the rx headroom to the 1389 * default value. 1390 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1391 * This function is used to set or query state related to XDP on the 1392 * netdevice and manage BPF offload. See definition of 1393 * enum bpf_netdev_command for details. 1394 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, 1395 * u32 flags); 1396 * This function is used to submit @n XDP packets for transmit on a 1397 * netdevice. Returns number of frames successfully transmitted, frames 1398 * that got dropped are freed/returned via xdp_return_frame(). 1399 * Returns negative number, means general error invoking ndo, meaning 1400 * no frames were xmit'ed and core-caller will free all frames. 1401 * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1402 * struct xdp_buff *xdp); 1403 * Get the xmit slave of master device based on the xdp_buff. 1404 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags); 1405 * This function is used to wake up the softirq, ksoftirqd or kthread 1406 * responsible for sending and/or receiving packets on a specific 1407 * queue id bound to an AF_XDP socket. The flags field specifies if 1408 * only RX, only Tx, or both should be woken up using the flags 1409 * XDP_WAKEUP_RX and XDP_WAKEUP_TX. 1410 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p, 1411 * int cmd); 1412 * Add, change, delete or get information on an IPv4 tunnel. 1413 * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev); 1414 * If a device is paired with a peer device, return the peer instance. 1415 * The caller must be under RCU read context. 1416 * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path); 1417 * Get the forwarding path to reach the real device from the HW destination address 1418 * ktime_t (*ndo_get_tstamp)(struct net_device *dev, 1419 * const struct skb_shared_hwtstamps *hwtstamps, 1420 * bool cycles); 1421 * Get hardware timestamp based on normal/adjustable time or free running 1422 * cycle counter. This function is required if physical clock supports a 1423 * free running cycle counter. 1424 * 1425 * int (*ndo_hwtstamp_get)(struct net_device *dev, 1426 * struct kernel_hwtstamp_config *kernel_config); 1427 * Get the currently configured hardware timestamping parameters for the 1428 * NIC device. 1429 * 1430 * int (*ndo_hwtstamp_set)(struct net_device *dev, 1431 * struct kernel_hwtstamp_config *kernel_config, 1432 * struct netlink_ext_ack *extack); 1433 * Change the hardware timestamping parameters for NIC device. 1434 */ 1435 struct net_device_ops { 1436 int (*ndo_init)(struct net_device *dev); 1437 void (*ndo_uninit)(struct net_device *dev); 1438 int (*ndo_open)(struct net_device *dev); 1439 int (*ndo_stop)(struct net_device *dev); 1440 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1441 struct net_device *dev); 1442 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1443 struct net_device *dev, 1444 netdev_features_t features); 1445 u16 (*ndo_select_queue)(struct net_device *dev, 1446 struct sk_buff *skb, 1447 struct net_device *sb_dev); 1448 void (*ndo_change_rx_flags)(struct net_device *dev, 1449 int flags); 1450 void (*ndo_set_rx_mode)(struct net_device *dev); 1451 int (*ndo_set_mac_address)(struct net_device *dev, 1452 void *addr); 1453 int (*ndo_validate_addr)(struct net_device *dev); 1454 int (*ndo_do_ioctl)(struct net_device *dev, 1455 struct ifreq *ifr, int cmd); 1456 int (*ndo_eth_ioctl)(struct net_device *dev, 1457 struct ifreq *ifr, int cmd); 1458 int (*ndo_siocbond)(struct net_device *dev, 1459 struct ifreq *ifr, int cmd); 1460 int (*ndo_siocwandev)(struct net_device *dev, 1461 struct if_settings *ifs); 1462 int (*ndo_siocdevprivate)(struct net_device *dev, 1463 struct ifreq *ifr, 1464 void __user *data, int cmd); 1465 int (*ndo_set_config)(struct net_device *dev, 1466 struct ifmap *map); 1467 int (*ndo_change_mtu)(struct net_device *dev, 1468 int new_mtu); 1469 int (*ndo_neigh_setup)(struct net_device *dev, 1470 struct neigh_parms *); 1471 void (*ndo_tx_timeout) (struct net_device *dev, 1472 unsigned int txqueue); 1473 1474 void (*ndo_get_stats64)(struct net_device *dev, 1475 struct rtnl_link_stats64 *storage); 1476 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1477 int (*ndo_get_offload_stats)(int attr_id, 1478 const struct net_device *dev, 1479 void *attr_data); 1480 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1481 1482 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1483 __be16 proto, u16 vid); 1484 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1485 __be16 proto, u16 vid); 1486 #ifdef CONFIG_NET_POLL_CONTROLLER 1487 void (*ndo_poll_controller)(struct net_device *dev); 1488 int (*ndo_netpoll_setup)(struct net_device *dev, 1489 struct netpoll_info *info); 1490 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1491 #endif 1492 int (*ndo_set_vf_mac)(struct net_device *dev, 1493 int queue, u8 *mac); 1494 int (*ndo_set_vf_vlan)(struct net_device *dev, 1495 int queue, u16 vlan, 1496 u8 qos, __be16 proto); 1497 int (*ndo_set_vf_rate)(struct net_device *dev, 1498 int vf, int min_tx_rate, 1499 int max_tx_rate); 1500 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1501 int vf, bool setting); 1502 int (*ndo_set_vf_trust)(struct net_device *dev, 1503 int vf, bool setting); 1504 int (*ndo_get_vf_config)(struct net_device *dev, 1505 int vf, 1506 struct ifla_vf_info *ivf); 1507 int (*ndo_set_vf_link_state)(struct net_device *dev, 1508 int vf, int link_state); 1509 int (*ndo_get_vf_stats)(struct net_device *dev, 1510 int vf, 1511 struct ifla_vf_stats 1512 *vf_stats); 1513 int (*ndo_set_vf_port)(struct net_device *dev, 1514 int vf, 1515 struct nlattr *port[]); 1516 int (*ndo_get_vf_port)(struct net_device *dev, 1517 int vf, struct sk_buff *skb); 1518 int (*ndo_get_vf_guid)(struct net_device *dev, 1519 int vf, 1520 struct ifla_vf_guid *node_guid, 1521 struct ifla_vf_guid *port_guid); 1522 int (*ndo_set_vf_guid)(struct net_device *dev, 1523 int vf, u64 guid, 1524 int guid_type); 1525 int (*ndo_set_vf_rss_query_en)( 1526 struct net_device *dev, 1527 int vf, bool setting); 1528 int (*ndo_setup_tc)(struct net_device *dev, 1529 enum tc_setup_type type, 1530 void *type_data); 1531 #if IS_ENABLED(CONFIG_FCOE) 1532 int (*ndo_fcoe_enable)(struct net_device *dev); 1533 int (*ndo_fcoe_disable)(struct net_device *dev); 1534 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1535 u16 xid, 1536 struct scatterlist *sgl, 1537 unsigned int sgc); 1538 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1539 u16 xid); 1540 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1541 u16 xid, 1542 struct scatterlist *sgl, 1543 unsigned int sgc); 1544 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1545 struct netdev_fcoe_hbainfo *hbainfo); 1546 #endif 1547 1548 #if IS_ENABLED(CONFIG_LIBFCOE) 1549 #define NETDEV_FCOE_WWNN 0 1550 #define NETDEV_FCOE_WWPN 1 1551 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1552 u64 *wwn, int type); 1553 #endif 1554 1555 #ifdef CONFIG_RFS_ACCEL 1556 int (*ndo_rx_flow_steer)(struct net_device *dev, 1557 const struct sk_buff *skb, 1558 u16 rxq_index, 1559 u32 flow_id); 1560 #endif 1561 int (*ndo_add_slave)(struct net_device *dev, 1562 struct net_device *slave_dev, 1563 struct netlink_ext_ack *extack); 1564 int (*ndo_del_slave)(struct net_device *dev, 1565 struct net_device *slave_dev); 1566 struct net_device* (*ndo_get_xmit_slave)(struct net_device *dev, 1567 struct sk_buff *skb, 1568 bool all_slaves); 1569 struct net_device* (*ndo_sk_get_lower_dev)(struct net_device *dev, 1570 struct sock *sk); 1571 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1572 netdev_features_t features); 1573 int (*ndo_set_features)(struct net_device *dev, 1574 netdev_features_t features); 1575 int (*ndo_neigh_construct)(struct net_device *dev, 1576 struct neighbour *n); 1577 void (*ndo_neigh_destroy)(struct net_device *dev, 1578 struct neighbour *n); 1579 1580 int (*ndo_fdb_add)(struct ndmsg *ndm, 1581 struct nlattr *tb[], 1582 struct net_device *dev, 1583 const unsigned char *addr, 1584 u16 vid, 1585 u16 flags, 1586 struct netlink_ext_ack *extack); 1587 int (*ndo_fdb_del)(struct ndmsg *ndm, 1588 struct nlattr *tb[], 1589 struct net_device *dev, 1590 const unsigned char *addr, 1591 u16 vid, struct netlink_ext_ack *extack); 1592 int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, 1593 struct net_device *dev, 1594 struct netlink_ext_ack *extack); 1595 int (*ndo_fdb_dump)(struct sk_buff *skb, 1596 struct netlink_callback *cb, 1597 struct net_device *dev, 1598 struct net_device *filter_dev, 1599 int *idx); 1600 int (*ndo_fdb_get)(struct sk_buff *skb, 1601 struct nlattr *tb[], 1602 struct net_device *dev, 1603 const unsigned char *addr, 1604 u16 vid, u32 portid, u32 seq, 1605 struct netlink_ext_ack *extack); 1606 int (*ndo_mdb_add)(struct net_device *dev, 1607 struct nlattr *tb[], 1608 u16 nlmsg_flags, 1609 struct netlink_ext_ack *extack); 1610 int (*ndo_mdb_del)(struct net_device *dev, 1611 struct nlattr *tb[], 1612 struct netlink_ext_ack *extack); 1613 int (*ndo_mdb_dump)(struct net_device *dev, 1614 struct sk_buff *skb, 1615 struct netlink_callback *cb); 1616 int (*ndo_mdb_get)(struct net_device *dev, 1617 struct nlattr *tb[], u32 portid, 1618 u32 seq, 1619 struct netlink_ext_ack *extack); 1620 int (*ndo_bridge_setlink)(struct net_device *dev, 1621 struct nlmsghdr *nlh, 1622 u16 flags, 1623 struct netlink_ext_ack *extack); 1624 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1625 u32 pid, u32 seq, 1626 struct net_device *dev, 1627 u32 filter_mask, 1628 int nlflags); 1629 int (*ndo_bridge_dellink)(struct net_device *dev, 1630 struct nlmsghdr *nlh, 1631 u16 flags); 1632 int (*ndo_change_carrier)(struct net_device *dev, 1633 bool new_carrier); 1634 int (*ndo_get_phys_port_id)(struct net_device *dev, 1635 struct netdev_phys_item_id *ppid); 1636 int (*ndo_get_port_parent_id)(struct net_device *dev, 1637 struct netdev_phys_item_id *ppid); 1638 int (*ndo_get_phys_port_name)(struct net_device *dev, 1639 char *name, size_t len); 1640 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1641 struct net_device *dev); 1642 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1643 void *priv); 1644 1645 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1646 int queue_index, 1647 u32 maxrate); 1648 int (*ndo_get_iflink)(const struct net_device *dev); 1649 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1650 struct sk_buff *skb); 1651 void (*ndo_set_rx_headroom)(struct net_device *dev, 1652 int needed_headroom); 1653 int (*ndo_bpf)(struct net_device *dev, 1654 struct netdev_bpf *bpf); 1655 int (*ndo_xdp_xmit)(struct net_device *dev, int n, 1656 struct xdp_frame **xdp, 1657 u32 flags); 1658 struct net_device * (*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1659 struct xdp_buff *xdp); 1660 int (*ndo_xsk_wakeup)(struct net_device *dev, 1661 u32 queue_id, u32 flags); 1662 int (*ndo_tunnel_ctl)(struct net_device *dev, 1663 struct ip_tunnel_parm *p, int cmd); 1664 struct net_device * (*ndo_get_peer_dev)(struct net_device *dev); 1665 int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, 1666 struct net_device_path *path); 1667 ktime_t (*ndo_get_tstamp)(struct net_device *dev, 1668 const struct skb_shared_hwtstamps *hwtstamps, 1669 bool cycles); 1670 int (*ndo_hwtstamp_get)(struct net_device *dev, 1671 struct kernel_hwtstamp_config *kernel_config); 1672 int (*ndo_hwtstamp_set)(struct net_device *dev, 1673 struct kernel_hwtstamp_config *kernel_config, 1674 struct netlink_ext_ack *extack); 1675 }; 1676 1677 /** 1678 * enum netdev_priv_flags - &struct net_device priv_flags 1679 * 1680 * These are the &struct net_device, they are only set internally 1681 * by drivers and used in the kernel. These flags are invisible to 1682 * userspace; this means that the order of these flags can change 1683 * during any kernel release. 1684 * 1685 * You should have a pretty good reason to be extending these flags. 1686 * 1687 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1688 * @IFF_EBRIDGE: Ethernet bridging device 1689 * @IFF_BONDING: bonding master or slave 1690 * @IFF_ISATAP: ISATAP interface (RFC4214) 1691 * @IFF_WAN_HDLC: WAN HDLC device 1692 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1693 * release skb->dst 1694 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1695 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1696 * @IFF_MACVLAN_PORT: device used as macvlan port 1697 * @IFF_BRIDGE_PORT: device used as bridge port 1698 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1699 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1700 * @IFF_UNICAST_FLT: Supports unicast filtering 1701 * @IFF_TEAM_PORT: device used as team port 1702 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1703 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1704 * change when it's running 1705 * @IFF_MACVLAN: Macvlan device 1706 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1707 * underlying stacked devices 1708 * @IFF_L3MDEV_MASTER: device is an L3 master device 1709 * @IFF_NO_QUEUE: device can run without qdisc attached 1710 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1711 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1712 * @IFF_TEAM: device is a team device 1713 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1714 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1715 * entity (i.e. the master device for bridged veth) 1716 * @IFF_MACSEC: device is a MACsec device 1717 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook 1718 * @IFF_FAILOVER: device is a failover master device 1719 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device 1720 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device 1721 * @IFF_NO_ADDRCONF: prevent ipv6 addrconf 1722 * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with 1723 * skb_headlen(skb) == 0 (data starts from frag0) 1724 * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN 1725 * @IFF_SEE_ALL_HWTSTAMP_REQUESTS: device wants to see calls to 1726 * ndo_hwtstamp_set() for all timestamp requests regardless of source, 1727 * even if those aren't HWTSTAMP_SOURCE_NETDEV. 1728 */ 1729 enum netdev_priv_flags { 1730 IFF_802_1Q_VLAN = 1<<0, 1731 IFF_EBRIDGE = 1<<1, 1732 IFF_BONDING = 1<<2, 1733 IFF_ISATAP = 1<<3, 1734 IFF_WAN_HDLC = 1<<4, 1735 IFF_XMIT_DST_RELEASE = 1<<5, 1736 IFF_DONT_BRIDGE = 1<<6, 1737 IFF_DISABLE_NETPOLL = 1<<7, 1738 IFF_MACVLAN_PORT = 1<<8, 1739 IFF_BRIDGE_PORT = 1<<9, 1740 IFF_OVS_DATAPATH = 1<<10, 1741 IFF_TX_SKB_SHARING = 1<<11, 1742 IFF_UNICAST_FLT = 1<<12, 1743 IFF_TEAM_PORT = 1<<13, 1744 IFF_SUPP_NOFCS = 1<<14, 1745 IFF_LIVE_ADDR_CHANGE = 1<<15, 1746 IFF_MACVLAN = 1<<16, 1747 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1748 IFF_L3MDEV_MASTER = 1<<18, 1749 IFF_NO_QUEUE = 1<<19, 1750 IFF_OPENVSWITCH = 1<<20, 1751 IFF_L3MDEV_SLAVE = 1<<21, 1752 IFF_TEAM = 1<<22, 1753 IFF_RXFH_CONFIGURED = 1<<23, 1754 IFF_PHONY_HEADROOM = 1<<24, 1755 IFF_MACSEC = 1<<25, 1756 IFF_NO_RX_HANDLER = 1<<26, 1757 IFF_FAILOVER = 1<<27, 1758 IFF_FAILOVER_SLAVE = 1<<28, 1759 IFF_L3MDEV_RX_HANDLER = 1<<29, 1760 IFF_NO_ADDRCONF = BIT_ULL(30), 1761 IFF_TX_SKB_NO_LINEAR = BIT_ULL(31), 1762 IFF_CHANGE_PROTO_DOWN = BIT_ULL(32), 1763 IFF_SEE_ALL_HWTSTAMP_REQUESTS = BIT_ULL(33), 1764 }; 1765 1766 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1767 #define IFF_EBRIDGE IFF_EBRIDGE 1768 #define IFF_BONDING IFF_BONDING 1769 #define IFF_ISATAP IFF_ISATAP 1770 #define IFF_WAN_HDLC IFF_WAN_HDLC 1771 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1772 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1773 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1774 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1775 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1776 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1777 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1778 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1779 #define IFF_TEAM_PORT IFF_TEAM_PORT 1780 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1781 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1782 #define IFF_MACVLAN IFF_MACVLAN 1783 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1784 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1785 #define IFF_NO_QUEUE IFF_NO_QUEUE 1786 #define IFF_OPENVSWITCH IFF_OPENVSWITCH 1787 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1788 #define IFF_TEAM IFF_TEAM 1789 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1790 #define IFF_PHONY_HEADROOM IFF_PHONY_HEADROOM 1791 #define IFF_MACSEC IFF_MACSEC 1792 #define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER 1793 #define IFF_FAILOVER IFF_FAILOVER 1794 #define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE 1795 #define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER 1796 #define IFF_TX_SKB_NO_LINEAR IFF_TX_SKB_NO_LINEAR 1797 1798 /* Specifies the type of the struct net_device::ml_priv pointer */ 1799 enum netdev_ml_priv_type { 1800 ML_PRIV_NONE, 1801 ML_PRIV_CAN, 1802 }; 1803 1804 enum netdev_stat_type { 1805 NETDEV_PCPU_STAT_NONE, 1806 NETDEV_PCPU_STAT_LSTATS, /* struct pcpu_lstats */ 1807 NETDEV_PCPU_STAT_TSTATS, /* struct pcpu_sw_netstats */ 1808 NETDEV_PCPU_STAT_DSTATS, /* struct pcpu_dstats */ 1809 }; 1810 1811 /** 1812 * struct net_device - The DEVICE structure. 1813 * 1814 * Actually, this whole structure is a big mistake. It mixes I/O 1815 * data with strictly "high-level" data, and it has to know about 1816 * almost every data structure used in the INET module. 1817 * 1818 * @name: This is the first field of the "visible" part of this structure 1819 * (i.e. as seen by users in the "Space.c" file). It is the name 1820 * of the interface. 1821 * 1822 * @name_node: Name hashlist node 1823 * @ifalias: SNMP alias 1824 * @mem_end: Shared memory end 1825 * @mem_start: Shared memory start 1826 * @base_addr: Device I/O address 1827 * @irq: Device IRQ number 1828 * 1829 * @state: Generic network queuing layer state, see netdev_state_t 1830 * @dev_list: The global list of network devices 1831 * @napi_list: List entry used for polling NAPI devices 1832 * @unreg_list: List entry when we are unregistering the 1833 * device; see the function unregister_netdev 1834 * @close_list: List entry used when we are closing the device 1835 * @ptype_all: Device-specific packet handlers for all protocols 1836 * @ptype_specific: Device-specific, protocol-specific packet handlers 1837 * 1838 * @adj_list: Directly linked devices, like slaves for bonding 1839 * @features: Currently active device features 1840 * @hw_features: User-changeable features 1841 * 1842 * @wanted_features: User-requested features 1843 * @vlan_features: Mask of features inheritable by VLAN devices 1844 * 1845 * @hw_enc_features: Mask of features inherited by encapsulating devices 1846 * This field indicates what encapsulation 1847 * offloads the hardware is capable of doing, 1848 * and drivers will need to set them appropriately. 1849 * 1850 * @mpls_features: Mask of features inheritable by MPLS 1851 * @gso_partial_features: value(s) from NETIF_F_GSO\* 1852 * 1853 * @ifindex: interface index 1854 * @group: The group the device belongs to 1855 * 1856 * @stats: Statistics struct, which was left as a legacy, use 1857 * rtnl_link_stats64 instead 1858 * 1859 * @core_stats: core networking counters, 1860 * do not use this in drivers 1861 * @carrier_up_count: Number of times the carrier has been up 1862 * @carrier_down_count: Number of times the carrier has been down 1863 * 1864 * @wireless_handlers: List of functions to handle Wireless Extensions, 1865 * instead of ioctl, 1866 * see <net/iw_handler.h> for details. 1867 * @wireless_data: Instance data managed by the core of wireless extensions 1868 * 1869 * @netdev_ops: Includes several pointers to callbacks, 1870 * if one wants to override the ndo_*() functions 1871 * @xdp_metadata_ops: Includes pointers to XDP metadata callbacks. 1872 * @xsk_tx_metadata_ops: Includes pointers to AF_XDP TX metadata callbacks. 1873 * @ethtool_ops: Management operations 1874 * @l3mdev_ops: Layer 3 master device operations 1875 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1876 * discovery handling. Necessary for e.g. 6LoWPAN. 1877 * @xfrmdev_ops: Transformation offload operations 1878 * @tlsdev_ops: Transport Layer Security offload operations 1879 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1880 * of Layer 2 headers. 1881 * 1882 * @flags: Interface flags (a la BSD) 1883 * @xdp_features: XDP capability supported by the device 1884 * @priv_flags: Like 'flags' but invisible to userspace, 1885 * see if.h for the definitions 1886 * @gflags: Global flags ( kept as legacy ) 1887 * @padded: How much padding added by alloc_netdev() 1888 * @operstate: RFC2863 operstate 1889 * @link_mode: Mapping policy to operstate 1890 * @if_port: Selectable AUI, TP, ... 1891 * @dma: DMA channel 1892 * @mtu: Interface MTU value 1893 * @min_mtu: Interface Minimum MTU value 1894 * @max_mtu: Interface Maximum MTU value 1895 * @type: Interface hardware type 1896 * @hard_header_len: Maximum hardware header length. 1897 * @min_header_len: Minimum hardware header length 1898 * 1899 * @needed_headroom: Extra headroom the hardware may need, but not in all 1900 * cases can this be guaranteed 1901 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1902 * cases can this be guaranteed. Some cases also use 1903 * LL_MAX_HEADER instead to allocate the skb 1904 * 1905 * interface address info: 1906 * 1907 * @perm_addr: Permanent hw address 1908 * @addr_assign_type: Hw address assignment type 1909 * @addr_len: Hardware address length 1910 * @upper_level: Maximum depth level of upper devices. 1911 * @lower_level: Maximum depth level of lower devices. 1912 * @neigh_priv_len: Used in neigh_alloc() 1913 * @dev_id: Used to differentiate devices that share 1914 * the same link layer address 1915 * @dev_port: Used to differentiate devices that share 1916 * the same function 1917 * @addr_list_lock: XXX: need comments on this one 1918 * @name_assign_type: network interface name assignment type 1919 * @uc_promisc: Counter that indicates promiscuous mode 1920 * has been enabled due to the need to listen to 1921 * additional unicast addresses in a device that 1922 * does not implement ndo_set_rx_mode() 1923 * @uc: unicast mac addresses 1924 * @mc: multicast mac addresses 1925 * @dev_addrs: list of device hw addresses 1926 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1927 * @promiscuity: Number of times the NIC is told to work in 1928 * promiscuous mode; if it becomes 0 the NIC will 1929 * exit promiscuous mode 1930 * @allmulti: Counter, enables or disables allmulticast mode 1931 * 1932 * @vlan_info: VLAN info 1933 * @dsa_ptr: dsa specific data 1934 * @tipc_ptr: TIPC specific data 1935 * @atalk_ptr: AppleTalk link 1936 * @ip_ptr: IPv4 specific data 1937 * @ip6_ptr: IPv6 specific data 1938 * @ax25_ptr: AX.25 specific data 1939 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1940 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network 1941 * device struct 1942 * @mpls_ptr: mpls_dev struct pointer 1943 * @mctp_ptr: MCTP specific data 1944 * 1945 * @dev_addr: Hw address (before bcast, 1946 * because most packets are unicast) 1947 * 1948 * @_rx: Array of RX queues 1949 * @num_rx_queues: Number of RX queues 1950 * allocated at register_netdev() time 1951 * @real_num_rx_queues: Number of RX queues currently active in device 1952 * @xdp_prog: XDP sockets filter program pointer 1953 * @gro_flush_timeout: timeout for GRO layer in NAPI 1954 * @napi_defer_hard_irqs: If not zero, provides a counter that would 1955 * allow to avoid NIC hard IRQ, on busy queues. 1956 * 1957 * @rx_handler: handler for received packets 1958 * @rx_handler_data: XXX: need comments on this one 1959 * @tcx_ingress: BPF & clsact qdisc specific data for ingress processing 1960 * @ingress_queue: XXX: need comments on this one 1961 * @nf_hooks_ingress: netfilter hooks executed for ingress packets 1962 * @broadcast: hw bcast address 1963 * 1964 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1965 * indexed by RX queue number. Assigned by driver. 1966 * This must only be set if the ndo_rx_flow_steer 1967 * operation is defined 1968 * @index_hlist: Device index hash chain 1969 * 1970 * @_tx: Array of TX queues 1971 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1972 * @real_num_tx_queues: Number of TX queues currently active in device 1973 * @qdisc: Root qdisc from userspace point of view 1974 * @tx_queue_len: Max frames per queue allowed 1975 * @tx_global_lock: XXX: need comments on this one 1976 * @xdp_bulkq: XDP device bulk queue 1977 * @xps_maps: all CPUs/RXQs maps for XPS device 1978 * 1979 * @xps_maps: XXX: need comments on this one 1980 * @tcx_egress: BPF & clsact qdisc specific data for egress processing 1981 * @nf_hooks_egress: netfilter hooks executed for egress packets 1982 * @qdisc_hash: qdisc hash table 1983 * @watchdog_timeo: Represents the timeout that is used by 1984 * the watchdog (see dev_watchdog()) 1985 * @watchdog_timer: List of timers 1986 * 1987 * @proto_down_reason: reason a netdev interface is held down 1988 * @pcpu_refcnt: Number of references to this device 1989 * @dev_refcnt: Number of references to this device 1990 * @refcnt_tracker: Tracker directory for tracked references to this device 1991 * @todo_list: Delayed register/unregister 1992 * @link_watch_list: XXX: need comments on this one 1993 * 1994 * @reg_state: Register/unregister state machine 1995 * @dismantle: Device is going to be freed 1996 * @rtnl_link_state: This enum represents the phases of creating 1997 * a new link 1998 * 1999 * @needs_free_netdev: Should unregister perform free_netdev? 2000 * @priv_destructor: Called from unregister 2001 * @npinfo: XXX: need comments on this one 2002 * @nd_net: Network namespace this network device is inside 2003 * 2004 * @ml_priv: Mid-layer private 2005 * @ml_priv_type: Mid-layer private type 2006 * 2007 * @pcpu_stat_type: Type of device statistics which the core should 2008 * allocate/free: none, lstats, tstats, dstats. none 2009 * means the driver is handling statistics allocation/ 2010 * freeing internally. 2011 * @lstats: Loopback statistics: packets, bytes 2012 * @tstats: Tunnel statistics: RX/TX packets, RX/TX bytes 2013 * @dstats: Dummy statistics: RX/TX/drop packets, RX/TX bytes 2014 * 2015 * @garp_port: GARP 2016 * @mrp_port: MRP 2017 * 2018 * @dm_private: Drop monitor private 2019 * 2020 * @dev: Class/net/name entry 2021 * @sysfs_groups: Space for optional device, statistics and wireless 2022 * sysfs groups 2023 * 2024 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 2025 * @rtnl_link_ops: Rtnl_link_ops 2026 * 2027 * @gso_max_size: Maximum size of generic segmentation offload 2028 * @tso_max_size: Device (as in HW) limit on the max TSO request size 2029 * @gso_max_segs: Maximum number of segments that can be passed to the 2030 * NIC for GSO 2031 * @tso_max_segs: Device (as in HW) limit on the max TSO segment count 2032 * @gso_ipv4_max_size: Maximum size of generic segmentation offload, 2033 * for IPv4. 2034 * 2035 * @dcbnl_ops: Data Center Bridging netlink ops 2036 * @num_tc: Number of traffic classes in the net device 2037 * @tc_to_txq: XXX: need comments on this one 2038 * @prio_tc_map: XXX: need comments on this one 2039 * 2040 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 2041 * 2042 * @priomap: XXX: need comments on this one 2043 * @phydev: Physical device may attach itself 2044 * for hardware timestamping 2045 * @sfp_bus: attached &struct sfp_bus structure. 2046 * 2047 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 2048 * 2049 * @proto_down: protocol port state information can be sent to the 2050 * switch driver and used to set the phys state of the 2051 * switch port. 2052 * 2053 * @wol_enabled: Wake-on-LAN is enabled 2054 * 2055 * @threaded: napi threaded mode is enabled 2056 * 2057 * @net_notifier_list: List of per-net netdev notifier block 2058 * that follow this device when it is moved 2059 * to another network namespace. 2060 * 2061 * @macsec_ops: MACsec offloading ops 2062 * 2063 * @udp_tunnel_nic_info: static structure describing the UDP tunnel 2064 * offload capabilities of the device 2065 * @udp_tunnel_nic: UDP tunnel offload state 2066 * @xdp_state: stores info on attached XDP BPF programs 2067 * 2068 * @nested_level: Used as a parameter of spin_lock_nested() of 2069 * dev->addr_list_lock. 2070 * @unlink_list: As netif_addr_lock() can be called recursively, 2071 * keep a list of interfaces to be deleted. 2072 * @gro_max_size: Maximum size of aggregated packet in generic 2073 * receive offload (GRO) 2074 * @gro_ipv4_max_size: Maximum size of aggregated packet in generic 2075 * receive offload (GRO), for IPv4. 2076 * @xdp_zc_max_segs: Maximum number of segments supported by AF_XDP 2077 * zero copy driver 2078 * 2079 * @dev_addr_shadow: Copy of @dev_addr to catch direct writes. 2080 * @linkwatch_dev_tracker: refcount tracker used by linkwatch. 2081 * @watchdog_dev_tracker: refcount tracker used by watchdog. 2082 * @dev_registered_tracker: tracker for reference held while 2083 * registered 2084 * @offload_xstats_l3: L3 HW stats for this netdevice. 2085 * 2086 * @devlink_port: Pointer to related devlink port structure. 2087 * Assigned by a driver before netdev registration using 2088 * SET_NETDEV_DEVLINK_PORT macro. This pointer is static 2089 * during the time netdevice is registered. 2090 * 2091 * @dpll_pin: Pointer to the SyncE source pin of a DPLL subsystem, 2092 * where the clock is recovered. 2093 * 2094 * FIXME: cleanup struct net_device such that network protocol info 2095 * moves out. 2096 */ 2097 2098 struct net_device { 2099 char name[IFNAMSIZ]; 2100 struct netdev_name_node *name_node; 2101 struct dev_ifalias __rcu *ifalias; 2102 /* 2103 * I/O specific fields 2104 * FIXME: Merge these and struct ifmap into one 2105 */ 2106 unsigned long mem_end; 2107 unsigned long mem_start; 2108 unsigned long base_addr; 2109 2110 /* 2111 * Some hardware also needs these fields (state,dev_list, 2112 * napi_list,unreg_list,close_list) but they are not 2113 * part of the usual set specified in Space.c. 2114 */ 2115 2116 unsigned long state; 2117 2118 struct list_head dev_list; 2119 struct list_head napi_list; 2120 struct list_head unreg_list; 2121 struct list_head close_list; 2122 struct list_head ptype_all; 2123 struct list_head ptype_specific; 2124 2125 struct { 2126 struct list_head upper; 2127 struct list_head lower; 2128 } adj_list; 2129 2130 /* Read-mostly cache-line for fast-path access */ 2131 unsigned int flags; 2132 xdp_features_t xdp_features; 2133 unsigned long long priv_flags; 2134 const struct net_device_ops *netdev_ops; 2135 const struct xdp_metadata_ops *xdp_metadata_ops; 2136 const struct xsk_tx_metadata_ops *xsk_tx_metadata_ops; 2137 int ifindex; 2138 unsigned short gflags; 2139 unsigned short hard_header_len; 2140 2141 /* Note : dev->mtu is often read without holding a lock. 2142 * Writers usually hold RTNL. 2143 * It is recommended to use READ_ONCE() to annotate the reads, 2144 * and to use WRITE_ONCE() to annotate the writes. 2145 */ 2146 unsigned int mtu; 2147 unsigned short needed_headroom; 2148 unsigned short needed_tailroom; 2149 2150 netdev_features_t features; 2151 netdev_features_t hw_features; 2152 netdev_features_t wanted_features; 2153 netdev_features_t vlan_features; 2154 netdev_features_t hw_enc_features; 2155 netdev_features_t mpls_features; 2156 netdev_features_t gso_partial_features; 2157 2158 unsigned int min_mtu; 2159 unsigned int max_mtu; 2160 unsigned short type; 2161 unsigned char min_header_len; 2162 unsigned char name_assign_type; 2163 2164 int group; 2165 2166 struct net_device_stats stats; /* not used by modern drivers */ 2167 2168 struct net_device_core_stats __percpu *core_stats; 2169 2170 /* Stats to monitor link on/off, flapping */ 2171 atomic_t carrier_up_count; 2172 atomic_t carrier_down_count; 2173 2174 #ifdef CONFIG_WIRELESS_EXT 2175 const struct iw_handler_def *wireless_handlers; 2176 struct iw_public_data *wireless_data; 2177 #endif 2178 const struct ethtool_ops *ethtool_ops; 2179 #ifdef CONFIG_NET_L3_MASTER_DEV 2180 const struct l3mdev_ops *l3mdev_ops; 2181 #endif 2182 #if IS_ENABLED(CONFIG_IPV6) 2183 const struct ndisc_ops *ndisc_ops; 2184 #endif 2185 2186 #ifdef CONFIG_XFRM_OFFLOAD 2187 const struct xfrmdev_ops *xfrmdev_ops; 2188 #endif 2189 2190 #if IS_ENABLED(CONFIG_TLS_DEVICE) 2191 const struct tlsdev_ops *tlsdev_ops; 2192 #endif 2193 2194 const struct header_ops *header_ops; 2195 2196 unsigned char operstate; 2197 unsigned char link_mode; 2198 2199 unsigned char if_port; 2200 unsigned char dma; 2201 2202 /* Interface address info. */ 2203 unsigned char perm_addr[MAX_ADDR_LEN]; 2204 unsigned char addr_assign_type; 2205 unsigned char addr_len; 2206 unsigned char upper_level; 2207 unsigned char lower_level; 2208 2209 unsigned short neigh_priv_len; 2210 unsigned short dev_id; 2211 unsigned short dev_port; 2212 unsigned short padded; 2213 2214 spinlock_t addr_list_lock; 2215 int irq; 2216 2217 struct netdev_hw_addr_list uc; 2218 struct netdev_hw_addr_list mc; 2219 struct netdev_hw_addr_list dev_addrs; 2220 2221 #ifdef CONFIG_SYSFS 2222 struct kset *queues_kset; 2223 #endif 2224 #ifdef CONFIG_LOCKDEP 2225 struct list_head unlink_list; 2226 #endif 2227 unsigned int promiscuity; 2228 unsigned int allmulti; 2229 bool uc_promisc; 2230 #ifdef CONFIG_LOCKDEP 2231 unsigned char nested_level; 2232 #endif 2233 2234 2235 /* Protocol-specific pointers */ 2236 2237 struct in_device __rcu *ip_ptr; 2238 struct inet6_dev __rcu *ip6_ptr; 2239 #if IS_ENABLED(CONFIG_VLAN_8021Q) 2240 struct vlan_info __rcu *vlan_info; 2241 #endif 2242 #if IS_ENABLED(CONFIG_NET_DSA) 2243 struct dsa_port *dsa_ptr; 2244 #endif 2245 #if IS_ENABLED(CONFIG_TIPC) 2246 struct tipc_bearer __rcu *tipc_ptr; 2247 #endif 2248 #if IS_ENABLED(CONFIG_ATALK) 2249 void *atalk_ptr; 2250 #endif 2251 #if IS_ENABLED(CONFIG_AX25) 2252 void *ax25_ptr; 2253 #endif 2254 #if IS_ENABLED(CONFIG_CFG80211) 2255 struct wireless_dev *ieee80211_ptr; 2256 #endif 2257 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN) 2258 struct wpan_dev *ieee802154_ptr; 2259 #endif 2260 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 2261 struct mpls_dev __rcu *mpls_ptr; 2262 #endif 2263 #if IS_ENABLED(CONFIG_MCTP) 2264 struct mctp_dev __rcu *mctp_ptr; 2265 #endif 2266 2267 /* 2268 * Cache lines mostly used on receive path (including eth_type_trans()) 2269 */ 2270 /* Interface address info used in eth_type_trans() */ 2271 const unsigned char *dev_addr; 2272 2273 struct netdev_rx_queue *_rx; 2274 unsigned int num_rx_queues; 2275 unsigned int real_num_rx_queues; 2276 2277 struct bpf_prog __rcu *xdp_prog; 2278 unsigned long gro_flush_timeout; 2279 int napi_defer_hard_irqs; 2280 #define GRO_LEGACY_MAX_SIZE 65536u 2281 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), 2282 * and shinfo->gso_segs is a 16bit field. 2283 */ 2284 #define GRO_MAX_SIZE (8 * 65535u) 2285 unsigned int gro_max_size; 2286 unsigned int gro_ipv4_max_size; 2287 unsigned int xdp_zc_max_segs; 2288 rx_handler_func_t __rcu *rx_handler; 2289 void __rcu *rx_handler_data; 2290 #ifdef CONFIG_NET_XGRESS 2291 struct bpf_mprog_entry __rcu *tcx_ingress; 2292 #endif 2293 struct netdev_queue __rcu *ingress_queue; 2294 #ifdef CONFIG_NETFILTER_INGRESS 2295 struct nf_hook_entries __rcu *nf_hooks_ingress; 2296 #endif 2297 2298 unsigned char broadcast[MAX_ADDR_LEN]; 2299 #ifdef CONFIG_RFS_ACCEL 2300 struct cpu_rmap *rx_cpu_rmap; 2301 #endif 2302 struct hlist_node index_hlist; 2303 2304 /* 2305 * Cache lines mostly used on transmit path 2306 */ 2307 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 2308 unsigned int num_tx_queues; 2309 unsigned int real_num_tx_queues; 2310 struct Qdisc __rcu *qdisc; 2311 unsigned int tx_queue_len; 2312 spinlock_t tx_global_lock; 2313 2314 struct xdp_dev_bulk_queue __percpu *xdp_bulkq; 2315 2316 #ifdef CONFIG_XPS 2317 struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX]; 2318 #endif 2319 #ifdef CONFIG_NET_XGRESS 2320 struct bpf_mprog_entry __rcu *tcx_egress; 2321 #endif 2322 #ifdef CONFIG_NETFILTER_EGRESS 2323 struct nf_hook_entries __rcu *nf_hooks_egress; 2324 #endif 2325 2326 #ifdef CONFIG_NET_SCHED 2327 DECLARE_HASHTABLE (qdisc_hash, 4); 2328 #endif 2329 /* These may be needed for future network-power-down code. */ 2330 struct timer_list watchdog_timer; 2331 int watchdog_timeo; 2332 2333 u32 proto_down_reason; 2334 2335 struct list_head todo_list; 2336 2337 #ifdef CONFIG_PCPU_DEV_REFCNT 2338 int __percpu *pcpu_refcnt; 2339 #else 2340 refcount_t dev_refcnt; 2341 #endif 2342 struct ref_tracker_dir refcnt_tracker; 2343 2344 struct list_head link_watch_list; 2345 2346 enum { NETREG_UNINITIALIZED=0, 2347 NETREG_REGISTERED, /* completed register_netdevice */ 2348 NETREG_UNREGISTERING, /* called unregister_netdevice */ 2349 NETREG_UNREGISTERED, /* completed unregister todo */ 2350 NETREG_RELEASED, /* called free_netdev */ 2351 NETREG_DUMMY, /* dummy device for NAPI poll */ 2352 } reg_state:8; 2353 2354 bool dismantle; 2355 2356 enum { 2357 RTNL_LINK_INITIALIZED, 2358 RTNL_LINK_INITIALIZING, 2359 } rtnl_link_state:16; 2360 2361 bool needs_free_netdev; 2362 void (*priv_destructor)(struct net_device *dev); 2363 2364 #ifdef CONFIG_NETPOLL 2365 struct netpoll_info __rcu *npinfo; 2366 #endif 2367 2368 possible_net_t nd_net; 2369 2370 /* mid-layer private */ 2371 void *ml_priv; 2372 enum netdev_ml_priv_type ml_priv_type; 2373 2374 enum netdev_stat_type pcpu_stat_type:8; 2375 union { 2376 struct pcpu_lstats __percpu *lstats; 2377 struct pcpu_sw_netstats __percpu *tstats; 2378 struct pcpu_dstats __percpu *dstats; 2379 }; 2380 2381 #if IS_ENABLED(CONFIG_GARP) 2382 struct garp_port __rcu *garp_port; 2383 #endif 2384 #if IS_ENABLED(CONFIG_MRP) 2385 struct mrp_port __rcu *mrp_port; 2386 #endif 2387 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR) 2388 struct dm_hw_stat_delta __rcu *dm_private; 2389 #endif 2390 struct device dev; 2391 const struct attribute_group *sysfs_groups[4]; 2392 const struct attribute_group *sysfs_rx_queue_group; 2393 2394 const struct rtnl_link_ops *rtnl_link_ops; 2395 2396 /* for setting kernel sock attribute on TCP connection setup */ 2397 #define GSO_MAX_SEGS 65535u 2398 #define GSO_LEGACY_MAX_SIZE 65536u 2399 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), 2400 * and shinfo->gso_segs is a 16bit field. 2401 */ 2402 #define GSO_MAX_SIZE (8 * GSO_MAX_SEGS) 2403 2404 unsigned int gso_max_size; 2405 #define TSO_LEGACY_MAX_SIZE 65536 2406 #define TSO_MAX_SIZE UINT_MAX 2407 unsigned int tso_max_size; 2408 u16 gso_max_segs; 2409 #define TSO_MAX_SEGS U16_MAX 2410 u16 tso_max_segs; 2411 unsigned int gso_ipv4_max_size; 2412 2413 #ifdef CONFIG_DCB 2414 const struct dcbnl_rtnl_ops *dcbnl_ops; 2415 #endif 2416 s16 num_tc; 2417 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 2418 u8 prio_tc_map[TC_BITMASK + 1]; 2419 2420 #if IS_ENABLED(CONFIG_FCOE) 2421 unsigned int fcoe_ddp_xid; 2422 #endif 2423 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2424 struct netprio_map __rcu *priomap; 2425 #endif 2426 struct phy_device *phydev; 2427 struct sfp_bus *sfp_bus; 2428 struct lock_class_key *qdisc_tx_busylock; 2429 bool proto_down; 2430 unsigned wol_enabled:1; 2431 unsigned threaded:1; 2432 2433 struct list_head net_notifier_list; 2434 2435 #if IS_ENABLED(CONFIG_MACSEC) 2436 /* MACsec management functions */ 2437 const struct macsec_ops *macsec_ops; 2438 #endif 2439 const struct udp_tunnel_nic_info *udp_tunnel_nic_info; 2440 struct udp_tunnel_nic *udp_tunnel_nic; 2441 2442 /* protected by rtnl_lock */ 2443 struct bpf_xdp_entity xdp_state[__MAX_XDP_MODE]; 2444 2445 u8 dev_addr_shadow[MAX_ADDR_LEN]; 2446 netdevice_tracker linkwatch_dev_tracker; 2447 netdevice_tracker watchdog_dev_tracker; 2448 netdevice_tracker dev_registered_tracker; 2449 struct rtnl_hw_stats64 *offload_xstats_l3; 2450 2451 struct devlink_port *devlink_port; 2452 2453 #if IS_ENABLED(CONFIG_DPLL) 2454 struct dpll_pin *dpll_pin; 2455 #endif 2456 #if IS_ENABLED(CONFIG_PAGE_POOL) 2457 /** @page_pools: page pools created for this netdevice */ 2458 struct hlist_head page_pools; 2459 #endif 2460 }; 2461 #define to_net_dev(d) container_of(d, struct net_device, dev) 2462 2463 /* 2464 * Driver should use this to assign devlink port instance to a netdevice 2465 * before it registers the netdevice. Therefore devlink_port is static 2466 * during the netdev lifetime after it is registered. 2467 */ 2468 #define SET_NETDEV_DEVLINK_PORT(dev, port) \ 2469 ({ \ 2470 WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED); \ 2471 ((dev)->devlink_port = (port)); \ 2472 }) 2473 2474 static inline bool netif_elide_gro(const struct net_device *dev) 2475 { 2476 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 2477 return true; 2478 return false; 2479 } 2480 2481 #define NETDEV_ALIGN 32 2482 2483 static inline 2484 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 2485 { 2486 return dev->prio_tc_map[prio & TC_BITMASK]; 2487 } 2488 2489 static inline 2490 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 2491 { 2492 if (tc >= dev->num_tc) 2493 return -EINVAL; 2494 2495 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 2496 return 0; 2497 } 2498 2499 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 2500 void netdev_reset_tc(struct net_device *dev); 2501 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 2502 int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 2503 2504 static inline 2505 int netdev_get_num_tc(struct net_device *dev) 2506 { 2507 return dev->num_tc; 2508 } 2509 2510 static inline void net_prefetch(void *p) 2511 { 2512 prefetch(p); 2513 #if L1_CACHE_BYTES < 128 2514 prefetch((u8 *)p + L1_CACHE_BYTES); 2515 #endif 2516 } 2517 2518 static inline void net_prefetchw(void *p) 2519 { 2520 prefetchw(p); 2521 #if L1_CACHE_BYTES < 128 2522 prefetchw((u8 *)p + L1_CACHE_BYTES); 2523 #endif 2524 } 2525 2526 void netdev_unbind_sb_channel(struct net_device *dev, 2527 struct net_device *sb_dev); 2528 int netdev_bind_sb_channel_queue(struct net_device *dev, 2529 struct net_device *sb_dev, 2530 u8 tc, u16 count, u16 offset); 2531 int netdev_set_sb_channel(struct net_device *dev, u16 channel); 2532 static inline int netdev_get_sb_channel(struct net_device *dev) 2533 { 2534 return max_t(int, -dev->num_tc, 0); 2535 } 2536 2537 static inline 2538 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 2539 unsigned int index) 2540 { 2541 DEBUG_NET_WARN_ON_ONCE(index >= dev->num_tx_queues); 2542 return &dev->_tx[index]; 2543 } 2544 2545 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 2546 const struct sk_buff *skb) 2547 { 2548 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 2549 } 2550 2551 static inline void netdev_for_each_tx_queue(struct net_device *dev, 2552 void (*f)(struct net_device *, 2553 struct netdev_queue *, 2554 void *), 2555 void *arg) 2556 { 2557 unsigned int i; 2558 2559 for (i = 0; i < dev->num_tx_queues; i++) 2560 f(dev, &dev->_tx[i], arg); 2561 } 2562 2563 #define netdev_lockdep_set_classes(dev) \ 2564 { \ 2565 static struct lock_class_key qdisc_tx_busylock_key; \ 2566 static struct lock_class_key qdisc_xmit_lock_key; \ 2567 static struct lock_class_key dev_addr_list_lock_key; \ 2568 unsigned int i; \ 2569 \ 2570 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 2571 lockdep_set_class(&(dev)->addr_list_lock, \ 2572 &dev_addr_list_lock_key); \ 2573 for (i = 0; i < (dev)->num_tx_queues; i++) \ 2574 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 2575 &qdisc_xmit_lock_key); \ 2576 } 2577 2578 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 2579 struct net_device *sb_dev); 2580 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 2581 struct sk_buff *skb, 2582 struct net_device *sb_dev); 2583 2584 /* returns the headroom that the master device needs to take in account 2585 * when forwarding to this dev 2586 */ 2587 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2588 { 2589 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2590 } 2591 2592 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2593 { 2594 if (dev->netdev_ops->ndo_set_rx_headroom) 2595 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2596 } 2597 2598 /* set the device rx headroom to the dev's default */ 2599 static inline void netdev_reset_rx_headroom(struct net_device *dev) 2600 { 2601 netdev_set_rx_headroom(dev, -1); 2602 } 2603 2604 static inline void *netdev_get_ml_priv(struct net_device *dev, 2605 enum netdev_ml_priv_type type) 2606 { 2607 if (dev->ml_priv_type != type) 2608 return NULL; 2609 2610 return dev->ml_priv; 2611 } 2612 2613 static inline void netdev_set_ml_priv(struct net_device *dev, 2614 void *ml_priv, 2615 enum netdev_ml_priv_type type) 2616 { 2617 WARN(dev->ml_priv_type && dev->ml_priv_type != type, 2618 "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n", 2619 dev->ml_priv_type, type); 2620 WARN(!dev->ml_priv_type && dev->ml_priv, 2621 "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n"); 2622 2623 dev->ml_priv = ml_priv; 2624 dev->ml_priv_type = type; 2625 } 2626 2627 /* 2628 * Net namespace inlines 2629 */ 2630 static inline 2631 struct net *dev_net(const struct net_device *dev) 2632 { 2633 return read_pnet(&dev->nd_net); 2634 } 2635 2636 static inline 2637 void dev_net_set(struct net_device *dev, struct net *net) 2638 { 2639 write_pnet(&dev->nd_net, net); 2640 } 2641 2642 /** 2643 * netdev_priv - access network device private data 2644 * @dev: network device 2645 * 2646 * Get network device private data 2647 */ 2648 static inline void *netdev_priv(const struct net_device *dev) 2649 { 2650 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2651 } 2652 2653 /* Set the sysfs physical device reference for the network logical device 2654 * if set prior to registration will cause a symlink during initialization. 2655 */ 2656 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2657 2658 /* Set the sysfs device type for the network logical device to allow 2659 * fine-grained identification of different network device types. For 2660 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2661 */ 2662 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2663 2664 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index, 2665 enum netdev_queue_type type, 2666 struct napi_struct *napi); 2667 2668 /* Default NAPI poll() weight 2669 * Device drivers are strongly advised to not use bigger value 2670 */ 2671 #define NAPI_POLL_WEIGHT 64 2672 2673 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi, 2674 int (*poll)(struct napi_struct *, int), int weight); 2675 2676 /** 2677 * netif_napi_add() - initialize a NAPI context 2678 * @dev: network device 2679 * @napi: NAPI context 2680 * @poll: polling function 2681 * 2682 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2683 * *any* of the other NAPI-related functions. 2684 */ 2685 static inline void 2686 netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2687 int (*poll)(struct napi_struct *, int)) 2688 { 2689 netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT); 2690 } 2691 2692 static inline void 2693 netif_napi_add_tx_weight(struct net_device *dev, 2694 struct napi_struct *napi, 2695 int (*poll)(struct napi_struct *, int), 2696 int weight) 2697 { 2698 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2699 netif_napi_add_weight(dev, napi, poll, weight); 2700 } 2701 2702 /** 2703 * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only 2704 * @dev: network device 2705 * @napi: NAPI context 2706 * @poll: polling function 2707 * 2708 * This variant of netif_napi_add() should be used from drivers using NAPI 2709 * to exclusively poll a TX queue. 2710 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2711 */ 2712 static inline void netif_napi_add_tx(struct net_device *dev, 2713 struct napi_struct *napi, 2714 int (*poll)(struct napi_struct *, int)) 2715 { 2716 netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT); 2717 } 2718 2719 /** 2720 * __netif_napi_del - remove a NAPI context 2721 * @napi: NAPI context 2722 * 2723 * Warning: caller must observe RCU grace period before freeing memory 2724 * containing @napi. Drivers might want to call this helper to combine 2725 * all the needed RCU grace periods into a single one. 2726 */ 2727 void __netif_napi_del(struct napi_struct *napi); 2728 2729 /** 2730 * netif_napi_del - remove a NAPI context 2731 * @napi: NAPI context 2732 * 2733 * netif_napi_del() removes a NAPI context from the network device NAPI list 2734 */ 2735 static inline void netif_napi_del(struct napi_struct *napi) 2736 { 2737 __netif_napi_del(napi); 2738 synchronize_net(); 2739 } 2740 2741 struct packet_type { 2742 __be16 type; /* This is really htons(ether_type). */ 2743 bool ignore_outgoing; 2744 struct net_device *dev; /* NULL is wildcarded here */ 2745 netdevice_tracker dev_tracker; 2746 int (*func) (struct sk_buff *, 2747 struct net_device *, 2748 struct packet_type *, 2749 struct net_device *); 2750 void (*list_func) (struct list_head *, 2751 struct packet_type *, 2752 struct net_device *); 2753 bool (*id_match)(struct packet_type *ptype, 2754 struct sock *sk); 2755 struct net *af_packet_net; 2756 void *af_packet_priv; 2757 struct list_head list; 2758 }; 2759 2760 struct offload_callbacks { 2761 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2762 netdev_features_t features); 2763 struct sk_buff *(*gro_receive)(struct list_head *head, 2764 struct sk_buff *skb); 2765 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2766 }; 2767 2768 struct packet_offload { 2769 __be16 type; /* This is really htons(ether_type). */ 2770 u16 priority; 2771 struct offload_callbacks callbacks; 2772 struct list_head list; 2773 }; 2774 2775 /* often modified stats are per-CPU, other are shared (netdev->stats) */ 2776 struct pcpu_sw_netstats { 2777 u64_stats_t rx_packets; 2778 u64_stats_t rx_bytes; 2779 u64_stats_t tx_packets; 2780 u64_stats_t tx_bytes; 2781 struct u64_stats_sync syncp; 2782 } __aligned(4 * sizeof(u64)); 2783 2784 struct pcpu_dstats { 2785 u64 rx_packets; 2786 u64 rx_bytes; 2787 u64 rx_drops; 2788 u64 tx_packets; 2789 u64 tx_bytes; 2790 u64 tx_drops; 2791 struct u64_stats_sync syncp; 2792 } __aligned(8 * sizeof(u64)); 2793 2794 struct pcpu_lstats { 2795 u64_stats_t packets; 2796 u64_stats_t bytes; 2797 struct u64_stats_sync syncp; 2798 } __aligned(2 * sizeof(u64)); 2799 2800 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes); 2801 2802 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len) 2803 { 2804 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2805 2806 u64_stats_update_begin(&tstats->syncp); 2807 u64_stats_add(&tstats->rx_bytes, len); 2808 u64_stats_inc(&tstats->rx_packets); 2809 u64_stats_update_end(&tstats->syncp); 2810 } 2811 2812 static inline void dev_sw_netstats_tx_add(struct net_device *dev, 2813 unsigned int packets, 2814 unsigned int len) 2815 { 2816 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2817 2818 u64_stats_update_begin(&tstats->syncp); 2819 u64_stats_add(&tstats->tx_bytes, len); 2820 u64_stats_add(&tstats->tx_packets, packets); 2821 u64_stats_update_end(&tstats->syncp); 2822 } 2823 2824 static inline void dev_lstats_add(struct net_device *dev, unsigned int len) 2825 { 2826 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats); 2827 2828 u64_stats_update_begin(&lstats->syncp); 2829 u64_stats_add(&lstats->bytes, len); 2830 u64_stats_inc(&lstats->packets); 2831 u64_stats_update_end(&lstats->syncp); 2832 } 2833 2834 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2835 ({ \ 2836 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2837 if (pcpu_stats) { \ 2838 int __cpu; \ 2839 for_each_possible_cpu(__cpu) { \ 2840 typeof(type) *stat; \ 2841 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2842 u64_stats_init(&stat->syncp); \ 2843 } \ 2844 } \ 2845 pcpu_stats; \ 2846 }) 2847 2848 #define netdev_alloc_pcpu_stats(type) \ 2849 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2850 2851 #define devm_netdev_alloc_pcpu_stats(dev, type) \ 2852 ({ \ 2853 typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\ 2854 if (pcpu_stats) { \ 2855 int __cpu; \ 2856 for_each_possible_cpu(__cpu) { \ 2857 typeof(type) *stat; \ 2858 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2859 u64_stats_init(&stat->syncp); \ 2860 } \ 2861 } \ 2862 pcpu_stats; \ 2863 }) 2864 2865 enum netdev_lag_tx_type { 2866 NETDEV_LAG_TX_TYPE_UNKNOWN, 2867 NETDEV_LAG_TX_TYPE_RANDOM, 2868 NETDEV_LAG_TX_TYPE_BROADCAST, 2869 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2870 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2871 NETDEV_LAG_TX_TYPE_HASH, 2872 }; 2873 2874 enum netdev_lag_hash { 2875 NETDEV_LAG_HASH_NONE, 2876 NETDEV_LAG_HASH_L2, 2877 NETDEV_LAG_HASH_L34, 2878 NETDEV_LAG_HASH_L23, 2879 NETDEV_LAG_HASH_E23, 2880 NETDEV_LAG_HASH_E34, 2881 NETDEV_LAG_HASH_VLAN_SRCMAC, 2882 NETDEV_LAG_HASH_UNKNOWN, 2883 }; 2884 2885 struct netdev_lag_upper_info { 2886 enum netdev_lag_tx_type tx_type; 2887 enum netdev_lag_hash hash_type; 2888 }; 2889 2890 struct netdev_lag_lower_state_info { 2891 u8 link_up : 1, 2892 tx_enabled : 1; 2893 }; 2894 2895 #include <linux/notifier.h> 2896 2897 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name() 2898 * and the rtnetlink notification exclusion list in rtnetlink_event() when 2899 * adding new types. 2900 */ 2901 enum netdev_cmd { 2902 NETDEV_UP = 1, /* For now you can't veto a device up/down */ 2903 NETDEV_DOWN, 2904 NETDEV_REBOOT, /* Tell a protocol stack a network interface 2905 detected a hardware crash and restarted 2906 - we can use this eg to kick tcp sessions 2907 once done */ 2908 NETDEV_CHANGE, /* Notify device state change */ 2909 NETDEV_REGISTER, 2910 NETDEV_UNREGISTER, 2911 NETDEV_CHANGEMTU, /* notify after mtu change happened */ 2912 NETDEV_CHANGEADDR, /* notify after the address change */ 2913 NETDEV_PRE_CHANGEADDR, /* notify before the address change */ 2914 NETDEV_GOING_DOWN, 2915 NETDEV_CHANGENAME, 2916 NETDEV_FEAT_CHANGE, 2917 NETDEV_BONDING_FAILOVER, 2918 NETDEV_PRE_UP, 2919 NETDEV_PRE_TYPE_CHANGE, 2920 NETDEV_POST_TYPE_CHANGE, 2921 NETDEV_POST_INIT, 2922 NETDEV_PRE_UNINIT, 2923 NETDEV_RELEASE, 2924 NETDEV_NOTIFY_PEERS, 2925 NETDEV_JOIN, 2926 NETDEV_CHANGEUPPER, 2927 NETDEV_RESEND_IGMP, 2928 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ 2929 NETDEV_CHANGEINFODATA, 2930 NETDEV_BONDING_INFO, 2931 NETDEV_PRECHANGEUPPER, 2932 NETDEV_CHANGELOWERSTATE, 2933 NETDEV_UDP_TUNNEL_PUSH_INFO, 2934 NETDEV_UDP_TUNNEL_DROP_INFO, 2935 NETDEV_CHANGE_TX_QUEUE_LEN, 2936 NETDEV_CVLAN_FILTER_PUSH_INFO, 2937 NETDEV_CVLAN_FILTER_DROP_INFO, 2938 NETDEV_SVLAN_FILTER_PUSH_INFO, 2939 NETDEV_SVLAN_FILTER_DROP_INFO, 2940 NETDEV_OFFLOAD_XSTATS_ENABLE, 2941 NETDEV_OFFLOAD_XSTATS_DISABLE, 2942 NETDEV_OFFLOAD_XSTATS_REPORT_USED, 2943 NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 2944 NETDEV_XDP_FEAT_CHANGE, 2945 }; 2946 const char *netdev_cmd_to_name(enum netdev_cmd cmd); 2947 2948 int register_netdevice_notifier(struct notifier_block *nb); 2949 int unregister_netdevice_notifier(struct notifier_block *nb); 2950 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb); 2951 int unregister_netdevice_notifier_net(struct net *net, 2952 struct notifier_block *nb); 2953 int register_netdevice_notifier_dev_net(struct net_device *dev, 2954 struct notifier_block *nb, 2955 struct netdev_net_notifier *nn); 2956 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 2957 struct notifier_block *nb, 2958 struct netdev_net_notifier *nn); 2959 2960 struct netdev_notifier_info { 2961 struct net_device *dev; 2962 struct netlink_ext_ack *extack; 2963 }; 2964 2965 struct netdev_notifier_info_ext { 2966 struct netdev_notifier_info info; /* must be first */ 2967 union { 2968 u32 mtu; 2969 } ext; 2970 }; 2971 2972 struct netdev_notifier_change_info { 2973 struct netdev_notifier_info info; /* must be first */ 2974 unsigned int flags_changed; 2975 }; 2976 2977 struct netdev_notifier_changeupper_info { 2978 struct netdev_notifier_info info; /* must be first */ 2979 struct net_device *upper_dev; /* new upper dev */ 2980 bool master; /* is upper dev master */ 2981 bool linking; /* is the notification for link or unlink */ 2982 void *upper_info; /* upper dev info */ 2983 }; 2984 2985 struct netdev_notifier_changelowerstate_info { 2986 struct netdev_notifier_info info; /* must be first */ 2987 void *lower_state_info; /* is lower dev state */ 2988 }; 2989 2990 struct netdev_notifier_pre_changeaddr_info { 2991 struct netdev_notifier_info info; /* must be first */ 2992 const unsigned char *dev_addr; 2993 }; 2994 2995 enum netdev_offload_xstats_type { 2996 NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1, 2997 }; 2998 2999 struct netdev_notifier_offload_xstats_info { 3000 struct netdev_notifier_info info; /* must be first */ 3001 enum netdev_offload_xstats_type type; 3002 3003 union { 3004 /* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */ 3005 struct netdev_notifier_offload_xstats_rd *report_delta; 3006 /* NETDEV_OFFLOAD_XSTATS_REPORT_USED */ 3007 struct netdev_notifier_offload_xstats_ru *report_used; 3008 }; 3009 }; 3010 3011 int netdev_offload_xstats_enable(struct net_device *dev, 3012 enum netdev_offload_xstats_type type, 3013 struct netlink_ext_ack *extack); 3014 int netdev_offload_xstats_disable(struct net_device *dev, 3015 enum netdev_offload_xstats_type type); 3016 bool netdev_offload_xstats_enabled(const struct net_device *dev, 3017 enum netdev_offload_xstats_type type); 3018 int netdev_offload_xstats_get(struct net_device *dev, 3019 enum netdev_offload_xstats_type type, 3020 struct rtnl_hw_stats64 *stats, bool *used, 3021 struct netlink_ext_ack *extack); 3022 void 3023 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd, 3024 const struct rtnl_hw_stats64 *stats); 3025 void 3026 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru); 3027 void netdev_offload_xstats_push_delta(struct net_device *dev, 3028 enum netdev_offload_xstats_type type, 3029 const struct rtnl_hw_stats64 *stats); 3030 3031 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 3032 struct net_device *dev) 3033 { 3034 info->dev = dev; 3035 info->extack = NULL; 3036 } 3037 3038 static inline struct net_device * 3039 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 3040 { 3041 return info->dev; 3042 } 3043 3044 static inline struct netlink_ext_ack * 3045 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 3046 { 3047 return info->extack; 3048 } 3049 3050 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 3051 int call_netdevice_notifiers_info(unsigned long val, 3052 struct netdev_notifier_info *info); 3053 3054 extern rwlock_t dev_base_lock; /* Device list lock */ 3055 3056 #define for_each_netdev(net, d) \ 3057 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 3058 #define for_each_netdev_reverse(net, d) \ 3059 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 3060 #define for_each_netdev_rcu(net, d) \ 3061 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 3062 #define for_each_netdev_safe(net, d, n) \ 3063 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 3064 #define for_each_netdev_continue(net, d) \ 3065 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 3066 #define for_each_netdev_continue_reverse(net, d) \ 3067 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \ 3068 dev_list) 3069 #define for_each_netdev_continue_rcu(net, d) \ 3070 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 3071 #define for_each_netdev_in_bond_rcu(bond, slave) \ 3072 for_each_netdev_rcu(&init_net, slave) \ 3073 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 3074 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 3075 3076 #define for_each_netdev_dump(net, d, ifindex) \ 3077 xa_for_each_start(&(net)->dev_by_index, (ifindex), (d), (ifindex)) 3078 3079 static inline struct net_device *next_net_device(struct net_device *dev) 3080 { 3081 struct list_head *lh; 3082 struct net *net; 3083 3084 net = dev_net(dev); 3085 lh = dev->dev_list.next; 3086 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3087 } 3088 3089 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 3090 { 3091 struct list_head *lh; 3092 struct net *net; 3093 3094 net = dev_net(dev); 3095 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 3096 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3097 } 3098 3099 static inline struct net_device *first_net_device(struct net *net) 3100 { 3101 return list_empty(&net->dev_base_head) ? NULL : 3102 net_device_entry(net->dev_base_head.next); 3103 } 3104 3105 static inline struct net_device *first_net_device_rcu(struct net *net) 3106 { 3107 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 3108 3109 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3110 } 3111 3112 int netdev_boot_setup_check(struct net_device *dev); 3113 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 3114 const char *hwaddr); 3115 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 3116 void dev_add_pack(struct packet_type *pt); 3117 void dev_remove_pack(struct packet_type *pt); 3118 void __dev_remove_pack(struct packet_type *pt); 3119 void dev_add_offload(struct packet_offload *po); 3120 void dev_remove_offload(struct packet_offload *po); 3121 3122 int dev_get_iflink(const struct net_device *dev); 3123 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 3124 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 3125 struct net_device_path_stack *stack); 3126 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 3127 unsigned short mask); 3128 struct net_device *dev_get_by_name(struct net *net, const char *name); 3129 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 3130 struct net_device *__dev_get_by_name(struct net *net, const char *name); 3131 bool netdev_name_in_use(struct net *net, const char *name); 3132 int dev_alloc_name(struct net_device *dev, const char *name); 3133 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack); 3134 void dev_close(struct net_device *dev); 3135 void dev_close_many(struct list_head *head, bool unlink); 3136 void dev_disable_lro(struct net_device *dev); 3137 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 3138 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 3139 struct net_device *sb_dev); 3140 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 3141 struct net_device *sb_dev); 3142 3143 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev); 3144 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id); 3145 3146 static inline int dev_queue_xmit(struct sk_buff *skb) 3147 { 3148 return __dev_queue_xmit(skb, NULL); 3149 } 3150 3151 static inline int dev_queue_xmit_accel(struct sk_buff *skb, 3152 struct net_device *sb_dev) 3153 { 3154 return __dev_queue_xmit(skb, sb_dev); 3155 } 3156 3157 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 3158 { 3159 int ret; 3160 3161 ret = __dev_direct_xmit(skb, queue_id); 3162 if (!dev_xmit_complete(ret)) 3163 kfree_skb(skb); 3164 return ret; 3165 } 3166 3167 int register_netdevice(struct net_device *dev); 3168 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 3169 void unregister_netdevice_many(struct list_head *head); 3170 static inline void unregister_netdevice(struct net_device *dev) 3171 { 3172 unregister_netdevice_queue(dev, NULL); 3173 } 3174 3175 int netdev_refcnt_read(const struct net_device *dev); 3176 void free_netdev(struct net_device *dev); 3177 void netdev_freemem(struct net_device *dev); 3178 int init_dummy_netdev(struct net_device *dev); 3179 3180 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 3181 struct sk_buff *skb, 3182 bool all_slaves); 3183 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 3184 struct sock *sk); 3185 struct net_device *dev_get_by_index(struct net *net, int ifindex); 3186 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 3187 struct net_device *netdev_get_by_index(struct net *net, int ifindex, 3188 netdevice_tracker *tracker, gfp_t gfp); 3189 struct net_device *netdev_get_by_name(struct net *net, const char *name, 3190 netdevice_tracker *tracker, gfp_t gfp); 3191 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 3192 struct net_device *dev_get_by_napi_id(unsigned int napi_id); 3193 3194 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 3195 unsigned short type, 3196 const void *daddr, const void *saddr, 3197 unsigned int len) 3198 { 3199 if (!dev->header_ops || !dev->header_ops->create) 3200 return 0; 3201 3202 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 3203 } 3204 3205 static inline int dev_parse_header(const struct sk_buff *skb, 3206 unsigned char *haddr) 3207 { 3208 const struct net_device *dev = skb->dev; 3209 3210 if (!dev->header_ops || !dev->header_ops->parse) 3211 return 0; 3212 return dev->header_ops->parse(skb, haddr); 3213 } 3214 3215 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb) 3216 { 3217 const struct net_device *dev = skb->dev; 3218 3219 if (!dev->header_ops || !dev->header_ops->parse_protocol) 3220 return 0; 3221 return dev->header_ops->parse_protocol(skb); 3222 } 3223 3224 /* ll_header must have at least hard_header_len allocated */ 3225 static inline bool dev_validate_header(const struct net_device *dev, 3226 char *ll_header, int len) 3227 { 3228 if (likely(len >= dev->hard_header_len)) 3229 return true; 3230 if (len < dev->min_header_len) 3231 return false; 3232 3233 if (capable(CAP_SYS_RAWIO)) { 3234 memset(ll_header + len, 0, dev->hard_header_len - len); 3235 return true; 3236 } 3237 3238 if (dev->header_ops && dev->header_ops->validate) 3239 return dev->header_ops->validate(ll_header, len); 3240 3241 return false; 3242 } 3243 3244 static inline bool dev_has_header(const struct net_device *dev) 3245 { 3246 return dev->header_ops && dev->header_ops->create; 3247 } 3248 3249 /* 3250 * Incoming packets are placed on per-CPU queues 3251 */ 3252 struct softnet_data { 3253 struct list_head poll_list; 3254 struct sk_buff_head process_queue; 3255 3256 /* stats */ 3257 unsigned int processed; 3258 unsigned int time_squeeze; 3259 #ifdef CONFIG_RPS 3260 struct softnet_data *rps_ipi_list; 3261 #endif 3262 3263 bool in_net_rx_action; 3264 bool in_napi_threaded_poll; 3265 3266 #ifdef CONFIG_NET_FLOW_LIMIT 3267 struct sd_flow_limit __rcu *flow_limit; 3268 #endif 3269 struct Qdisc *output_queue; 3270 struct Qdisc **output_queue_tailp; 3271 struct sk_buff *completion_queue; 3272 #ifdef CONFIG_XFRM_OFFLOAD 3273 struct sk_buff_head xfrm_backlog; 3274 #endif 3275 /* written and read only by owning cpu: */ 3276 struct { 3277 u16 recursion; 3278 u8 more; 3279 #ifdef CONFIG_NET_EGRESS 3280 u8 skip_txqueue; 3281 #endif 3282 } xmit; 3283 #ifdef CONFIG_RPS 3284 /* input_queue_head should be written by cpu owning this struct, 3285 * and only read by other cpus. Worth using a cache line. 3286 */ 3287 unsigned int input_queue_head ____cacheline_aligned_in_smp; 3288 3289 /* Elements below can be accessed between CPUs for RPS/RFS */ 3290 call_single_data_t csd ____cacheline_aligned_in_smp; 3291 struct softnet_data *rps_ipi_next; 3292 unsigned int cpu; 3293 unsigned int input_queue_tail; 3294 #endif 3295 unsigned int received_rps; 3296 unsigned int dropped; 3297 struct sk_buff_head input_pkt_queue; 3298 struct napi_struct backlog; 3299 3300 /* Another possibly contended cache line */ 3301 spinlock_t defer_lock ____cacheline_aligned_in_smp; 3302 int defer_count; 3303 int defer_ipi_scheduled; 3304 struct sk_buff *defer_list; 3305 call_single_data_t defer_csd; 3306 }; 3307 3308 static inline void input_queue_head_incr(struct softnet_data *sd) 3309 { 3310 #ifdef CONFIG_RPS 3311 sd->input_queue_head++; 3312 #endif 3313 } 3314 3315 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 3316 unsigned int *qtail) 3317 { 3318 #ifdef CONFIG_RPS 3319 *qtail = ++sd->input_queue_tail; 3320 #endif 3321 } 3322 3323 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 3324 3325 static inline int dev_recursion_level(void) 3326 { 3327 return this_cpu_read(softnet_data.xmit.recursion); 3328 } 3329 3330 #define XMIT_RECURSION_LIMIT 8 3331 static inline bool dev_xmit_recursion(void) 3332 { 3333 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) > 3334 XMIT_RECURSION_LIMIT); 3335 } 3336 3337 static inline void dev_xmit_recursion_inc(void) 3338 { 3339 __this_cpu_inc(softnet_data.xmit.recursion); 3340 } 3341 3342 static inline void dev_xmit_recursion_dec(void) 3343 { 3344 __this_cpu_dec(softnet_data.xmit.recursion); 3345 } 3346 3347 void __netif_schedule(struct Qdisc *q); 3348 void netif_schedule_queue(struct netdev_queue *txq); 3349 3350 static inline void netif_tx_schedule_all(struct net_device *dev) 3351 { 3352 unsigned int i; 3353 3354 for (i = 0; i < dev->num_tx_queues; i++) 3355 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 3356 } 3357 3358 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 3359 { 3360 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3361 } 3362 3363 /** 3364 * netif_start_queue - allow transmit 3365 * @dev: network device 3366 * 3367 * Allow upper layers to call the device hard_start_xmit routine. 3368 */ 3369 static inline void netif_start_queue(struct net_device *dev) 3370 { 3371 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 3372 } 3373 3374 static inline void netif_tx_start_all_queues(struct net_device *dev) 3375 { 3376 unsigned int i; 3377 3378 for (i = 0; i < dev->num_tx_queues; i++) { 3379 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3380 netif_tx_start_queue(txq); 3381 } 3382 } 3383 3384 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 3385 3386 /** 3387 * netif_wake_queue - restart transmit 3388 * @dev: network device 3389 * 3390 * Allow upper layers to call the device hard_start_xmit routine. 3391 * Used for flow control when transmit resources are available. 3392 */ 3393 static inline void netif_wake_queue(struct net_device *dev) 3394 { 3395 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 3396 } 3397 3398 static inline void netif_tx_wake_all_queues(struct net_device *dev) 3399 { 3400 unsigned int i; 3401 3402 for (i = 0; i < dev->num_tx_queues; i++) { 3403 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3404 netif_tx_wake_queue(txq); 3405 } 3406 } 3407 3408 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 3409 { 3410 /* Must be an atomic op see netif_txq_try_stop() */ 3411 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3412 } 3413 3414 /** 3415 * netif_stop_queue - stop transmitted packets 3416 * @dev: network device 3417 * 3418 * Stop upper layers calling the device hard_start_xmit routine. 3419 * Used for flow control when transmit resources are unavailable. 3420 */ 3421 static inline void netif_stop_queue(struct net_device *dev) 3422 { 3423 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 3424 } 3425 3426 void netif_tx_stop_all_queues(struct net_device *dev); 3427 3428 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 3429 { 3430 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3431 } 3432 3433 /** 3434 * netif_queue_stopped - test if transmit queue is flowblocked 3435 * @dev: network device 3436 * 3437 * Test if transmit queue on device is currently unable to send. 3438 */ 3439 static inline bool netif_queue_stopped(const struct net_device *dev) 3440 { 3441 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 3442 } 3443 3444 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 3445 { 3446 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 3447 } 3448 3449 static inline bool 3450 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 3451 { 3452 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 3453 } 3454 3455 static inline bool 3456 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 3457 { 3458 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 3459 } 3460 3461 /** 3462 * netdev_queue_set_dql_min_limit - set dql minimum limit 3463 * @dev_queue: pointer to transmit queue 3464 * @min_limit: dql minimum limit 3465 * 3466 * Forces xmit_more() to return true until the minimum threshold 3467 * defined by @min_limit is reached (or until the tx queue is 3468 * empty). Warning: to be use with care, misuse will impact the 3469 * latency. 3470 */ 3471 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue, 3472 unsigned int min_limit) 3473 { 3474 #ifdef CONFIG_BQL 3475 dev_queue->dql.min_limit = min_limit; 3476 #endif 3477 } 3478 3479 /** 3480 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 3481 * @dev_queue: pointer to transmit queue 3482 * 3483 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 3484 * to give appropriate hint to the CPU. 3485 */ 3486 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 3487 { 3488 #ifdef CONFIG_BQL 3489 prefetchw(&dev_queue->dql.num_queued); 3490 #endif 3491 } 3492 3493 /** 3494 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 3495 * @dev_queue: pointer to transmit queue 3496 * 3497 * BQL enabled drivers might use this helper in their TX completion path, 3498 * to give appropriate hint to the CPU. 3499 */ 3500 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 3501 { 3502 #ifdef CONFIG_BQL 3503 prefetchw(&dev_queue->dql.limit); 3504 #endif 3505 } 3506 3507 /** 3508 * netdev_tx_sent_queue - report the number of bytes queued to a given tx queue 3509 * @dev_queue: network device queue 3510 * @bytes: number of bytes queued to the device queue 3511 * 3512 * Report the number of bytes queued for sending/completion to the network 3513 * device hardware queue. @bytes should be a good approximation and should 3514 * exactly match netdev_completed_queue() @bytes. 3515 * This is typically called once per packet, from ndo_start_xmit(). 3516 */ 3517 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3518 unsigned int bytes) 3519 { 3520 #ifdef CONFIG_BQL 3521 dql_queued(&dev_queue->dql, bytes); 3522 3523 if (likely(dql_avail(&dev_queue->dql) >= 0)) 3524 return; 3525 3526 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3527 3528 /* 3529 * The XOFF flag must be set before checking the dql_avail below, 3530 * because in netdev_tx_completed_queue we update the dql_completed 3531 * before checking the XOFF flag. 3532 */ 3533 smp_mb(); 3534 3535 /* check again in case another CPU has just made room avail */ 3536 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3537 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3538 #endif 3539 } 3540 3541 /* Variant of netdev_tx_sent_queue() for drivers that are aware 3542 * that they should not test BQL status themselves. 3543 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last 3544 * skb of a batch. 3545 * Returns true if the doorbell must be used to kick the NIC. 3546 */ 3547 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3548 unsigned int bytes, 3549 bool xmit_more) 3550 { 3551 if (xmit_more) { 3552 #ifdef CONFIG_BQL 3553 dql_queued(&dev_queue->dql, bytes); 3554 #endif 3555 return netif_tx_queue_stopped(dev_queue); 3556 } 3557 netdev_tx_sent_queue(dev_queue, bytes); 3558 return true; 3559 } 3560 3561 /** 3562 * netdev_sent_queue - report the number of bytes queued to hardware 3563 * @dev: network device 3564 * @bytes: number of bytes queued to the hardware device queue 3565 * 3566 * Report the number of bytes queued for sending/completion to the network 3567 * device hardware queue#0. @bytes should be a good approximation and should 3568 * exactly match netdev_completed_queue() @bytes. 3569 * This is typically called once per packet, from ndo_start_xmit(). 3570 */ 3571 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3572 { 3573 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3574 } 3575 3576 static inline bool __netdev_sent_queue(struct net_device *dev, 3577 unsigned int bytes, 3578 bool xmit_more) 3579 { 3580 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes, 3581 xmit_more); 3582 } 3583 3584 /** 3585 * netdev_tx_completed_queue - report number of packets/bytes at TX completion. 3586 * @dev_queue: network device queue 3587 * @pkts: number of packets (currently ignored) 3588 * @bytes: number of bytes dequeued from the device queue 3589 * 3590 * Must be called at most once per TX completion round (and not per 3591 * individual packet), so that BQL can adjust its limits appropriately. 3592 */ 3593 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3594 unsigned int pkts, unsigned int bytes) 3595 { 3596 #ifdef CONFIG_BQL 3597 if (unlikely(!bytes)) 3598 return; 3599 3600 dql_completed(&dev_queue->dql, bytes); 3601 3602 /* 3603 * Without the memory barrier there is a small possiblity that 3604 * netdev_tx_sent_queue will miss the update and cause the queue to 3605 * be stopped forever 3606 */ 3607 smp_mb(); /* NOTE: netdev_txq_completed_mb() assumes this exists */ 3608 3609 if (unlikely(dql_avail(&dev_queue->dql) < 0)) 3610 return; 3611 3612 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3613 netif_schedule_queue(dev_queue); 3614 #endif 3615 } 3616 3617 /** 3618 * netdev_completed_queue - report bytes and packets completed by device 3619 * @dev: network device 3620 * @pkts: actual number of packets sent over the medium 3621 * @bytes: actual number of bytes sent over the medium 3622 * 3623 * Report the number of bytes and packets transmitted by the network device 3624 * hardware queue over the physical medium, @bytes must exactly match the 3625 * @bytes amount passed to netdev_sent_queue() 3626 */ 3627 static inline void netdev_completed_queue(struct net_device *dev, 3628 unsigned int pkts, unsigned int bytes) 3629 { 3630 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3631 } 3632 3633 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3634 { 3635 #ifdef CONFIG_BQL 3636 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3637 dql_reset(&q->dql); 3638 #endif 3639 } 3640 3641 /** 3642 * netdev_reset_queue - reset the packets and bytes count of a network device 3643 * @dev_queue: network device 3644 * 3645 * Reset the bytes and packet count of a network device and clear the 3646 * software flow control OFF bit for this network device 3647 */ 3648 static inline void netdev_reset_queue(struct net_device *dev_queue) 3649 { 3650 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3651 } 3652 3653 /** 3654 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3655 * @dev: network device 3656 * @queue_index: given tx queue index 3657 * 3658 * Returns 0 if given tx queue index >= number of device tx queues, 3659 * otherwise returns the originally passed tx queue index. 3660 */ 3661 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3662 { 3663 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3664 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3665 dev->name, queue_index, 3666 dev->real_num_tx_queues); 3667 return 0; 3668 } 3669 3670 return queue_index; 3671 } 3672 3673 /** 3674 * netif_running - test if up 3675 * @dev: network device 3676 * 3677 * Test if the device has been brought up. 3678 */ 3679 static inline bool netif_running(const struct net_device *dev) 3680 { 3681 return test_bit(__LINK_STATE_START, &dev->state); 3682 } 3683 3684 /* 3685 * Routines to manage the subqueues on a device. We only need start, 3686 * stop, and a check if it's stopped. All other device management is 3687 * done at the overall netdevice level. 3688 * Also test the device if we're multiqueue. 3689 */ 3690 3691 /** 3692 * netif_start_subqueue - allow sending packets on subqueue 3693 * @dev: network device 3694 * @queue_index: sub queue index 3695 * 3696 * Start individual transmit queue of a device with multiple transmit queues. 3697 */ 3698 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3699 { 3700 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3701 3702 netif_tx_start_queue(txq); 3703 } 3704 3705 /** 3706 * netif_stop_subqueue - stop sending packets on subqueue 3707 * @dev: network device 3708 * @queue_index: sub queue index 3709 * 3710 * Stop individual transmit queue of a device with multiple transmit queues. 3711 */ 3712 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3713 { 3714 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3715 netif_tx_stop_queue(txq); 3716 } 3717 3718 /** 3719 * __netif_subqueue_stopped - test status of subqueue 3720 * @dev: network device 3721 * @queue_index: sub queue index 3722 * 3723 * Check individual transmit queue of a device with multiple transmit queues. 3724 */ 3725 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3726 u16 queue_index) 3727 { 3728 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3729 3730 return netif_tx_queue_stopped(txq); 3731 } 3732 3733 /** 3734 * netif_subqueue_stopped - test status of subqueue 3735 * @dev: network device 3736 * @skb: sub queue buffer pointer 3737 * 3738 * Check individual transmit queue of a device with multiple transmit queues. 3739 */ 3740 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3741 struct sk_buff *skb) 3742 { 3743 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3744 } 3745 3746 /** 3747 * netif_wake_subqueue - allow sending packets on subqueue 3748 * @dev: network device 3749 * @queue_index: sub queue index 3750 * 3751 * Resume individual transmit queue of a device with multiple transmit queues. 3752 */ 3753 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3754 { 3755 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3756 3757 netif_tx_wake_queue(txq); 3758 } 3759 3760 #ifdef CONFIG_XPS 3761 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3762 u16 index); 3763 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 3764 u16 index, enum xps_map_type type); 3765 3766 /** 3767 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask 3768 * @j: CPU/Rx queue index 3769 * @mask: bitmask of all cpus/rx queues 3770 * @nr_bits: number of bits in the bitmask 3771 * 3772 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues. 3773 */ 3774 static inline bool netif_attr_test_mask(unsigned long j, 3775 const unsigned long *mask, 3776 unsigned int nr_bits) 3777 { 3778 cpu_max_bits_warn(j, nr_bits); 3779 return test_bit(j, mask); 3780 } 3781 3782 /** 3783 * netif_attr_test_online - Test for online CPU/Rx queue 3784 * @j: CPU/Rx queue index 3785 * @online_mask: bitmask for CPUs/Rx queues that are online 3786 * @nr_bits: number of bits in the bitmask 3787 * 3788 * Returns true if a CPU/Rx queue is online. 3789 */ 3790 static inline bool netif_attr_test_online(unsigned long j, 3791 const unsigned long *online_mask, 3792 unsigned int nr_bits) 3793 { 3794 cpu_max_bits_warn(j, nr_bits); 3795 3796 if (online_mask) 3797 return test_bit(j, online_mask); 3798 3799 return (j < nr_bits); 3800 } 3801 3802 /** 3803 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask 3804 * @n: CPU/Rx queue index 3805 * @srcp: the cpumask/Rx queue mask pointer 3806 * @nr_bits: number of bits in the bitmask 3807 * 3808 * Returns >= nr_bits if no further CPUs/Rx queues set. 3809 */ 3810 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp, 3811 unsigned int nr_bits) 3812 { 3813 /* -1 is a legal arg here. */ 3814 if (n != -1) 3815 cpu_max_bits_warn(n, nr_bits); 3816 3817 if (srcp) 3818 return find_next_bit(srcp, nr_bits, n + 1); 3819 3820 return n + 1; 3821 } 3822 3823 /** 3824 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p 3825 * @n: CPU/Rx queue index 3826 * @src1p: the first CPUs/Rx queues mask pointer 3827 * @src2p: the second CPUs/Rx queues mask pointer 3828 * @nr_bits: number of bits in the bitmask 3829 * 3830 * Returns >= nr_bits if no further CPUs/Rx queues set in both. 3831 */ 3832 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p, 3833 const unsigned long *src2p, 3834 unsigned int nr_bits) 3835 { 3836 /* -1 is a legal arg here. */ 3837 if (n != -1) 3838 cpu_max_bits_warn(n, nr_bits); 3839 3840 if (src1p && src2p) 3841 return find_next_and_bit(src1p, src2p, nr_bits, n + 1); 3842 else if (src1p) 3843 return find_next_bit(src1p, nr_bits, n + 1); 3844 else if (src2p) 3845 return find_next_bit(src2p, nr_bits, n + 1); 3846 3847 return n + 1; 3848 } 3849 #else 3850 static inline int netif_set_xps_queue(struct net_device *dev, 3851 const struct cpumask *mask, 3852 u16 index) 3853 { 3854 return 0; 3855 } 3856 3857 static inline int __netif_set_xps_queue(struct net_device *dev, 3858 const unsigned long *mask, 3859 u16 index, enum xps_map_type type) 3860 { 3861 return 0; 3862 } 3863 #endif 3864 3865 /** 3866 * netif_is_multiqueue - test if device has multiple transmit queues 3867 * @dev: network device 3868 * 3869 * Check if device has multiple transmit queues 3870 */ 3871 static inline bool netif_is_multiqueue(const struct net_device *dev) 3872 { 3873 return dev->num_tx_queues > 1; 3874 } 3875 3876 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3877 3878 #ifdef CONFIG_SYSFS 3879 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3880 #else 3881 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3882 unsigned int rxqs) 3883 { 3884 dev->real_num_rx_queues = rxqs; 3885 return 0; 3886 } 3887 #endif 3888 int netif_set_real_num_queues(struct net_device *dev, 3889 unsigned int txq, unsigned int rxq); 3890 3891 int netif_get_num_default_rss_queues(void); 3892 3893 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason); 3894 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason); 3895 3896 /* 3897 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3898 * interrupt context or with hardware interrupts being disabled. 3899 * (in_hardirq() || irqs_disabled()) 3900 * 3901 * We provide four helpers that can be used in following contexts : 3902 * 3903 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3904 * replacing kfree_skb(skb) 3905 * 3906 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3907 * Typically used in place of consume_skb(skb) in TX completion path 3908 * 3909 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3910 * replacing kfree_skb(skb) 3911 * 3912 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3913 * and consumed a packet. Used in place of consume_skb(skb) 3914 */ 3915 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3916 { 3917 dev_kfree_skb_irq_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 3918 } 3919 3920 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3921 { 3922 dev_kfree_skb_irq_reason(skb, SKB_CONSUMED); 3923 } 3924 3925 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3926 { 3927 dev_kfree_skb_any_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 3928 } 3929 3930 static inline void dev_consume_skb_any(struct sk_buff *skb) 3931 { 3932 dev_kfree_skb_any_reason(skb, SKB_CONSUMED); 3933 } 3934 3935 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 3936 struct bpf_prog *xdp_prog); 3937 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 3938 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb); 3939 int netif_rx(struct sk_buff *skb); 3940 int __netif_rx(struct sk_buff *skb); 3941 3942 int netif_receive_skb(struct sk_buff *skb); 3943 int netif_receive_skb_core(struct sk_buff *skb); 3944 void netif_receive_skb_list_internal(struct list_head *head); 3945 void netif_receive_skb_list(struct list_head *head); 3946 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3947 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3948 struct sk_buff *napi_get_frags(struct napi_struct *napi); 3949 void napi_get_frags_check(struct napi_struct *napi); 3950 gro_result_t napi_gro_frags(struct napi_struct *napi); 3951 struct packet_offload *gro_find_receive_by_type(__be16 type); 3952 struct packet_offload *gro_find_complete_by_type(__be16 type); 3953 3954 static inline void napi_free_frags(struct napi_struct *napi) 3955 { 3956 kfree_skb(napi->skb); 3957 napi->skb = NULL; 3958 } 3959 3960 bool netdev_is_rx_handler_busy(struct net_device *dev); 3961 int netdev_rx_handler_register(struct net_device *dev, 3962 rx_handler_func_t *rx_handler, 3963 void *rx_handler_data); 3964 void netdev_rx_handler_unregister(struct net_device *dev); 3965 3966 bool dev_valid_name(const char *name); 3967 static inline bool is_socket_ioctl_cmd(unsigned int cmd) 3968 { 3969 return _IOC_TYPE(cmd) == SOCK_IOC_TYPE; 3970 } 3971 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg); 3972 int put_user_ifreq(struct ifreq *ifr, void __user *arg); 3973 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 3974 void __user *data, bool *need_copyout); 3975 int dev_ifconf(struct net *net, struct ifconf __user *ifc); 3976 int generic_hwtstamp_get_lower(struct net_device *dev, 3977 struct kernel_hwtstamp_config *kernel_cfg); 3978 int generic_hwtstamp_set_lower(struct net_device *dev, 3979 struct kernel_hwtstamp_config *kernel_cfg, 3980 struct netlink_ext_ack *extack); 3981 int dev_set_hwtstamp_phylib(struct net_device *dev, 3982 struct kernel_hwtstamp_config *cfg, 3983 struct netlink_ext_ack *extack); 3984 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata); 3985 unsigned int dev_get_flags(const struct net_device *); 3986 int __dev_change_flags(struct net_device *dev, unsigned int flags, 3987 struct netlink_ext_ack *extack); 3988 int dev_change_flags(struct net_device *dev, unsigned int flags, 3989 struct netlink_ext_ack *extack); 3990 int dev_set_alias(struct net_device *, const char *, size_t); 3991 int dev_get_alias(const struct net_device *, char *, size_t); 3992 int __dev_change_net_namespace(struct net_device *dev, struct net *net, 3993 const char *pat, int new_ifindex); 3994 static inline 3995 int dev_change_net_namespace(struct net_device *dev, struct net *net, 3996 const char *pat) 3997 { 3998 return __dev_change_net_namespace(dev, net, pat, 0); 3999 } 4000 int __dev_set_mtu(struct net_device *, int); 4001 int dev_set_mtu(struct net_device *, int); 4002 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 4003 struct netlink_ext_ack *extack); 4004 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 4005 struct netlink_ext_ack *extack); 4006 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, 4007 struct netlink_ext_ack *extack); 4008 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name); 4009 int dev_get_port_parent_id(struct net_device *dev, 4010 struct netdev_phys_item_id *ppid, bool recurse); 4011 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b); 4012 void netdev_dpll_pin_set(struct net_device *dev, struct dpll_pin *dpll_pin); 4013 void netdev_dpll_pin_clear(struct net_device *dev); 4014 4015 static inline struct dpll_pin *netdev_dpll_pin(const struct net_device *dev) 4016 { 4017 #if IS_ENABLED(CONFIG_DPLL) 4018 return dev->dpll_pin; 4019 #else 4020 return NULL; 4021 #endif 4022 } 4023 4024 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 4025 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 4026 struct netdev_queue *txq, int *ret); 4027 4028 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog); 4029 u8 dev_xdp_prog_count(struct net_device *dev); 4030 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode); 4031 4032 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 4033 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 4034 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb); 4035 bool is_skb_forwardable(const struct net_device *dev, 4036 const struct sk_buff *skb); 4037 4038 static __always_inline bool __is_skb_forwardable(const struct net_device *dev, 4039 const struct sk_buff *skb, 4040 const bool check_mtu) 4041 { 4042 const u32 vlan_hdr_len = 4; /* VLAN_HLEN */ 4043 unsigned int len; 4044 4045 if (!(dev->flags & IFF_UP)) 4046 return false; 4047 4048 if (!check_mtu) 4049 return true; 4050 4051 len = dev->mtu + dev->hard_header_len + vlan_hdr_len; 4052 if (skb->len <= len) 4053 return true; 4054 4055 /* if TSO is enabled, we don't care about the length as the packet 4056 * could be forwarded without being segmented before 4057 */ 4058 if (skb_is_gso(skb)) 4059 return true; 4060 4061 return false; 4062 } 4063 4064 void netdev_core_stats_inc(struct net_device *dev, u32 offset); 4065 4066 #define DEV_CORE_STATS_INC(FIELD) \ 4067 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev) \ 4068 { \ 4069 netdev_core_stats_inc(dev, \ 4070 offsetof(struct net_device_core_stats, FIELD)); \ 4071 } 4072 DEV_CORE_STATS_INC(rx_dropped) 4073 DEV_CORE_STATS_INC(tx_dropped) 4074 DEV_CORE_STATS_INC(rx_nohandler) 4075 DEV_CORE_STATS_INC(rx_otherhost_dropped) 4076 #undef DEV_CORE_STATS_INC 4077 4078 static __always_inline int ____dev_forward_skb(struct net_device *dev, 4079 struct sk_buff *skb, 4080 const bool check_mtu) 4081 { 4082 if (skb_orphan_frags(skb, GFP_ATOMIC) || 4083 unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) { 4084 dev_core_stats_rx_dropped_inc(dev); 4085 kfree_skb(skb); 4086 return NET_RX_DROP; 4087 } 4088 4089 skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev))); 4090 skb->priority = 0; 4091 return 0; 4092 } 4093 4094 bool dev_nit_active(struct net_device *dev); 4095 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 4096 4097 static inline void __dev_put(struct net_device *dev) 4098 { 4099 if (dev) { 4100 #ifdef CONFIG_PCPU_DEV_REFCNT 4101 this_cpu_dec(*dev->pcpu_refcnt); 4102 #else 4103 refcount_dec(&dev->dev_refcnt); 4104 #endif 4105 } 4106 } 4107 4108 static inline void __dev_hold(struct net_device *dev) 4109 { 4110 if (dev) { 4111 #ifdef CONFIG_PCPU_DEV_REFCNT 4112 this_cpu_inc(*dev->pcpu_refcnt); 4113 #else 4114 refcount_inc(&dev->dev_refcnt); 4115 #endif 4116 } 4117 } 4118 4119 static inline void __netdev_tracker_alloc(struct net_device *dev, 4120 netdevice_tracker *tracker, 4121 gfp_t gfp) 4122 { 4123 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4124 ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp); 4125 #endif 4126 } 4127 4128 /* netdev_tracker_alloc() can upgrade a prior untracked reference 4129 * taken by dev_get_by_name()/dev_get_by_index() to a tracked one. 4130 */ 4131 static inline void netdev_tracker_alloc(struct net_device *dev, 4132 netdevice_tracker *tracker, gfp_t gfp) 4133 { 4134 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4135 refcount_dec(&dev->refcnt_tracker.no_tracker); 4136 __netdev_tracker_alloc(dev, tracker, gfp); 4137 #endif 4138 } 4139 4140 static inline void netdev_tracker_free(struct net_device *dev, 4141 netdevice_tracker *tracker) 4142 { 4143 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4144 ref_tracker_free(&dev->refcnt_tracker, tracker); 4145 #endif 4146 } 4147 4148 static inline void netdev_hold(struct net_device *dev, 4149 netdevice_tracker *tracker, gfp_t gfp) 4150 { 4151 if (dev) { 4152 __dev_hold(dev); 4153 __netdev_tracker_alloc(dev, tracker, gfp); 4154 } 4155 } 4156 4157 static inline void netdev_put(struct net_device *dev, 4158 netdevice_tracker *tracker) 4159 { 4160 if (dev) { 4161 netdev_tracker_free(dev, tracker); 4162 __dev_put(dev); 4163 } 4164 } 4165 4166 /** 4167 * dev_hold - get reference to device 4168 * @dev: network device 4169 * 4170 * Hold reference to device to keep it from being freed. 4171 * Try using netdev_hold() instead. 4172 */ 4173 static inline void dev_hold(struct net_device *dev) 4174 { 4175 netdev_hold(dev, NULL, GFP_ATOMIC); 4176 } 4177 4178 /** 4179 * dev_put - release reference to device 4180 * @dev: network device 4181 * 4182 * Release reference to device to allow it to be freed. 4183 * Try using netdev_put() instead. 4184 */ 4185 static inline void dev_put(struct net_device *dev) 4186 { 4187 netdev_put(dev, NULL); 4188 } 4189 4190 static inline void netdev_ref_replace(struct net_device *odev, 4191 struct net_device *ndev, 4192 netdevice_tracker *tracker, 4193 gfp_t gfp) 4194 { 4195 if (odev) 4196 netdev_tracker_free(odev, tracker); 4197 4198 __dev_hold(ndev); 4199 __dev_put(odev); 4200 4201 if (ndev) 4202 __netdev_tracker_alloc(ndev, tracker, gfp); 4203 } 4204 4205 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 4206 * and _off may be called from IRQ context, but it is caller 4207 * who is responsible for serialization of these calls. 4208 * 4209 * The name carrier is inappropriate, these functions should really be 4210 * called netif_lowerlayer_*() because they represent the state of any 4211 * kind of lower layer not just hardware media. 4212 */ 4213 void linkwatch_fire_event(struct net_device *dev); 4214 4215 /** 4216 * netif_carrier_ok - test if carrier present 4217 * @dev: network device 4218 * 4219 * Check if carrier is present on device 4220 */ 4221 static inline bool netif_carrier_ok(const struct net_device *dev) 4222 { 4223 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 4224 } 4225 4226 unsigned long dev_trans_start(struct net_device *dev); 4227 4228 void __netdev_watchdog_up(struct net_device *dev); 4229 4230 void netif_carrier_on(struct net_device *dev); 4231 void netif_carrier_off(struct net_device *dev); 4232 void netif_carrier_event(struct net_device *dev); 4233 4234 /** 4235 * netif_dormant_on - mark device as dormant. 4236 * @dev: network device 4237 * 4238 * Mark device as dormant (as per RFC2863). 4239 * 4240 * The dormant state indicates that the relevant interface is not 4241 * actually in a condition to pass packets (i.e., it is not 'up') but is 4242 * in a "pending" state, waiting for some external event. For "on- 4243 * demand" interfaces, this new state identifies the situation where the 4244 * interface is waiting for events to place it in the up state. 4245 */ 4246 static inline void netif_dormant_on(struct net_device *dev) 4247 { 4248 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 4249 linkwatch_fire_event(dev); 4250 } 4251 4252 /** 4253 * netif_dormant_off - set device as not dormant. 4254 * @dev: network device 4255 * 4256 * Device is not in dormant state. 4257 */ 4258 static inline void netif_dormant_off(struct net_device *dev) 4259 { 4260 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 4261 linkwatch_fire_event(dev); 4262 } 4263 4264 /** 4265 * netif_dormant - test if device is dormant 4266 * @dev: network device 4267 * 4268 * Check if device is dormant. 4269 */ 4270 static inline bool netif_dormant(const struct net_device *dev) 4271 { 4272 return test_bit(__LINK_STATE_DORMANT, &dev->state); 4273 } 4274 4275 4276 /** 4277 * netif_testing_on - mark device as under test. 4278 * @dev: network device 4279 * 4280 * Mark device as under test (as per RFC2863). 4281 * 4282 * The testing state indicates that some test(s) must be performed on 4283 * the interface. After completion, of the test, the interface state 4284 * will change to up, dormant, or down, as appropriate. 4285 */ 4286 static inline void netif_testing_on(struct net_device *dev) 4287 { 4288 if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state)) 4289 linkwatch_fire_event(dev); 4290 } 4291 4292 /** 4293 * netif_testing_off - set device as not under test. 4294 * @dev: network device 4295 * 4296 * Device is not in testing state. 4297 */ 4298 static inline void netif_testing_off(struct net_device *dev) 4299 { 4300 if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state)) 4301 linkwatch_fire_event(dev); 4302 } 4303 4304 /** 4305 * netif_testing - test if device is under test 4306 * @dev: network device 4307 * 4308 * Check if device is under test 4309 */ 4310 static inline bool netif_testing(const struct net_device *dev) 4311 { 4312 return test_bit(__LINK_STATE_TESTING, &dev->state); 4313 } 4314 4315 4316 /** 4317 * netif_oper_up - test if device is operational 4318 * @dev: network device 4319 * 4320 * Check if carrier is operational 4321 */ 4322 static inline bool netif_oper_up(const struct net_device *dev) 4323 { 4324 return (dev->operstate == IF_OPER_UP || 4325 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 4326 } 4327 4328 /** 4329 * netif_device_present - is device available or removed 4330 * @dev: network device 4331 * 4332 * Check if device has not been removed from system. 4333 */ 4334 static inline bool netif_device_present(const struct net_device *dev) 4335 { 4336 return test_bit(__LINK_STATE_PRESENT, &dev->state); 4337 } 4338 4339 void netif_device_detach(struct net_device *dev); 4340 4341 void netif_device_attach(struct net_device *dev); 4342 4343 /* 4344 * Network interface message level settings 4345 */ 4346 4347 enum { 4348 NETIF_MSG_DRV_BIT, 4349 NETIF_MSG_PROBE_BIT, 4350 NETIF_MSG_LINK_BIT, 4351 NETIF_MSG_TIMER_BIT, 4352 NETIF_MSG_IFDOWN_BIT, 4353 NETIF_MSG_IFUP_BIT, 4354 NETIF_MSG_RX_ERR_BIT, 4355 NETIF_MSG_TX_ERR_BIT, 4356 NETIF_MSG_TX_QUEUED_BIT, 4357 NETIF_MSG_INTR_BIT, 4358 NETIF_MSG_TX_DONE_BIT, 4359 NETIF_MSG_RX_STATUS_BIT, 4360 NETIF_MSG_PKTDATA_BIT, 4361 NETIF_MSG_HW_BIT, 4362 NETIF_MSG_WOL_BIT, 4363 4364 /* When you add a new bit above, update netif_msg_class_names array 4365 * in net/ethtool/common.c 4366 */ 4367 NETIF_MSG_CLASS_COUNT, 4368 }; 4369 /* Both ethtool_ops interface and internal driver implementation use u32 */ 4370 static_assert(NETIF_MSG_CLASS_COUNT <= 32); 4371 4372 #define __NETIF_MSG_BIT(bit) ((u32)1 << (bit)) 4373 #define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT) 4374 4375 #define NETIF_MSG_DRV __NETIF_MSG(DRV) 4376 #define NETIF_MSG_PROBE __NETIF_MSG(PROBE) 4377 #define NETIF_MSG_LINK __NETIF_MSG(LINK) 4378 #define NETIF_MSG_TIMER __NETIF_MSG(TIMER) 4379 #define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN) 4380 #define NETIF_MSG_IFUP __NETIF_MSG(IFUP) 4381 #define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR) 4382 #define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR) 4383 #define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED) 4384 #define NETIF_MSG_INTR __NETIF_MSG(INTR) 4385 #define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE) 4386 #define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS) 4387 #define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA) 4388 #define NETIF_MSG_HW __NETIF_MSG(HW) 4389 #define NETIF_MSG_WOL __NETIF_MSG(WOL) 4390 4391 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 4392 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 4393 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 4394 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 4395 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 4396 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 4397 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 4398 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 4399 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 4400 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 4401 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 4402 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 4403 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 4404 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 4405 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 4406 4407 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 4408 { 4409 /* use default */ 4410 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 4411 return default_msg_enable_bits; 4412 if (debug_value == 0) /* no output */ 4413 return 0; 4414 /* set low N bits */ 4415 return (1U << debug_value) - 1; 4416 } 4417 4418 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 4419 { 4420 spin_lock(&txq->_xmit_lock); 4421 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4422 WRITE_ONCE(txq->xmit_lock_owner, cpu); 4423 } 4424 4425 static inline bool __netif_tx_acquire(struct netdev_queue *txq) 4426 { 4427 __acquire(&txq->_xmit_lock); 4428 return true; 4429 } 4430 4431 static inline void __netif_tx_release(struct netdev_queue *txq) 4432 { 4433 __release(&txq->_xmit_lock); 4434 } 4435 4436 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 4437 { 4438 spin_lock_bh(&txq->_xmit_lock); 4439 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4440 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4441 } 4442 4443 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 4444 { 4445 bool ok = spin_trylock(&txq->_xmit_lock); 4446 4447 if (likely(ok)) { 4448 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4449 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4450 } 4451 return ok; 4452 } 4453 4454 static inline void __netif_tx_unlock(struct netdev_queue *txq) 4455 { 4456 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4457 WRITE_ONCE(txq->xmit_lock_owner, -1); 4458 spin_unlock(&txq->_xmit_lock); 4459 } 4460 4461 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 4462 { 4463 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4464 WRITE_ONCE(txq->xmit_lock_owner, -1); 4465 spin_unlock_bh(&txq->_xmit_lock); 4466 } 4467 4468 /* 4469 * txq->trans_start can be read locklessly from dev_watchdog() 4470 */ 4471 static inline void txq_trans_update(struct netdev_queue *txq) 4472 { 4473 if (txq->xmit_lock_owner != -1) 4474 WRITE_ONCE(txq->trans_start, jiffies); 4475 } 4476 4477 static inline void txq_trans_cond_update(struct netdev_queue *txq) 4478 { 4479 unsigned long now = jiffies; 4480 4481 if (READ_ONCE(txq->trans_start) != now) 4482 WRITE_ONCE(txq->trans_start, now); 4483 } 4484 4485 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 4486 static inline void netif_trans_update(struct net_device *dev) 4487 { 4488 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 4489 4490 txq_trans_cond_update(txq); 4491 } 4492 4493 /** 4494 * netif_tx_lock - grab network device transmit lock 4495 * @dev: network device 4496 * 4497 * Get network device transmit lock 4498 */ 4499 void netif_tx_lock(struct net_device *dev); 4500 4501 static inline void netif_tx_lock_bh(struct net_device *dev) 4502 { 4503 local_bh_disable(); 4504 netif_tx_lock(dev); 4505 } 4506 4507 void netif_tx_unlock(struct net_device *dev); 4508 4509 static inline void netif_tx_unlock_bh(struct net_device *dev) 4510 { 4511 netif_tx_unlock(dev); 4512 local_bh_enable(); 4513 } 4514 4515 #define HARD_TX_LOCK(dev, txq, cpu) { \ 4516 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4517 __netif_tx_lock(txq, cpu); \ 4518 } else { \ 4519 __netif_tx_acquire(txq); \ 4520 } \ 4521 } 4522 4523 #define HARD_TX_TRYLOCK(dev, txq) \ 4524 (((dev->features & NETIF_F_LLTX) == 0) ? \ 4525 __netif_tx_trylock(txq) : \ 4526 __netif_tx_acquire(txq)) 4527 4528 #define HARD_TX_UNLOCK(dev, txq) { \ 4529 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4530 __netif_tx_unlock(txq); \ 4531 } else { \ 4532 __netif_tx_release(txq); \ 4533 } \ 4534 } 4535 4536 static inline void netif_tx_disable(struct net_device *dev) 4537 { 4538 unsigned int i; 4539 int cpu; 4540 4541 local_bh_disable(); 4542 cpu = smp_processor_id(); 4543 spin_lock(&dev->tx_global_lock); 4544 for (i = 0; i < dev->num_tx_queues; i++) { 4545 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4546 4547 __netif_tx_lock(txq, cpu); 4548 netif_tx_stop_queue(txq); 4549 __netif_tx_unlock(txq); 4550 } 4551 spin_unlock(&dev->tx_global_lock); 4552 local_bh_enable(); 4553 } 4554 4555 static inline void netif_addr_lock(struct net_device *dev) 4556 { 4557 unsigned char nest_level = 0; 4558 4559 #ifdef CONFIG_LOCKDEP 4560 nest_level = dev->nested_level; 4561 #endif 4562 spin_lock_nested(&dev->addr_list_lock, nest_level); 4563 } 4564 4565 static inline void netif_addr_lock_bh(struct net_device *dev) 4566 { 4567 unsigned char nest_level = 0; 4568 4569 #ifdef CONFIG_LOCKDEP 4570 nest_level = dev->nested_level; 4571 #endif 4572 local_bh_disable(); 4573 spin_lock_nested(&dev->addr_list_lock, nest_level); 4574 } 4575 4576 static inline void netif_addr_unlock(struct net_device *dev) 4577 { 4578 spin_unlock(&dev->addr_list_lock); 4579 } 4580 4581 static inline void netif_addr_unlock_bh(struct net_device *dev) 4582 { 4583 spin_unlock_bh(&dev->addr_list_lock); 4584 } 4585 4586 /* 4587 * dev_addrs walker. Should be used only for read access. Call with 4588 * rcu_read_lock held. 4589 */ 4590 #define for_each_dev_addr(dev, ha) \ 4591 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 4592 4593 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 4594 4595 void ether_setup(struct net_device *dev); 4596 4597 /* Support for loadable net-drivers */ 4598 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 4599 unsigned char name_assign_type, 4600 void (*setup)(struct net_device *), 4601 unsigned int txqs, unsigned int rxqs); 4602 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 4603 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 4604 4605 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 4606 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 4607 count) 4608 4609 int register_netdev(struct net_device *dev); 4610 void unregister_netdev(struct net_device *dev); 4611 4612 int devm_register_netdev(struct device *dev, struct net_device *ndev); 4613 4614 /* General hardware address lists handling functions */ 4615 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 4616 struct netdev_hw_addr_list *from_list, int addr_len); 4617 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 4618 struct netdev_hw_addr_list *from_list, int addr_len); 4619 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 4620 struct net_device *dev, 4621 int (*sync)(struct net_device *, const unsigned char *), 4622 int (*unsync)(struct net_device *, 4623 const unsigned char *)); 4624 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list, 4625 struct net_device *dev, 4626 int (*sync)(struct net_device *, 4627 const unsigned char *, int), 4628 int (*unsync)(struct net_device *, 4629 const unsigned char *, int)); 4630 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list, 4631 struct net_device *dev, 4632 int (*unsync)(struct net_device *, 4633 const unsigned char *, int)); 4634 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 4635 struct net_device *dev, 4636 int (*unsync)(struct net_device *, 4637 const unsigned char *)); 4638 void __hw_addr_init(struct netdev_hw_addr_list *list); 4639 4640 /* Functions used for device addresses handling */ 4641 void dev_addr_mod(struct net_device *dev, unsigned int offset, 4642 const void *addr, size_t len); 4643 4644 static inline void 4645 __dev_addr_set(struct net_device *dev, const void *addr, size_t len) 4646 { 4647 dev_addr_mod(dev, 0, addr, len); 4648 } 4649 4650 static inline void dev_addr_set(struct net_device *dev, const u8 *addr) 4651 { 4652 __dev_addr_set(dev, addr, dev->addr_len); 4653 } 4654 4655 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 4656 unsigned char addr_type); 4657 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 4658 unsigned char addr_type); 4659 4660 /* Functions used for unicast addresses handling */ 4661 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 4662 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 4663 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 4664 int dev_uc_sync(struct net_device *to, struct net_device *from); 4665 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 4666 void dev_uc_unsync(struct net_device *to, struct net_device *from); 4667 void dev_uc_flush(struct net_device *dev); 4668 void dev_uc_init(struct net_device *dev); 4669 4670 /** 4671 * __dev_uc_sync - Synchonize device's unicast list 4672 * @dev: device to sync 4673 * @sync: function to call if address should be added 4674 * @unsync: function to call if address should be removed 4675 * 4676 * Add newly added addresses to the interface, and release 4677 * addresses that have been deleted. 4678 */ 4679 static inline int __dev_uc_sync(struct net_device *dev, 4680 int (*sync)(struct net_device *, 4681 const unsigned char *), 4682 int (*unsync)(struct net_device *, 4683 const unsigned char *)) 4684 { 4685 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 4686 } 4687 4688 /** 4689 * __dev_uc_unsync - Remove synchronized addresses from device 4690 * @dev: device to sync 4691 * @unsync: function to call if address should be removed 4692 * 4693 * Remove all addresses that were added to the device by dev_uc_sync(). 4694 */ 4695 static inline void __dev_uc_unsync(struct net_device *dev, 4696 int (*unsync)(struct net_device *, 4697 const unsigned char *)) 4698 { 4699 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 4700 } 4701 4702 /* Functions used for multicast addresses handling */ 4703 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 4704 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 4705 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 4706 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 4707 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 4708 int dev_mc_sync(struct net_device *to, struct net_device *from); 4709 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 4710 void dev_mc_unsync(struct net_device *to, struct net_device *from); 4711 void dev_mc_flush(struct net_device *dev); 4712 void dev_mc_init(struct net_device *dev); 4713 4714 /** 4715 * __dev_mc_sync - Synchonize device's multicast list 4716 * @dev: device to sync 4717 * @sync: function to call if address should be added 4718 * @unsync: function to call if address should be removed 4719 * 4720 * Add newly added addresses to the interface, and release 4721 * addresses that have been deleted. 4722 */ 4723 static inline int __dev_mc_sync(struct net_device *dev, 4724 int (*sync)(struct net_device *, 4725 const unsigned char *), 4726 int (*unsync)(struct net_device *, 4727 const unsigned char *)) 4728 { 4729 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 4730 } 4731 4732 /** 4733 * __dev_mc_unsync - Remove synchronized addresses from device 4734 * @dev: device to sync 4735 * @unsync: function to call if address should be removed 4736 * 4737 * Remove all addresses that were added to the device by dev_mc_sync(). 4738 */ 4739 static inline void __dev_mc_unsync(struct net_device *dev, 4740 int (*unsync)(struct net_device *, 4741 const unsigned char *)) 4742 { 4743 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 4744 } 4745 4746 /* Functions used for secondary unicast and multicast support */ 4747 void dev_set_rx_mode(struct net_device *dev); 4748 int dev_set_promiscuity(struct net_device *dev, int inc); 4749 int dev_set_allmulti(struct net_device *dev, int inc); 4750 void netdev_state_change(struct net_device *dev); 4751 void __netdev_notify_peers(struct net_device *dev); 4752 void netdev_notify_peers(struct net_device *dev); 4753 void netdev_features_change(struct net_device *dev); 4754 /* Load a device via the kmod */ 4755 void dev_load(struct net *net, const char *name); 4756 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 4757 struct rtnl_link_stats64 *storage); 4758 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 4759 const struct net_device_stats *netdev_stats); 4760 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 4761 const struct pcpu_sw_netstats __percpu *netstats); 4762 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s); 4763 4764 extern int netdev_max_backlog; 4765 extern int dev_rx_weight; 4766 extern int dev_tx_weight; 4767 extern int gro_normal_batch; 4768 4769 enum { 4770 NESTED_SYNC_IMM_BIT, 4771 NESTED_SYNC_TODO_BIT, 4772 }; 4773 4774 #define __NESTED_SYNC_BIT(bit) ((u32)1 << (bit)) 4775 #define __NESTED_SYNC(name) __NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT) 4776 4777 #define NESTED_SYNC_IMM __NESTED_SYNC(IMM) 4778 #define NESTED_SYNC_TODO __NESTED_SYNC(TODO) 4779 4780 struct netdev_nested_priv { 4781 unsigned char flags; 4782 void *data; 4783 }; 4784 4785 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 4786 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4787 struct list_head **iter); 4788 4789 /* iterate through upper list, must be called under RCU read lock */ 4790 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 4791 for (iter = &(dev)->adj_list.upper, \ 4792 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 4793 updev; \ 4794 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 4795 4796 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 4797 int (*fn)(struct net_device *upper_dev, 4798 struct netdev_nested_priv *priv), 4799 struct netdev_nested_priv *priv); 4800 4801 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 4802 struct net_device *upper_dev); 4803 4804 bool netdev_has_any_upper_dev(struct net_device *dev); 4805 4806 void *netdev_lower_get_next_private(struct net_device *dev, 4807 struct list_head **iter); 4808 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4809 struct list_head **iter); 4810 4811 #define netdev_for_each_lower_private(dev, priv, iter) \ 4812 for (iter = (dev)->adj_list.lower.next, \ 4813 priv = netdev_lower_get_next_private(dev, &(iter)); \ 4814 priv; \ 4815 priv = netdev_lower_get_next_private(dev, &(iter))) 4816 4817 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 4818 for (iter = &(dev)->adj_list.lower, \ 4819 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 4820 priv; \ 4821 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 4822 4823 void *netdev_lower_get_next(struct net_device *dev, 4824 struct list_head **iter); 4825 4826 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 4827 for (iter = (dev)->adj_list.lower.next, \ 4828 ldev = netdev_lower_get_next(dev, &(iter)); \ 4829 ldev; \ 4830 ldev = netdev_lower_get_next(dev, &(iter))) 4831 4832 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 4833 struct list_head **iter); 4834 int netdev_walk_all_lower_dev(struct net_device *dev, 4835 int (*fn)(struct net_device *lower_dev, 4836 struct netdev_nested_priv *priv), 4837 struct netdev_nested_priv *priv); 4838 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 4839 int (*fn)(struct net_device *lower_dev, 4840 struct netdev_nested_priv *priv), 4841 struct netdev_nested_priv *priv); 4842 4843 void *netdev_adjacent_get_private(struct list_head *adj_list); 4844 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 4845 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 4846 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 4847 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 4848 struct netlink_ext_ack *extack); 4849 int netdev_master_upper_dev_link(struct net_device *dev, 4850 struct net_device *upper_dev, 4851 void *upper_priv, void *upper_info, 4852 struct netlink_ext_ack *extack); 4853 void netdev_upper_dev_unlink(struct net_device *dev, 4854 struct net_device *upper_dev); 4855 int netdev_adjacent_change_prepare(struct net_device *old_dev, 4856 struct net_device *new_dev, 4857 struct net_device *dev, 4858 struct netlink_ext_ack *extack); 4859 void netdev_adjacent_change_commit(struct net_device *old_dev, 4860 struct net_device *new_dev, 4861 struct net_device *dev); 4862 void netdev_adjacent_change_abort(struct net_device *old_dev, 4863 struct net_device *new_dev, 4864 struct net_device *dev); 4865 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 4866 void *netdev_lower_dev_get_private(struct net_device *dev, 4867 struct net_device *lower_dev); 4868 void netdev_lower_state_changed(struct net_device *lower_dev, 4869 void *lower_state_info); 4870 4871 /* RSS keys are 40 or 52 bytes long */ 4872 #define NETDEV_RSS_KEY_LEN 52 4873 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 4874 void netdev_rss_key_fill(void *buffer, size_t len); 4875 4876 int skb_checksum_help(struct sk_buff *skb); 4877 int skb_crc32c_csum_help(struct sk_buff *skb); 4878 int skb_csum_hwoffload_help(struct sk_buff *skb, 4879 const netdev_features_t features); 4880 4881 struct netdev_bonding_info { 4882 ifslave slave; 4883 ifbond master; 4884 }; 4885 4886 struct netdev_notifier_bonding_info { 4887 struct netdev_notifier_info info; /* must be first */ 4888 struct netdev_bonding_info bonding_info; 4889 }; 4890 4891 void netdev_bonding_info_change(struct net_device *dev, 4892 struct netdev_bonding_info *bonding_info); 4893 4894 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK) 4895 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data); 4896 #else 4897 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd, 4898 const void *data) 4899 { 4900 } 4901 #endif 4902 4903 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 4904 4905 static inline bool can_checksum_protocol(netdev_features_t features, 4906 __be16 protocol) 4907 { 4908 if (protocol == htons(ETH_P_FCOE)) 4909 return !!(features & NETIF_F_FCOE_CRC); 4910 4911 /* Assume this is an IP checksum (not SCTP CRC) */ 4912 4913 if (features & NETIF_F_HW_CSUM) { 4914 /* Can checksum everything */ 4915 return true; 4916 } 4917 4918 switch (protocol) { 4919 case htons(ETH_P_IP): 4920 return !!(features & NETIF_F_IP_CSUM); 4921 case htons(ETH_P_IPV6): 4922 return !!(features & NETIF_F_IPV6_CSUM); 4923 default: 4924 return false; 4925 } 4926 } 4927 4928 #ifdef CONFIG_BUG 4929 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb); 4930 #else 4931 static inline void netdev_rx_csum_fault(struct net_device *dev, 4932 struct sk_buff *skb) 4933 { 4934 } 4935 #endif 4936 /* rx skb timestamps */ 4937 void net_enable_timestamp(void); 4938 void net_disable_timestamp(void); 4939 4940 static inline ktime_t netdev_get_tstamp(struct net_device *dev, 4941 const struct skb_shared_hwtstamps *hwtstamps, 4942 bool cycles) 4943 { 4944 const struct net_device_ops *ops = dev->netdev_ops; 4945 4946 if (ops->ndo_get_tstamp) 4947 return ops->ndo_get_tstamp(dev, hwtstamps, cycles); 4948 4949 return hwtstamps->hwtstamp; 4950 } 4951 4952 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4953 struct sk_buff *skb, struct net_device *dev, 4954 bool more) 4955 { 4956 __this_cpu_write(softnet_data.xmit.more, more); 4957 return ops->ndo_start_xmit(skb, dev); 4958 } 4959 4960 static inline bool netdev_xmit_more(void) 4961 { 4962 return __this_cpu_read(softnet_data.xmit.more); 4963 } 4964 4965 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4966 struct netdev_queue *txq, bool more) 4967 { 4968 const struct net_device_ops *ops = dev->netdev_ops; 4969 netdev_tx_t rc; 4970 4971 rc = __netdev_start_xmit(ops, skb, dev, more); 4972 if (rc == NETDEV_TX_OK) 4973 txq_trans_update(txq); 4974 4975 return rc; 4976 } 4977 4978 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 4979 const void *ns); 4980 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 4981 const void *ns); 4982 4983 extern const struct kobj_ns_type_operations net_ns_type_operations; 4984 4985 const char *netdev_drivername(const struct net_device *dev); 4986 4987 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4988 netdev_features_t f2) 4989 { 4990 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4991 if (f1 & NETIF_F_HW_CSUM) 4992 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4993 else 4994 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4995 } 4996 4997 return f1 & f2; 4998 } 4999 5000 static inline netdev_features_t netdev_get_wanted_features( 5001 struct net_device *dev) 5002 { 5003 return (dev->features & ~dev->hw_features) | dev->wanted_features; 5004 } 5005 netdev_features_t netdev_increment_features(netdev_features_t all, 5006 netdev_features_t one, netdev_features_t mask); 5007 5008 /* Allow TSO being used on stacked device : 5009 * Performing the GSO segmentation before last device 5010 * is a performance improvement. 5011 */ 5012 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 5013 netdev_features_t mask) 5014 { 5015 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 5016 } 5017 5018 int __netdev_update_features(struct net_device *dev); 5019 void netdev_update_features(struct net_device *dev); 5020 void netdev_change_features(struct net_device *dev); 5021 5022 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5023 struct net_device *dev); 5024 5025 netdev_features_t passthru_features_check(struct sk_buff *skb, 5026 struct net_device *dev, 5027 netdev_features_t features); 5028 netdev_features_t netif_skb_features(struct sk_buff *skb); 5029 void skb_warn_bad_offload(const struct sk_buff *skb); 5030 5031 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 5032 { 5033 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 5034 5035 /* check flags correspondence */ 5036 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 5037 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 5038 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 5039 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 5040 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 5041 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 5042 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 5043 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 5044 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 5045 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 5046 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 5047 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 5048 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 5049 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 5050 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 5051 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 5052 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 5053 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT)); 5054 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT)); 5055 5056 return (features & feature) == feature; 5057 } 5058 5059 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 5060 { 5061 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 5062 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 5063 } 5064 5065 static inline bool netif_needs_gso(struct sk_buff *skb, 5066 netdev_features_t features) 5067 { 5068 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 5069 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 5070 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 5071 } 5072 5073 void netif_set_tso_max_size(struct net_device *dev, unsigned int size); 5074 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs); 5075 void netif_inherit_tso_max(struct net_device *to, 5076 const struct net_device *from); 5077 5078 static inline bool netif_is_macsec(const struct net_device *dev) 5079 { 5080 return dev->priv_flags & IFF_MACSEC; 5081 } 5082 5083 static inline bool netif_is_macvlan(const struct net_device *dev) 5084 { 5085 return dev->priv_flags & IFF_MACVLAN; 5086 } 5087 5088 static inline bool netif_is_macvlan_port(const struct net_device *dev) 5089 { 5090 return dev->priv_flags & IFF_MACVLAN_PORT; 5091 } 5092 5093 static inline bool netif_is_bond_master(const struct net_device *dev) 5094 { 5095 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 5096 } 5097 5098 static inline bool netif_is_bond_slave(const struct net_device *dev) 5099 { 5100 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 5101 } 5102 5103 static inline bool netif_supports_nofcs(struct net_device *dev) 5104 { 5105 return dev->priv_flags & IFF_SUPP_NOFCS; 5106 } 5107 5108 static inline bool netif_has_l3_rx_handler(const struct net_device *dev) 5109 { 5110 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER; 5111 } 5112 5113 static inline bool netif_is_l3_master(const struct net_device *dev) 5114 { 5115 return dev->priv_flags & IFF_L3MDEV_MASTER; 5116 } 5117 5118 static inline bool netif_is_l3_slave(const struct net_device *dev) 5119 { 5120 return dev->priv_flags & IFF_L3MDEV_SLAVE; 5121 } 5122 5123 static inline int dev_sdif(const struct net_device *dev) 5124 { 5125 #ifdef CONFIG_NET_L3_MASTER_DEV 5126 if (netif_is_l3_slave(dev)) 5127 return dev->ifindex; 5128 #endif 5129 return 0; 5130 } 5131 5132 static inline bool netif_is_bridge_master(const struct net_device *dev) 5133 { 5134 return dev->priv_flags & IFF_EBRIDGE; 5135 } 5136 5137 static inline bool netif_is_bridge_port(const struct net_device *dev) 5138 { 5139 return dev->priv_flags & IFF_BRIDGE_PORT; 5140 } 5141 5142 static inline bool netif_is_ovs_master(const struct net_device *dev) 5143 { 5144 return dev->priv_flags & IFF_OPENVSWITCH; 5145 } 5146 5147 static inline bool netif_is_ovs_port(const struct net_device *dev) 5148 { 5149 return dev->priv_flags & IFF_OVS_DATAPATH; 5150 } 5151 5152 static inline bool netif_is_any_bridge_master(const struct net_device *dev) 5153 { 5154 return netif_is_bridge_master(dev) || netif_is_ovs_master(dev); 5155 } 5156 5157 static inline bool netif_is_any_bridge_port(const struct net_device *dev) 5158 { 5159 return netif_is_bridge_port(dev) || netif_is_ovs_port(dev); 5160 } 5161 5162 static inline bool netif_is_team_master(const struct net_device *dev) 5163 { 5164 return dev->priv_flags & IFF_TEAM; 5165 } 5166 5167 static inline bool netif_is_team_port(const struct net_device *dev) 5168 { 5169 return dev->priv_flags & IFF_TEAM_PORT; 5170 } 5171 5172 static inline bool netif_is_lag_master(const struct net_device *dev) 5173 { 5174 return netif_is_bond_master(dev) || netif_is_team_master(dev); 5175 } 5176 5177 static inline bool netif_is_lag_port(const struct net_device *dev) 5178 { 5179 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 5180 } 5181 5182 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 5183 { 5184 return dev->priv_flags & IFF_RXFH_CONFIGURED; 5185 } 5186 5187 static inline bool netif_is_failover(const struct net_device *dev) 5188 { 5189 return dev->priv_flags & IFF_FAILOVER; 5190 } 5191 5192 static inline bool netif_is_failover_slave(const struct net_device *dev) 5193 { 5194 return dev->priv_flags & IFF_FAILOVER_SLAVE; 5195 } 5196 5197 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 5198 static inline void netif_keep_dst(struct net_device *dev) 5199 { 5200 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 5201 } 5202 5203 /* return true if dev can't cope with mtu frames that need vlan tag insertion */ 5204 static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 5205 { 5206 /* TODO: reserve and use an additional IFF bit, if we get more users */ 5207 return netif_is_macsec(dev); 5208 } 5209 5210 extern struct pernet_operations __net_initdata loopback_net_ops; 5211 5212 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 5213 5214 /* netdev_printk helpers, similar to dev_printk */ 5215 5216 static inline const char *netdev_name(const struct net_device *dev) 5217 { 5218 if (!dev->name[0] || strchr(dev->name, '%')) 5219 return "(unnamed net_device)"; 5220 return dev->name; 5221 } 5222 5223 static inline const char *netdev_reg_state(const struct net_device *dev) 5224 { 5225 switch (dev->reg_state) { 5226 case NETREG_UNINITIALIZED: return " (uninitialized)"; 5227 case NETREG_REGISTERED: return ""; 5228 case NETREG_UNREGISTERING: return " (unregistering)"; 5229 case NETREG_UNREGISTERED: return " (unregistered)"; 5230 case NETREG_RELEASED: return " (released)"; 5231 case NETREG_DUMMY: return " (dummy)"; 5232 } 5233 5234 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 5235 return " (unknown)"; 5236 } 5237 5238 #define MODULE_ALIAS_NETDEV(device) \ 5239 MODULE_ALIAS("netdev-" device) 5240 5241 /* 5242 * netdev_WARN() acts like dev_printk(), but with the key difference 5243 * of using a WARN/WARN_ON to get the message out, including the 5244 * file/line information and a backtrace. 5245 */ 5246 #define netdev_WARN(dev, format, args...) \ 5247 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5248 netdev_reg_state(dev), ##args) 5249 5250 #define netdev_WARN_ONCE(dev, format, args...) \ 5251 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5252 netdev_reg_state(dev), ##args) 5253 5254 /* 5255 * The list of packet types we will receive (as opposed to discard) 5256 * and the routines to invoke. 5257 * 5258 * Why 16. Because with 16 the only overlap we get on a hash of the 5259 * low nibble of the protocol value is RARP/SNAP/X.25. 5260 * 5261 * 0800 IP 5262 * 0001 802.3 5263 * 0002 AX.25 5264 * 0004 802.2 5265 * 8035 RARP 5266 * 0005 SNAP 5267 * 0805 X.25 5268 * 0806 ARP 5269 * 8137 IPX 5270 * 0009 Localtalk 5271 * 86DD IPv6 5272 */ 5273 #define PTYPE_HASH_SIZE (16) 5274 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 5275 5276 extern struct list_head ptype_all __read_mostly; 5277 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 5278 5279 extern struct net_device *blackhole_netdev; 5280 5281 /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */ 5282 #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD) 5283 #define DEV_STATS_ADD(DEV, FIELD, VAL) \ 5284 atomic_long_add((VAL), &(DEV)->stats.__##FIELD) 5285 #define DEV_STATS_READ(DEV, FIELD) atomic_long_read(&(DEV)->stats.__##FIELD) 5286 5287 #endif /* _LINUX_NETDEVICE_H */ 5288