1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the Interfaces handler. 8 * 9 * Version: @(#)dev.h 1.0.10 08/12/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <[email protected]> 13 * Corey Minyard <[email protected]> 14 * Donald J. Becker, <[email protected]> 15 * Alan Cox, <[email protected]> 16 * Bjorn Ekwall. <[email protected]> 17 * Pekka Riikonen <[email protected]> 18 * 19 * Moved to /usr/include/linux for NET3 20 */ 21 #ifndef _LINUX_NETDEVICE_H 22 #define _LINUX_NETDEVICE_H 23 24 #include <linux/timer.h> 25 #include <linux/bug.h> 26 #include <linux/delay.h> 27 #include <linux/atomic.h> 28 #include <linux/prefetch.h> 29 #include <asm/cache.h> 30 #include <asm/byteorder.h> 31 #include <asm/local.h> 32 33 #include <linux/percpu.h> 34 #include <linux/rculist.h> 35 #include <linux/workqueue.h> 36 #include <linux/dynamic_queue_limits.h> 37 38 #include <net/net_namespace.h> 39 #ifdef CONFIG_DCB 40 #include <net/dcbnl.h> 41 #endif 42 #include <net/netprio_cgroup.h> 43 #include <linux/netdev_features.h> 44 #include <linux/neighbour.h> 45 #include <uapi/linux/netdevice.h> 46 #include <uapi/linux/if_bonding.h> 47 #include <uapi/linux/pkt_cls.h> 48 #include <uapi/linux/netdev.h> 49 #include <linux/hashtable.h> 50 #include <linux/rbtree.h> 51 #include <net/net_trackers.h> 52 #include <net/net_debug.h> 53 #include <net/dropreason-core.h> 54 #include <linux/phy_link_topology_core.h> 55 56 struct netpoll_info; 57 struct device; 58 struct ethtool_ops; 59 struct kernel_hwtstamp_config; 60 struct phy_device; 61 struct dsa_port; 62 struct ip_tunnel_parm_kern; 63 struct macsec_context; 64 struct macsec_ops; 65 struct netdev_name_node; 66 struct sd_flow_limit; 67 struct sfp_bus; 68 /* 802.11 specific */ 69 struct wireless_dev; 70 /* 802.15.4 specific */ 71 struct wpan_dev; 72 struct mpls_dev; 73 /* UDP Tunnel offloads */ 74 struct udp_tunnel_info; 75 struct udp_tunnel_nic_info; 76 struct udp_tunnel_nic; 77 struct bpf_prog; 78 struct xdp_buff; 79 struct xdp_frame; 80 struct xdp_metadata_ops; 81 struct xdp_md; 82 83 typedef u32 xdp_features_t; 84 85 void synchronize_net(void); 86 void netdev_set_default_ethtool_ops(struct net_device *dev, 87 const struct ethtool_ops *ops); 88 void netdev_sw_irq_coalesce_default_on(struct net_device *dev); 89 90 /* Backlog congestion levels */ 91 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 92 #define NET_RX_DROP 1 /* packet dropped */ 93 94 #define MAX_NEST_DEV 8 95 96 /* 97 * Transmit return codes: transmit return codes originate from three different 98 * namespaces: 99 * 100 * - qdisc return codes 101 * - driver transmit return codes 102 * - errno values 103 * 104 * Drivers are allowed to return any one of those in their hard_start_xmit() 105 * function. Real network devices commonly used with qdiscs should only return 106 * the driver transmit return codes though - when qdiscs are used, the actual 107 * transmission happens asynchronously, so the value is not propagated to 108 * higher layers. Virtual network devices transmit synchronously; in this case 109 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 110 * others are propagated to higher layers. 111 */ 112 113 /* qdisc ->enqueue() return codes. */ 114 #define NET_XMIT_SUCCESS 0x00 115 #define NET_XMIT_DROP 0x01 /* skb dropped */ 116 #define NET_XMIT_CN 0x02 /* congestion notification */ 117 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 118 119 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 120 * indicates that the device will soon be dropping packets, or already drops 121 * some packets of the same priority; prompting us to send less aggressively. */ 122 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 123 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 124 125 /* Driver transmit return codes */ 126 #define NETDEV_TX_MASK 0xf0 127 128 enum netdev_tx { 129 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 130 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 131 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 132 }; 133 typedef enum netdev_tx netdev_tx_t; 134 135 /* 136 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 137 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 138 */ 139 static inline bool dev_xmit_complete(int rc) 140 { 141 /* 142 * Positive cases with an skb consumed by a driver: 143 * - successful transmission (rc == NETDEV_TX_OK) 144 * - error while transmitting (rc < 0) 145 * - error while queueing to a different device (rc & NET_XMIT_MASK) 146 */ 147 if (likely(rc < NET_XMIT_MASK)) 148 return true; 149 150 return false; 151 } 152 153 /* 154 * Compute the worst-case header length according to the protocols 155 * used. 156 */ 157 158 #if defined(CONFIG_HYPERV_NET) 159 # define LL_MAX_HEADER 128 160 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 161 # if defined(CONFIG_MAC80211_MESH) 162 # define LL_MAX_HEADER 128 163 # else 164 # define LL_MAX_HEADER 96 165 # endif 166 #else 167 # define LL_MAX_HEADER 32 168 #endif 169 170 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 171 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 172 #define MAX_HEADER LL_MAX_HEADER 173 #else 174 #define MAX_HEADER (LL_MAX_HEADER + 48) 175 #endif 176 177 /* 178 * Old network device statistics. Fields are native words 179 * (unsigned long) so they can be read and written atomically. 180 */ 181 182 #define NET_DEV_STAT(FIELD) \ 183 union { \ 184 unsigned long FIELD; \ 185 atomic_long_t __##FIELD; \ 186 } 187 188 struct net_device_stats { 189 NET_DEV_STAT(rx_packets); 190 NET_DEV_STAT(tx_packets); 191 NET_DEV_STAT(rx_bytes); 192 NET_DEV_STAT(tx_bytes); 193 NET_DEV_STAT(rx_errors); 194 NET_DEV_STAT(tx_errors); 195 NET_DEV_STAT(rx_dropped); 196 NET_DEV_STAT(tx_dropped); 197 NET_DEV_STAT(multicast); 198 NET_DEV_STAT(collisions); 199 NET_DEV_STAT(rx_length_errors); 200 NET_DEV_STAT(rx_over_errors); 201 NET_DEV_STAT(rx_crc_errors); 202 NET_DEV_STAT(rx_frame_errors); 203 NET_DEV_STAT(rx_fifo_errors); 204 NET_DEV_STAT(rx_missed_errors); 205 NET_DEV_STAT(tx_aborted_errors); 206 NET_DEV_STAT(tx_carrier_errors); 207 NET_DEV_STAT(tx_fifo_errors); 208 NET_DEV_STAT(tx_heartbeat_errors); 209 NET_DEV_STAT(tx_window_errors); 210 NET_DEV_STAT(rx_compressed); 211 NET_DEV_STAT(tx_compressed); 212 }; 213 #undef NET_DEV_STAT 214 215 /* per-cpu stats, allocated on demand. 216 * Try to fit them in a single cache line, for dev_get_stats() sake. 217 */ 218 struct net_device_core_stats { 219 unsigned long rx_dropped; 220 unsigned long tx_dropped; 221 unsigned long rx_nohandler; 222 unsigned long rx_otherhost_dropped; 223 } __aligned(4 * sizeof(unsigned long)); 224 225 #include <linux/cache.h> 226 #include <linux/skbuff.h> 227 228 struct neighbour; 229 struct neigh_parms; 230 struct sk_buff; 231 232 struct netdev_hw_addr { 233 struct list_head list; 234 struct rb_node node; 235 unsigned char addr[MAX_ADDR_LEN]; 236 unsigned char type; 237 #define NETDEV_HW_ADDR_T_LAN 1 238 #define NETDEV_HW_ADDR_T_SAN 2 239 #define NETDEV_HW_ADDR_T_UNICAST 3 240 #define NETDEV_HW_ADDR_T_MULTICAST 4 241 bool global_use; 242 int sync_cnt; 243 int refcount; 244 int synced; 245 struct rcu_head rcu_head; 246 }; 247 248 struct netdev_hw_addr_list { 249 struct list_head list; 250 int count; 251 252 /* Auxiliary tree for faster lookup on addition and deletion */ 253 struct rb_root tree; 254 }; 255 256 #define netdev_hw_addr_list_count(l) ((l)->count) 257 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 258 #define netdev_hw_addr_list_for_each(ha, l) \ 259 list_for_each_entry(ha, &(l)->list, list) 260 261 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 262 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 263 #define netdev_for_each_uc_addr(ha, dev) \ 264 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 265 #define netdev_for_each_synced_uc_addr(_ha, _dev) \ 266 netdev_for_each_uc_addr((_ha), (_dev)) \ 267 if ((_ha)->sync_cnt) 268 269 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 270 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 271 #define netdev_for_each_mc_addr(ha, dev) \ 272 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 273 #define netdev_for_each_synced_mc_addr(_ha, _dev) \ 274 netdev_for_each_mc_addr((_ha), (_dev)) \ 275 if ((_ha)->sync_cnt) 276 277 struct hh_cache { 278 unsigned int hh_len; 279 seqlock_t hh_lock; 280 281 /* cached hardware header; allow for machine alignment needs. */ 282 #define HH_DATA_MOD 16 283 #define HH_DATA_OFF(__len) \ 284 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 285 #define HH_DATA_ALIGN(__len) \ 286 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 287 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 288 }; 289 290 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 291 * Alternative is: 292 * dev->hard_header_len ? (dev->hard_header_len + 293 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 294 * 295 * We could use other alignment values, but we must maintain the 296 * relationship HH alignment <= LL alignment. 297 */ 298 #define LL_RESERVED_SPACE(dev) \ 299 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \ 300 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 301 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 302 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \ 303 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 304 305 struct header_ops { 306 int (*create) (struct sk_buff *skb, struct net_device *dev, 307 unsigned short type, const void *daddr, 308 const void *saddr, unsigned int len); 309 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 310 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 311 void (*cache_update)(struct hh_cache *hh, 312 const struct net_device *dev, 313 const unsigned char *haddr); 314 bool (*validate)(const char *ll_header, unsigned int len); 315 __be16 (*parse_protocol)(const struct sk_buff *skb); 316 }; 317 318 /* These flag bits are private to the generic network queueing 319 * layer; they may not be explicitly referenced by any other 320 * code. 321 */ 322 323 enum netdev_state_t { 324 __LINK_STATE_START, 325 __LINK_STATE_PRESENT, 326 __LINK_STATE_NOCARRIER, 327 __LINK_STATE_LINKWATCH_PENDING, 328 __LINK_STATE_DORMANT, 329 __LINK_STATE_TESTING, 330 }; 331 332 struct gro_list { 333 struct list_head list; 334 int count; 335 }; 336 337 /* 338 * size of gro hash buckets, must less than bit number of 339 * napi_struct::gro_bitmask 340 */ 341 #define GRO_HASH_BUCKETS 8 342 343 /* 344 * Structure for NAPI scheduling similar to tasklet but with weighting 345 */ 346 struct napi_struct { 347 /* The poll_list must only be managed by the entity which 348 * changes the state of the NAPI_STATE_SCHED bit. This means 349 * whoever atomically sets that bit can add this napi_struct 350 * to the per-CPU poll_list, and whoever clears that bit 351 * can remove from the list right before clearing the bit. 352 */ 353 struct list_head poll_list; 354 355 unsigned long state; 356 int weight; 357 int defer_hard_irqs_count; 358 unsigned long gro_bitmask; 359 int (*poll)(struct napi_struct *, int); 360 #ifdef CONFIG_NETPOLL 361 /* CPU actively polling if netpoll is configured */ 362 int poll_owner; 363 #endif 364 /* CPU on which NAPI has been scheduled for processing */ 365 int list_owner; 366 struct net_device *dev; 367 struct gro_list gro_hash[GRO_HASH_BUCKETS]; 368 struct sk_buff *skb; 369 struct list_head rx_list; /* Pending GRO_NORMAL skbs */ 370 int rx_count; /* length of rx_list */ 371 unsigned int napi_id; 372 struct hrtimer timer; 373 struct task_struct *thread; 374 /* control-path-only fields follow */ 375 struct list_head dev_list; 376 struct hlist_node napi_hash_node; 377 int irq; 378 }; 379 380 enum { 381 NAPI_STATE_SCHED, /* Poll is scheduled */ 382 NAPI_STATE_MISSED, /* reschedule a napi */ 383 NAPI_STATE_DISABLE, /* Disable pending */ 384 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 385 NAPI_STATE_LISTED, /* NAPI added to system lists */ 386 NAPI_STATE_NO_BUSY_POLL, /* Do not add in napi_hash, no busy polling */ 387 NAPI_STATE_IN_BUSY_POLL, /* sk_busy_loop() owns this NAPI */ 388 NAPI_STATE_PREFER_BUSY_POLL, /* prefer busy-polling over softirq processing*/ 389 NAPI_STATE_THREADED, /* The poll is performed inside its own thread*/ 390 NAPI_STATE_SCHED_THREADED, /* Napi is currently scheduled in threaded mode */ 391 }; 392 393 enum { 394 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 395 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 396 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 397 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 398 NAPIF_STATE_LISTED = BIT(NAPI_STATE_LISTED), 399 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 400 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 401 NAPIF_STATE_PREFER_BUSY_POLL = BIT(NAPI_STATE_PREFER_BUSY_POLL), 402 NAPIF_STATE_THREADED = BIT(NAPI_STATE_THREADED), 403 NAPIF_STATE_SCHED_THREADED = BIT(NAPI_STATE_SCHED_THREADED), 404 }; 405 406 enum gro_result { 407 GRO_MERGED, 408 GRO_MERGED_FREE, 409 GRO_HELD, 410 GRO_NORMAL, 411 GRO_CONSUMED, 412 }; 413 typedef enum gro_result gro_result_t; 414 415 /* 416 * enum rx_handler_result - Possible return values for rx_handlers. 417 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 418 * further. 419 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 420 * case skb->dev was changed by rx_handler. 421 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 422 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 423 * 424 * rx_handlers are functions called from inside __netif_receive_skb(), to do 425 * special processing of the skb, prior to delivery to protocol handlers. 426 * 427 * Currently, a net_device can only have a single rx_handler registered. Trying 428 * to register a second rx_handler will return -EBUSY. 429 * 430 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 431 * To unregister a rx_handler on a net_device, use 432 * netdev_rx_handler_unregister(). 433 * 434 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 435 * do with the skb. 436 * 437 * If the rx_handler consumed the skb in some way, it should return 438 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 439 * the skb to be delivered in some other way. 440 * 441 * If the rx_handler changed skb->dev, to divert the skb to another 442 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 443 * new device will be called if it exists. 444 * 445 * If the rx_handler decides the skb should be ignored, it should return 446 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 447 * are registered on exact device (ptype->dev == skb->dev). 448 * 449 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 450 * delivered, it should return RX_HANDLER_PASS. 451 * 452 * A device without a registered rx_handler will behave as if rx_handler 453 * returned RX_HANDLER_PASS. 454 */ 455 456 enum rx_handler_result { 457 RX_HANDLER_CONSUMED, 458 RX_HANDLER_ANOTHER, 459 RX_HANDLER_EXACT, 460 RX_HANDLER_PASS, 461 }; 462 typedef enum rx_handler_result rx_handler_result_t; 463 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 464 465 void __napi_schedule(struct napi_struct *n); 466 void __napi_schedule_irqoff(struct napi_struct *n); 467 468 static inline bool napi_disable_pending(struct napi_struct *n) 469 { 470 return test_bit(NAPI_STATE_DISABLE, &n->state); 471 } 472 473 static inline bool napi_prefer_busy_poll(struct napi_struct *n) 474 { 475 return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state); 476 } 477 478 /** 479 * napi_is_scheduled - test if NAPI is scheduled 480 * @n: NAPI context 481 * 482 * This check is "best-effort". With no locking implemented, 483 * a NAPI can be scheduled or terminate right after this check 484 * and produce not precise results. 485 * 486 * NAPI_STATE_SCHED is an internal state, napi_is_scheduled 487 * should not be used normally and napi_schedule should be 488 * used instead. 489 * 490 * Use only if the driver really needs to check if a NAPI 491 * is scheduled for example in the context of delayed timer 492 * that can be skipped if a NAPI is already scheduled. 493 * 494 * Return True if NAPI is scheduled, False otherwise. 495 */ 496 static inline bool napi_is_scheduled(struct napi_struct *n) 497 { 498 return test_bit(NAPI_STATE_SCHED, &n->state); 499 } 500 501 bool napi_schedule_prep(struct napi_struct *n); 502 503 /** 504 * napi_schedule - schedule NAPI poll 505 * @n: NAPI context 506 * 507 * Schedule NAPI poll routine to be called if it is not already 508 * running. 509 * Return true if we schedule a NAPI or false if not. 510 * Refer to napi_schedule_prep() for additional reason on why 511 * a NAPI might not be scheduled. 512 */ 513 static inline bool napi_schedule(struct napi_struct *n) 514 { 515 if (napi_schedule_prep(n)) { 516 __napi_schedule(n); 517 return true; 518 } 519 520 return false; 521 } 522 523 /** 524 * napi_schedule_irqoff - schedule NAPI poll 525 * @n: NAPI context 526 * 527 * Variant of napi_schedule(), assuming hard irqs are masked. 528 */ 529 static inline void napi_schedule_irqoff(struct napi_struct *n) 530 { 531 if (napi_schedule_prep(n)) 532 __napi_schedule_irqoff(n); 533 } 534 535 /** 536 * napi_complete_done - NAPI processing complete 537 * @n: NAPI context 538 * @work_done: number of packets processed 539 * 540 * Mark NAPI processing as complete. Should only be called if poll budget 541 * has not been completely consumed. 542 * Prefer over napi_complete(). 543 * Return false if device should avoid rearming interrupts. 544 */ 545 bool napi_complete_done(struct napi_struct *n, int work_done); 546 547 static inline bool napi_complete(struct napi_struct *n) 548 { 549 return napi_complete_done(n, 0); 550 } 551 552 int dev_set_threaded(struct net_device *dev, bool threaded); 553 554 /** 555 * napi_disable - prevent NAPI from scheduling 556 * @n: NAPI context 557 * 558 * Stop NAPI from being scheduled on this context. 559 * Waits till any outstanding processing completes. 560 */ 561 void napi_disable(struct napi_struct *n); 562 563 void napi_enable(struct napi_struct *n); 564 565 /** 566 * napi_synchronize - wait until NAPI is not running 567 * @n: NAPI context 568 * 569 * Wait until NAPI is done being scheduled on this context. 570 * Waits till any outstanding processing completes but 571 * does not disable future activations. 572 */ 573 static inline void napi_synchronize(const struct napi_struct *n) 574 { 575 if (IS_ENABLED(CONFIG_SMP)) 576 while (test_bit(NAPI_STATE_SCHED, &n->state)) 577 msleep(1); 578 else 579 barrier(); 580 } 581 582 /** 583 * napi_if_scheduled_mark_missed - if napi is running, set the 584 * NAPIF_STATE_MISSED 585 * @n: NAPI context 586 * 587 * If napi is running, set the NAPIF_STATE_MISSED, and return true if 588 * NAPI is scheduled. 589 **/ 590 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n) 591 { 592 unsigned long val, new; 593 594 val = READ_ONCE(n->state); 595 do { 596 if (val & NAPIF_STATE_DISABLE) 597 return true; 598 599 if (!(val & NAPIF_STATE_SCHED)) 600 return false; 601 602 new = val | NAPIF_STATE_MISSED; 603 } while (!try_cmpxchg(&n->state, &val, new)); 604 605 return true; 606 } 607 608 enum netdev_queue_state_t { 609 __QUEUE_STATE_DRV_XOFF, 610 __QUEUE_STATE_STACK_XOFF, 611 __QUEUE_STATE_FROZEN, 612 }; 613 614 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 615 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 616 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 617 618 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 619 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 620 QUEUE_STATE_FROZEN) 621 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 622 QUEUE_STATE_FROZEN) 623 624 /* 625 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 626 * netif_tx_* functions below are used to manipulate this flag. The 627 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 628 * queue independently. The netif_xmit_*stopped functions below are called 629 * to check if the queue has been stopped by the driver or stack (either 630 * of the XOFF bits are set in the state). Drivers should not need to call 631 * netif_xmit*stopped functions, they should only be using netif_tx_*. 632 */ 633 634 struct netdev_queue { 635 /* 636 * read-mostly part 637 */ 638 struct net_device *dev; 639 netdevice_tracker dev_tracker; 640 641 struct Qdisc __rcu *qdisc; 642 struct Qdisc __rcu *qdisc_sleeping; 643 #ifdef CONFIG_SYSFS 644 struct kobject kobj; 645 #endif 646 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 647 int numa_node; 648 #endif 649 unsigned long tx_maxrate; 650 /* 651 * Number of TX timeouts for this queue 652 * (/sys/class/net/DEV/Q/trans_timeout) 653 */ 654 atomic_long_t trans_timeout; 655 656 /* Subordinate device that the queue has been assigned to */ 657 struct net_device *sb_dev; 658 #ifdef CONFIG_XDP_SOCKETS 659 struct xsk_buff_pool *pool; 660 #endif 661 /* NAPI instance for the queue 662 * Readers and writers must hold RTNL 663 */ 664 struct napi_struct *napi; 665 /* 666 * write-mostly part 667 */ 668 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 669 int xmit_lock_owner; 670 /* 671 * Time (in jiffies) of last Tx 672 */ 673 unsigned long trans_start; 674 675 unsigned long state; 676 677 #ifdef CONFIG_BQL 678 struct dql dql; 679 #endif 680 } ____cacheline_aligned_in_smp; 681 682 extern int sysctl_fb_tunnels_only_for_init_net; 683 extern int sysctl_devconf_inherit_init_net; 684 685 /* 686 * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns 687 * == 1 : For initns only 688 * == 2 : For none. 689 */ 690 static inline bool net_has_fallback_tunnels(const struct net *net) 691 { 692 #if IS_ENABLED(CONFIG_SYSCTL) 693 int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net); 694 695 return !fb_tunnels_only_for_init_net || 696 (net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1); 697 #else 698 return true; 699 #endif 700 } 701 702 static inline int net_inherit_devconf(void) 703 { 704 #if IS_ENABLED(CONFIG_SYSCTL) 705 return READ_ONCE(sysctl_devconf_inherit_init_net); 706 #else 707 return 0; 708 #endif 709 } 710 711 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 712 { 713 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 714 return q->numa_node; 715 #else 716 return NUMA_NO_NODE; 717 #endif 718 } 719 720 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 721 { 722 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 723 q->numa_node = node; 724 #endif 725 } 726 727 #ifdef CONFIG_RFS_ACCEL 728 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 729 u16 filter_id); 730 #endif 731 732 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */ 733 enum xps_map_type { 734 XPS_CPUS = 0, 735 XPS_RXQS, 736 XPS_MAPS_MAX, 737 }; 738 739 #ifdef CONFIG_XPS 740 /* 741 * This structure holds an XPS map which can be of variable length. The 742 * map is an array of queues. 743 */ 744 struct xps_map { 745 unsigned int len; 746 unsigned int alloc_len; 747 struct rcu_head rcu; 748 u16 queues[]; 749 }; 750 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 751 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 752 - sizeof(struct xps_map)) / sizeof(u16)) 753 754 /* 755 * This structure holds all XPS maps for device. Maps are indexed by CPU. 756 * 757 * We keep track of the number of cpus/rxqs used when the struct is allocated, 758 * in nr_ids. This will help not accessing out-of-bound memory. 759 * 760 * We keep track of the number of traffic classes used when the struct is 761 * allocated, in num_tc. This will be used to navigate the maps, to ensure we're 762 * not crossing its upper bound, as the original dev->num_tc can be updated in 763 * the meantime. 764 */ 765 struct xps_dev_maps { 766 struct rcu_head rcu; 767 unsigned int nr_ids; 768 s16 num_tc; 769 struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */ 770 }; 771 772 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 773 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 774 775 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\ 776 (_rxqs * (_tcs) * sizeof(struct xps_map *))) 777 778 #endif /* CONFIG_XPS */ 779 780 #define TC_MAX_QUEUE 16 781 #define TC_BITMASK 15 782 /* HW offloaded queuing disciplines txq count and offset maps */ 783 struct netdev_tc_txq { 784 u16 count; 785 u16 offset; 786 }; 787 788 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 789 /* 790 * This structure is to hold information about the device 791 * configured to run FCoE protocol stack. 792 */ 793 struct netdev_fcoe_hbainfo { 794 char manufacturer[64]; 795 char serial_number[64]; 796 char hardware_version[64]; 797 char driver_version[64]; 798 char optionrom_version[64]; 799 char firmware_version[64]; 800 char model[256]; 801 char model_description[256]; 802 }; 803 #endif 804 805 #define MAX_PHYS_ITEM_ID_LEN 32 806 807 /* This structure holds a unique identifier to identify some 808 * physical item (port for example) used by a netdevice. 809 */ 810 struct netdev_phys_item_id { 811 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 812 unsigned char id_len; 813 }; 814 815 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 816 struct netdev_phys_item_id *b) 817 { 818 return a->id_len == b->id_len && 819 memcmp(a->id, b->id, a->id_len) == 0; 820 } 821 822 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 823 struct sk_buff *skb, 824 struct net_device *sb_dev); 825 826 enum net_device_path_type { 827 DEV_PATH_ETHERNET = 0, 828 DEV_PATH_VLAN, 829 DEV_PATH_BRIDGE, 830 DEV_PATH_PPPOE, 831 DEV_PATH_DSA, 832 DEV_PATH_MTK_WDMA, 833 }; 834 835 struct net_device_path { 836 enum net_device_path_type type; 837 const struct net_device *dev; 838 union { 839 struct { 840 u16 id; 841 __be16 proto; 842 u8 h_dest[ETH_ALEN]; 843 } encap; 844 struct { 845 enum { 846 DEV_PATH_BR_VLAN_KEEP, 847 DEV_PATH_BR_VLAN_TAG, 848 DEV_PATH_BR_VLAN_UNTAG, 849 DEV_PATH_BR_VLAN_UNTAG_HW, 850 } vlan_mode; 851 u16 vlan_id; 852 __be16 vlan_proto; 853 } bridge; 854 struct { 855 int port; 856 u16 proto; 857 } dsa; 858 struct { 859 u8 wdma_idx; 860 u8 queue; 861 u16 wcid; 862 u8 bss; 863 u8 amsdu; 864 } mtk_wdma; 865 }; 866 }; 867 868 #define NET_DEVICE_PATH_STACK_MAX 5 869 #define NET_DEVICE_PATH_VLAN_MAX 2 870 871 struct net_device_path_stack { 872 int num_paths; 873 struct net_device_path path[NET_DEVICE_PATH_STACK_MAX]; 874 }; 875 876 struct net_device_path_ctx { 877 const struct net_device *dev; 878 u8 daddr[ETH_ALEN]; 879 880 int num_vlans; 881 struct { 882 u16 id; 883 __be16 proto; 884 } vlan[NET_DEVICE_PATH_VLAN_MAX]; 885 }; 886 887 enum tc_setup_type { 888 TC_QUERY_CAPS, 889 TC_SETUP_QDISC_MQPRIO, 890 TC_SETUP_CLSU32, 891 TC_SETUP_CLSFLOWER, 892 TC_SETUP_CLSMATCHALL, 893 TC_SETUP_CLSBPF, 894 TC_SETUP_BLOCK, 895 TC_SETUP_QDISC_CBS, 896 TC_SETUP_QDISC_RED, 897 TC_SETUP_QDISC_PRIO, 898 TC_SETUP_QDISC_MQ, 899 TC_SETUP_QDISC_ETF, 900 TC_SETUP_ROOT_QDISC, 901 TC_SETUP_QDISC_GRED, 902 TC_SETUP_QDISC_TAPRIO, 903 TC_SETUP_FT, 904 TC_SETUP_QDISC_ETS, 905 TC_SETUP_QDISC_TBF, 906 TC_SETUP_QDISC_FIFO, 907 TC_SETUP_QDISC_HTB, 908 TC_SETUP_ACT, 909 }; 910 911 /* These structures hold the attributes of bpf state that are being passed 912 * to the netdevice through the bpf op. 913 */ 914 enum bpf_netdev_command { 915 /* Set or clear a bpf program used in the earliest stages of packet 916 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 917 * is responsible for calling bpf_prog_put on any old progs that are 918 * stored. In case of error, the callee need not release the new prog 919 * reference, but on success it takes ownership and must bpf_prog_put 920 * when it is no longer used. 921 */ 922 XDP_SETUP_PROG, 923 XDP_SETUP_PROG_HW, 924 /* BPF program for offload callbacks, invoked at program load time. */ 925 BPF_OFFLOAD_MAP_ALLOC, 926 BPF_OFFLOAD_MAP_FREE, 927 XDP_SETUP_XSK_POOL, 928 }; 929 930 struct bpf_prog_offload_ops; 931 struct netlink_ext_ack; 932 struct xdp_umem; 933 struct xdp_dev_bulk_queue; 934 struct bpf_xdp_link; 935 936 enum bpf_xdp_mode { 937 XDP_MODE_SKB = 0, 938 XDP_MODE_DRV = 1, 939 XDP_MODE_HW = 2, 940 __MAX_XDP_MODE 941 }; 942 943 struct bpf_xdp_entity { 944 struct bpf_prog *prog; 945 struct bpf_xdp_link *link; 946 }; 947 948 struct netdev_bpf { 949 enum bpf_netdev_command command; 950 union { 951 /* XDP_SETUP_PROG */ 952 struct { 953 u32 flags; 954 struct bpf_prog *prog; 955 struct netlink_ext_ack *extack; 956 }; 957 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 958 struct { 959 struct bpf_offloaded_map *offmap; 960 }; 961 /* XDP_SETUP_XSK_POOL */ 962 struct { 963 struct xsk_buff_pool *pool; 964 u16 queue_id; 965 } xsk; 966 }; 967 }; 968 969 /* Flags for ndo_xsk_wakeup. */ 970 #define XDP_WAKEUP_RX (1 << 0) 971 #define XDP_WAKEUP_TX (1 << 1) 972 973 #ifdef CONFIG_XFRM_OFFLOAD 974 struct xfrmdev_ops { 975 int (*xdo_dev_state_add) (struct xfrm_state *x, struct netlink_ext_ack *extack); 976 void (*xdo_dev_state_delete) (struct xfrm_state *x); 977 void (*xdo_dev_state_free) (struct xfrm_state *x); 978 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 979 struct xfrm_state *x); 980 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 981 void (*xdo_dev_state_update_stats) (struct xfrm_state *x); 982 int (*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack); 983 void (*xdo_dev_policy_delete) (struct xfrm_policy *x); 984 void (*xdo_dev_policy_free) (struct xfrm_policy *x); 985 }; 986 #endif 987 988 struct dev_ifalias { 989 struct rcu_head rcuhead; 990 char ifalias[]; 991 }; 992 993 struct devlink; 994 struct tlsdev_ops; 995 996 struct netdev_net_notifier { 997 struct list_head list; 998 struct notifier_block *nb; 999 }; 1000 1001 /* 1002 * This structure defines the management hooks for network devices. 1003 * The following hooks can be defined; unless noted otherwise, they are 1004 * optional and can be filled with a null pointer. 1005 * 1006 * int (*ndo_init)(struct net_device *dev); 1007 * This function is called once when a network device is registered. 1008 * The network device can use this for any late stage initialization 1009 * or semantic validation. It can fail with an error code which will 1010 * be propagated back to register_netdev. 1011 * 1012 * void (*ndo_uninit)(struct net_device *dev); 1013 * This function is called when device is unregistered or when registration 1014 * fails. It is not called if init fails. 1015 * 1016 * int (*ndo_open)(struct net_device *dev); 1017 * This function is called when a network device transitions to the up 1018 * state. 1019 * 1020 * int (*ndo_stop)(struct net_device *dev); 1021 * This function is called when a network device transitions to the down 1022 * state. 1023 * 1024 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1025 * struct net_device *dev); 1026 * Called when a packet needs to be transmitted. 1027 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 1028 * the queue before that can happen; it's for obsolete devices and weird 1029 * corner cases, but the stack really does a non-trivial amount 1030 * of useless work if you return NETDEV_TX_BUSY. 1031 * Required; cannot be NULL. 1032 * 1033 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1034 * struct net_device *dev 1035 * netdev_features_t features); 1036 * Called by core transmit path to determine if device is capable of 1037 * performing offload operations on a given packet. This is to give 1038 * the device an opportunity to implement any restrictions that cannot 1039 * be otherwise expressed by feature flags. The check is called with 1040 * the set of features that the stack has calculated and it returns 1041 * those the driver believes to be appropriate. 1042 * 1043 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 1044 * struct net_device *sb_dev); 1045 * Called to decide which queue to use when device supports multiple 1046 * transmit queues. 1047 * 1048 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 1049 * This function is called to allow device receiver to make 1050 * changes to configuration when multicast or promiscuous is enabled. 1051 * 1052 * void (*ndo_set_rx_mode)(struct net_device *dev); 1053 * This function is called device changes address list filtering. 1054 * If driver handles unicast address filtering, it should set 1055 * IFF_UNICAST_FLT in its priv_flags. 1056 * 1057 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 1058 * This function is called when the Media Access Control address 1059 * needs to be changed. If this interface is not defined, the 1060 * MAC address can not be changed. 1061 * 1062 * int (*ndo_validate_addr)(struct net_device *dev); 1063 * Test if Media Access Control address is valid for the device. 1064 * 1065 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1066 * Old-style ioctl entry point. This is used internally by the 1067 * appletalk and ieee802154 subsystems but is no longer called by 1068 * the device ioctl handler. 1069 * 1070 * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd); 1071 * Used by the bonding driver for its device specific ioctls: 1072 * SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE, 1073 * SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY 1074 * 1075 * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1076 * Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG, 1077 * SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP. 1078 * 1079 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 1080 * Used to set network devices bus interface parameters. This interface 1081 * is retained for legacy reasons; new devices should use the bus 1082 * interface (PCI) for low level management. 1083 * 1084 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 1085 * Called when a user wants to change the Maximum Transfer Unit 1086 * of a device. 1087 * 1088 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue); 1089 * Callback used when the transmitter has not made any progress 1090 * for dev->watchdog ticks. 1091 * 1092 * void (*ndo_get_stats64)(struct net_device *dev, 1093 * struct rtnl_link_stats64 *storage); 1094 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1095 * Called when a user wants to get the network device usage 1096 * statistics. Drivers must do one of the following: 1097 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 1098 * rtnl_link_stats64 structure passed by the caller. 1099 * 2. Define @ndo_get_stats to update a net_device_stats structure 1100 * (which should normally be dev->stats) and return a pointer to 1101 * it. The structure may be changed asynchronously only if each 1102 * field is written atomically. 1103 * 3. Update dev->stats asynchronously and atomically, and define 1104 * neither operation. 1105 * 1106 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 1107 * Return true if this device supports offload stats of this attr_id. 1108 * 1109 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 1110 * void *attr_data) 1111 * Get statistics for offload operations by attr_id. Write it into the 1112 * attr_data pointer. 1113 * 1114 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 1115 * If device supports VLAN filtering this function is called when a 1116 * VLAN id is registered. 1117 * 1118 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 1119 * If device supports VLAN filtering this function is called when a 1120 * VLAN id is unregistered. 1121 * 1122 * void (*ndo_poll_controller)(struct net_device *dev); 1123 * 1124 * SR-IOV management functions. 1125 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 1126 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 1127 * u8 qos, __be16 proto); 1128 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 1129 * int max_tx_rate); 1130 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 1131 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 1132 * int (*ndo_get_vf_config)(struct net_device *dev, 1133 * int vf, struct ifla_vf_info *ivf); 1134 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 1135 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 1136 * struct nlattr *port[]); 1137 * 1138 * Enable or disable the VF ability to query its RSS Redirection Table and 1139 * Hash Key. This is needed since on some devices VF share this information 1140 * with PF and querying it may introduce a theoretical security risk. 1141 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 1142 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 1143 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 1144 * void *type_data); 1145 * Called to setup any 'tc' scheduler, classifier or action on @dev. 1146 * This is always called from the stack with the rtnl lock held and netif 1147 * tx queues stopped. This allows the netdevice to perform queue 1148 * management safely. 1149 * 1150 * Fiber Channel over Ethernet (FCoE) offload functions. 1151 * int (*ndo_fcoe_enable)(struct net_device *dev); 1152 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1153 * so the underlying device can perform whatever needed configuration or 1154 * initialization to support acceleration of FCoE traffic. 1155 * 1156 * int (*ndo_fcoe_disable)(struct net_device *dev); 1157 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1158 * so the underlying device can perform whatever needed clean-ups to 1159 * stop supporting acceleration of FCoE traffic. 1160 * 1161 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1162 * struct scatterlist *sgl, unsigned int sgc); 1163 * Called when the FCoE Initiator wants to initialize an I/O that 1164 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1165 * perform necessary setup and returns 1 to indicate the device is set up 1166 * successfully to perform DDP on this I/O, otherwise this returns 0. 1167 * 1168 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1169 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1170 * indicated by the FC exchange id 'xid', so the underlying device can 1171 * clean up and reuse resources for later DDP requests. 1172 * 1173 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1174 * struct scatterlist *sgl, unsigned int sgc); 1175 * Called when the FCoE Target wants to initialize an I/O that 1176 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1177 * perform necessary setup and returns 1 to indicate the device is set up 1178 * successfully to perform DDP on this I/O, otherwise this returns 0. 1179 * 1180 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1181 * struct netdev_fcoe_hbainfo *hbainfo); 1182 * Called when the FCoE Protocol stack wants information on the underlying 1183 * device. This information is utilized by the FCoE protocol stack to 1184 * register attributes with Fiber Channel management service as per the 1185 * FC-GS Fabric Device Management Information(FDMI) specification. 1186 * 1187 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1188 * Called when the underlying device wants to override default World Wide 1189 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1190 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1191 * protocol stack to use. 1192 * 1193 * RFS acceleration. 1194 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1195 * u16 rxq_index, u32 flow_id); 1196 * Set hardware filter for RFS. rxq_index is the target queue index; 1197 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1198 * Return the filter ID on success, or a negative error code. 1199 * 1200 * Slave management functions (for bridge, bonding, etc). 1201 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1202 * Called to make another netdev an underling. 1203 * 1204 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1205 * Called to release previously enslaved netdev. 1206 * 1207 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev, 1208 * struct sk_buff *skb, 1209 * bool all_slaves); 1210 * Get the xmit slave of master device. If all_slaves is true, function 1211 * assume all the slaves can transmit. 1212 * 1213 * Feature/offload setting functions. 1214 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1215 * netdev_features_t features); 1216 * Adjusts the requested feature flags according to device-specific 1217 * constraints, and returns the resulting flags. Must not modify 1218 * the device state. 1219 * 1220 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1221 * Called to update device configuration to new features. Passed 1222 * feature set might be less than what was returned by ndo_fix_features()). 1223 * Must return >0 or -errno if it changed dev->features itself. 1224 * 1225 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1226 * struct net_device *dev, 1227 * const unsigned char *addr, u16 vid, u16 flags, 1228 * struct netlink_ext_ack *extack); 1229 * Adds an FDB entry to dev for addr. 1230 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1231 * struct net_device *dev, 1232 * const unsigned char *addr, u16 vid) 1233 * Deletes the FDB entry from dev coresponding to addr. 1234 * int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, struct net_device *dev, 1235 * struct netlink_ext_ack *extack); 1236 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1237 * struct net_device *dev, struct net_device *filter_dev, 1238 * int *idx) 1239 * Used to add FDB entries to dump requests. Implementers should add 1240 * entries to skb and update idx with the number of entries. 1241 * 1242 * int (*ndo_mdb_add)(struct net_device *dev, struct nlattr *tb[], 1243 * u16 nlmsg_flags, struct netlink_ext_ack *extack); 1244 * Adds an MDB entry to dev. 1245 * int (*ndo_mdb_del)(struct net_device *dev, struct nlattr *tb[], 1246 * struct netlink_ext_ack *extack); 1247 * Deletes the MDB entry from dev. 1248 * int (*ndo_mdb_del_bulk)(struct net_device *dev, struct nlattr *tb[], 1249 * struct netlink_ext_ack *extack); 1250 * Bulk deletes MDB entries from dev. 1251 * int (*ndo_mdb_dump)(struct net_device *dev, struct sk_buff *skb, 1252 * struct netlink_callback *cb); 1253 * Dumps MDB entries from dev. The first argument (marker) in the netlink 1254 * callback is used by core rtnetlink code. 1255 * 1256 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1257 * u16 flags, struct netlink_ext_ack *extack) 1258 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1259 * struct net_device *dev, u32 filter_mask, 1260 * int nlflags) 1261 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1262 * u16 flags); 1263 * 1264 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1265 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1266 * which do not represent real hardware may define this to allow their 1267 * userspace components to manage their virtual carrier state. Devices 1268 * that determine carrier state from physical hardware properties (eg 1269 * network cables) or protocol-dependent mechanisms (eg 1270 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1271 * 1272 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1273 * struct netdev_phys_item_id *ppid); 1274 * Called to get ID of physical port of this device. If driver does 1275 * not implement this, it is assumed that the hw is not able to have 1276 * multiple net devices on single physical port. 1277 * 1278 * int (*ndo_get_port_parent_id)(struct net_device *dev, 1279 * struct netdev_phys_item_id *ppid) 1280 * Called to get the parent ID of the physical port of this device. 1281 * 1282 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1283 * struct net_device *dev) 1284 * Called by upper layer devices to accelerate switching or other 1285 * station functionality into hardware. 'pdev is the lowerdev 1286 * to use for the offload and 'dev' is the net device that will 1287 * back the offload. Returns a pointer to the private structure 1288 * the upper layer will maintain. 1289 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1290 * Called by upper layer device to delete the station created 1291 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1292 * the station and priv is the structure returned by the add 1293 * operation. 1294 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1295 * int queue_index, u32 maxrate); 1296 * Called when a user wants to set a max-rate limitation of specific 1297 * TX queue. 1298 * int (*ndo_get_iflink)(const struct net_device *dev); 1299 * Called to get the iflink value of this device. 1300 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1301 * This function is used to get egress tunnel information for given skb. 1302 * This is useful for retrieving outer tunnel header parameters while 1303 * sampling packet. 1304 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1305 * This function is used to specify the headroom that the skb must 1306 * consider when allocation skb during packet reception. Setting 1307 * appropriate rx headroom value allows avoiding skb head copy on 1308 * forward. Setting a negative value resets the rx headroom to the 1309 * default value. 1310 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1311 * This function is used to set or query state related to XDP on the 1312 * netdevice and manage BPF offload. See definition of 1313 * enum bpf_netdev_command for details. 1314 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, 1315 * u32 flags); 1316 * This function is used to submit @n XDP packets for transmit on a 1317 * netdevice. Returns number of frames successfully transmitted, frames 1318 * that got dropped are freed/returned via xdp_return_frame(). 1319 * Returns negative number, means general error invoking ndo, meaning 1320 * no frames were xmit'ed and core-caller will free all frames. 1321 * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1322 * struct xdp_buff *xdp); 1323 * Get the xmit slave of master device based on the xdp_buff. 1324 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags); 1325 * This function is used to wake up the softirq, ksoftirqd or kthread 1326 * responsible for sending and/or receiving packets on a specific 1327 * queue id bound to an AF_XDP socket. The flags field specifies if 1328 * only RX, only Tx, or both should be woken up using the flags 1329 * XDP_WAKEUP_RX and XDP_WAKEUP_TX. 1330 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm_kern *p, 1331 * int cmd); 1332 * Add, change, delete or get information on an IPv4 tunnel. 1333 * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev); 1334 * If a device is paired with a peer device, return the peer instance. 1335 * The caller must be under RCU read context. 1336 * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path); 1337 * Get the forwarding path to reach the real device from the HW destination address 1338 * ktime_t (*ndo_get_tstamp)(struct net_device *dev, 1339 * const struct skb_shared_hwtstamps *hwtstamps, 1340 * bool cycles); 1341 * Get hardware timestamp based on normal/adjustable time or free running 1342 * cycle counter. This function is required if physical clock supports a 1343 * free running cycle counter. 1344 * 1345 * int (*ndo_hwtstamp_get)(struct net_device *dev, 1346 * struct kernel_hwtstamp_config *kernel_config); 1347 * Get the currently configured hardware timestamping parameters for the 1348 * NIC device. 1349 * 1350 * int (*ndo_hwtstamp_set)(struct net_device *dev, 1351 * struct kernel_hwtstamp_config *kernel_config, 1352 * struct netlink_ext_ack *extack); 1353 * Change the hardware timestamping parameters for NIC device. 1354 */ 1355 struct net_device_ops { 1356 int (*ndo_init)(struct net_device *dev); 1357 void (*ndo_uninit)(struct net_device *dev); 1358 int (*ndo_open)(struct net_device *dev); 1359 int (*ndo_stop)(struct net_device *dev); 1360 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1361 struct net_device *dev); 1362 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1363 struct net_device *dev, 1364 netdev_features_t features); 1365 u16 (*ndo_select_queue)(struct net_device *dev, 1366 struct sk_buff *skb, 1367 struct net_device *sb_dev); 1368 void (*ndo_change_rx_flags)(struct net_device *dev, 1369 int flags); 1370 void (*ndo_set_rx_mode)(struct net_device *dev); 1371 int (*ndo_set_mac_address)(struct net_device *dev, 1372 void *addr); 1373 int (*ndo_validate_addr)(struct net_device *dev); 1374 int (*ndo_do_ioctl)(struct net_device *dev, 1375 struct ifreq *ifr, int cmd); 1376 int (*ndo_eth_ioctl)(struct net_device *dev, 1377 struct ifreq *ifr, int cmd); 1378 int (*ndo_siocbond)(struct net_device *dev, 1379 struct ifreq *ifr, int cmd); 1380 int (*ndo_siocwandev)(struct net_device *dev, 1381 struct if_settings *ifs); 1382 int (*ndo_siocdevprivate)(struct net_device *dev, 1383 struct ifreq *ifr, 1384 void __user *data, int cmd); 1385 int (*ndo_set_config)(struct net_device *dev, 1386 struct ifmap *map); 1387 int (*ndo_change_mtu)(struct net_device *dev, 1388 int new_mtu); 1389 int (*ndo_neigh_setup)(struct net_device *dev, 1390 struct neigh_parms *); 1391 void (*ndo_tx_timeout) (struct net_device *dev, 1392 unsigned int txqueue); 1393 1394 void (*ndo_get_stats64)(struct net_device *dev, 1395 struct rtnl_link_stats64 *storage); 1396 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1397 int (*ndo_get_offload_stats)(int attr_id, 1398 const struct net_device *dev, 1399 void *attr_data); 1400 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1401 1402 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1403 __be16 proto, u16 vid); 1404 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1405 __be16 proto, u16 vid); 1406 #ifdef CONFIG_NET_POLL_CONTROLLER 1407 void (*ndo_poll_controller)(struct net_device *dev); 1408 int (*ndo_netpoll_setup)(struct net_device *dev, 1409 struct netpoll_info *info); 1410 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1411 #endif 1412 int (*ndo_set_vf_mac)(struct net_device *dev, 1413 int queue, u8 *mac); 1414 int (*ndo_set_vf_vlan)(struct net_device *dev, 1415 int queue, u16 vlan, 1416 u8 qos, __be16 proto); 1417 int (*ndo_set_vf_rate)(struct net_device *dev, 1418 int vf, int min_tx_rate, 1419 int max_tx_rate); 1420 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1421 int vf, bool setting); 1422 int (*ndo_set_vf_trust)(struct net_device *dev, 1423 int vf, bool setting); 1424 int (*ndo_get_vf_config)(struct net_device *dev, 1425 int vf, 1426 struct ifla_vf_info *ivf); 1427 int (*ndo_set_vf_link_state)(struct net_device *dev, 1428 int vf, int link_state); 1429 int (*ndo_get_vf_stats)(struct net_device *dev, 1430 int vf, 1431 struct ifla_vf_stats 1432 *vf_stats); 1433 int (*ndo_set_vf_port)(struct net_device *dev, 1434 int vf, 1435 struct nlattr *port[]); 1436 int (*ndo_get_vf_port)(struct net_device *dev, 1437 int vf, struct sk_buff *skb); 1438 int (*ndo_get_vf_guid)(struct net_device *dev, 1439 int vf, 1440 struct ifla_vf_guid *node_guid, 1441 struct ifla_vf_guid *port_guid); 1442 int (*ndo_set_vf_guid)(struct net_device *dev, 1443 int vf, u64 guid, 1444 int guid_type); 1445 int (*ndo_set_vf_rss_query_en)( 1446 struct net_device *dev, 1447 int vf, bool setting); 1448 int (*ndo_setup_tc)(struct net_device *dev, 1449 enum tc_setup_type type, 1450 void *type_data); 1451 #if IS_ENABLED(CONFIG_FCOE) 1452 int (*ndo_fcoe_enable)(struct net_device *dev); 1453 int (*ndo_fcoe_disable)(struct net_device *dev); 1454 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1455 u16 xid, 1456 struct scatterlist *sgl, 1457 unsigned int sgc); 1458 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1459 u16 xid); 1460 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1461 u16 xid, 1462 struct scatterlist *sgl, 1463 unsigned int sgc); 1464 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1465 struct netdev_fcoe_hbainfo *hbainfo); 1466 #endif 1467 1468 #if IS_ENABLED(CONFIG_LIBFCOE) 1469 #define NETDEV_FCOE_WWNN 0 1470 #define NETDEV_FCOE_WWPN 1 1471 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1472 u64 *wwn, int type); 1473 #endif 1474 1475 #ifdef CONFIG_RFS_ACCEL 1476 int (*ndo_rx_flow_steer)(struct net_device *dev, 1477 const struct sk_buff *skb, 1478 u16 rxq_index, 1479 u32 flow_id); 1480 #endif 1481 int (*ndo_add_slave)(struct net_device *dev, 1482 struct net_device *slave_dev, 1483 struct netlink_ext_ack *extack); 1484 int (*ndo_del_slave)(struct net_device *dev, 1485 struct net_device *slave_dev); 1486 struct net_device* (*ndo_get_xmit_slave)(struct net_device *dev, 1487 struct sk_buff *skb, 1488 bool all_slaves); 1489 struct net_device* (*ndo_sk_get_lower_dev)(struct net_device *dev, 1490 struct sock *sk); 1491 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1492 netdev_features_t features); 1493 int (*ndo_set_features)(struct net_device *dev, 1494 netdev_features_t features); 1495 int (*ndo_neigh_construct)(struct net_device *dev, 1496 struct neighbour *n); 1497 void (*ndo_neigh_destroy)(struct net_device *dev, 1498 struct neighbour *n); 1499 1500 int (*ndo_fdb_add)(struct ndmsg *ndm, 1501 struct nlattr *tb[], 1502 struct net_device *dev, 1503 const unsigned char *addr, 1504 u16 vid, 1505 u16 flags, 1506 struct netlink_ext_ack *extack); 1507 int (*ndo_fdb_del)(struct ndmsg *ndm, 1508 struct nlattr *tb[], 1509 struct net_device *dev, 1510 const unsigned char *addr, 1511 u16 vid, struct netlink_ext_ack *extack); 1512 int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, 1513 struct net_device *dev, 1514 struct netlink_ext_ack *extack); 1515 int (*ndo_fdb_dump)(struct sk_buff *skb, 1516 struct netlink_callback *cb, 1517 struct net_device *dev, 1518 struct net_device *filter_dev, 1519 int *idx); 1520 int (*ndo_fdb_get)(struct sk_buff *skb, 1521 struct nlattr *tb[], 1522 struct net_device *dev, 1523 const unsigned char *addr, 1524 u16 vid, u32 portid, u32 seq, 1525 struct netlink_ext_ack *extack); 1526 int (*ndo_mdb_add)(struct net_device *dev, 1527 struct nlattr *tb[], 1528 u16 nlmsg_flags, 1529 struct netlink_ext_ack *extack); 1530 int (*ndo_mdb_del)(struct net_device *dev, 1531 struct nlattr *tb[], 1532 struct netlink_ext_ack *extack); 1533 int (*ndo_mdb_del_bulk)(struct net_device *dev, 1534 struct nlattr *tb[], 1535 struct netlink_ext_ack *extack); 1536 int (*ndo_mdb_dump)(struct net_device *dev, 1537 struct sk_buff *skb, 1538 struct netlink_callback *cb); 1539 int (*ndo_mdb_get)(struct net_device *dev, 1540 struct nlattr *tb[], u32 portid, 1541 u32 seq, 1542 struct netlink_ext_ack *extack); 1543 int (*ndo_bridge_setlink)(struct net_device *dev, 1544 struct nlmsghdr *nlh, 1545 u16 flags, 1546 struct netlink_ext_ack *extack); 1547 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1548 u32 pid, u32 seq, 1549 struct net_device *dev, 1550 u32 filter_mask, 1551 int nlflags); 1552 int (*ndo_bridge_dellink)(struct net_device *dev, 1553 struct nlmsghdr *nlh, 1554 u16 flags); 1555 int (*ndo_change_carrier)(struct net_device *dev, 1556 bool new_carrier); 1557 int (*ndo_get_phys_port_id)(struct net_device *dev, 1558 struct netdev_phys_item_id *ppid); 1559 int (*ndo_get_port_parent_id)(struct net_device *dev, 1560 struct netdev_phys_item_id *ppid); 1561 int (*ndo_get_phys_port_name)(struct net_device *dev, 1562 char *name, size_t len); 1563 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1564 struct net_device *dev); 1565 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1566 void *priv); 1567 1568 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1569 int queue_index, 1570 u32 maxrate); 1571 int (*ndo_get_iflink)(const struct net_device *dev); 1572 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1573 struct sk_buff *skb); 1574 void (*ndo_set_rx_headroom)(struct net_device *dev, 1575 int needed_headroom); 1576 int (*ndo_bpf)(struct net_device *dev, 1577 struct netdev_bpf *bpf); 1578 int (*ndo_xdp_xmit)(struct net_device *dev, int n, 1579 struct xdp_frame **xdp, 1580 u32 flags); 1581 struct net_device * (*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1582 struct xdp_buff *xdp); 1583 int (*ndo_xsk_wakeup)(struct net_device *dev, 1584 u32 queue_id, u32 flags); 1585 int (*ndo_tunnel_ctl)(struct net_device *dev, 1586 struct ip_tunnel_parm_kern *p, 1587 int cmd); 1588 struct net_device * (*ndo_get_peer_dev)(struct net_device *dev); 1589 int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, 1590 struct net_device_path *path); 1591 ktime_t (*ndo_get_tstamp)(struct net_device *dev, 1592 const struct skb_shared_hwtstamps *hwtstamps, 1593 bool cycles); 1594 int (*ndo_hwtstamp_get)(struct net_device *dev, 1595 struct kernel_hwtstamp_config *kernel_config); 1596 int (*ndo_hwtstamp_set)(struct net_device *dev, 1597 struct kernel_hwtstamp_config *kernel_config, 1598 struct netlink_ext_ack *extack); 1599 }; 1600 1601 /** 1602 * enum netdev_priv_flags - &struct net_device priv_flags 1603 * 1604 * These are the &struct net_device, they are only set internally 1605 * by drivers and used in the kernel. These flags are invisible to 1606 * userspace; this means that the order of these flags can change 1607 * during any kernel release. 1608 * 1609 * You should have a pretty good reason to be extending these flags. 1610 * 1611 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1612 * @IFF_EBRIDGE: Ethernet bridging device 1613 * @IFF_BONDING: bonding master or slave 1614 * @IFF_ISATAP: ISATAP interface (RFC4214) 1615 * @IFF_WAN_HDLC: WAN HDLC device 1616 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1617 * release skb->dst 1618 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1619 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1620 * @IFF_MACVLAN_PORT: device used as macvlan port 1621 * @IFF_BRIDGE_PORT: device used as bridge port 1622 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1623 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1624 * @IFF_UNICAST_FLT: Supports unicast filtering 1625 * @IFF_TEAM_PORT: device used as team port 1626 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1627 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1628 * change when it's running 1629 * @IFF_MACVLAN: Macvlan device 1630 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1631 * underlying stacked devices 1632 * @IFF_L3MDEV_MASTER: device is an L3 master device 1633 * @IFF_NO_QUEUE: device can run without qdisc attached 1634 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1635 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1636 * @IFF_TEAM: device is a team device 1637 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1638 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1639 * entity (i.e. the master device for bridged veth) 1640 * @IFF_MACSEC: device is a MACsec device 1641 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook 1642 * @IFF_FAILOVER: device is a failover master device 1643 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device 1644 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device 1645 * @IFF_NO_ADDRCONF: prevent ipv6 addrconf 1646 * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with 1647 * skb_headlen(skb) == 0 (data starts from frag0) 1648 * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN 1649 * @IFF_SEE_ALL_HWTSTAMP_REQUESTS: device wants to see calls to 1650 * ndo_hwtstamp_set() for all timestamp requests regardless of source, 1651 * even if those aren't HWTSTAMP_SOURCE_NETDEV. 1652 */ 1653 enum netdev_priv_flags { 1654 IFF_802_1Q_VLAN = 1<<0, 1655 IFF_EBRIDGE = 1<<1, 1656 IFF_BONDING = 1<<2, 1657 IFF_ISATAP = 1<<3, 1658 IFF_WAN_HDLC = 1<<4, 1659 IFF_XMIT_DST_RELEASE = 1<<5, 1660 IFF_DONT_BRIDGE = 1<<6, 1661 IFF_DISABLE_NETPOLL = 1<<7, 1662 IFF_MACVLAN_PORT = 1<<8, 1663 IFF_BRIDGE_PORT = 1<<9, 1664 IFF_OVS_DATAPATH = 1<<10, 1665 IFF_TX_SKB_SHARING = 1<<11, 1666 IFF_UNICAST_FLT = 1<<12, 1667 IFF_TEAM_PORT = 1<<13, 1668 IFF_SUPP_NOFCS = 1<<14, 1669 IFF_LIVE_ADDR_CHANGE = 1<<15, 1670 IFF_MACVLAN = 1<<16, 1671 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1672 IFF_L3MDEV_MASTER = 1<<18, 1673 IFF_NO_QUEUE = 1<<19, 1674 IFF_OPENVSWITCH = 1<<20, 1675 IFF_L3MDEV_SLAVE = 1<<21, 1676 IFF_TEAM = 1<<22, 1677 IFF_RXFH_CONFIGURED = 1<<23, 1678 IFF_PHONY_HEADROOM = 1<<24, 1679 IFF_MACSEC = 1<<25, 1680 IFF_NO_RX_HANDLER = 1<<26, 1681 IFF_FAILOVER = 1<<27, 1682 IFF_FAILOVER_SLAVE = 1<<28, 1683 IFF_L3MDEV_RX_HANDLER = 1<<29, 1684 IFF_NO_ADDRCONF = BIT_ULL(30), 1685 IFF_TX_SKB_NO_LINEAR = BIT_ULL(31), 1686 IFF_CHANGE_PROTO_DOWN = BIT_ULL(32), 1687 IFF_SEE_ALL_HWTSTAMP_REQUESTS = BIT_ULL(33), 1688 }; 1689 1690 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1691 #define IFF_EBRIDGE IFF_EBRIDGE 1692 #define IFF_BONDING IFF_BONDING 1693 #define IFF_ISATAP IFF_ISATAP 1694 #define IFF_WAN_HDLC IFF_WAN_HDLC 1695 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1696 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1697 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1698 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1699 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1700 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1701 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1702 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1703 #define IFF_TEAM_PORT IFF_TEAM_PORT 1704 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1705 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1706 #define IFF_MACVLAN IFF_MACVLAN 1707 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1708 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1709 #define IFF_NO_QUEUE IFF_NO_QUEUE 1710 #define IFF_OPENVSWITCH IFF_OPENVSWITCH 1711 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1712 #define IFF_TEAM IFF_TEAM 1713 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1714 #define IFF_PHONY_HEADROOM IFF_PHONY_HEADROOM 1715 #define IFF_MACSEC IFF_MACSEC 1716 #define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER 1717 #define IFF_FAILOVER IFF_FAILOVER 1718 #define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE 1719 #define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER 1720 #define IFF_TX_SKB_NO_LINEAR IFF_TX_SKB_NO_LINEAR 1721 1722 /* Specifies the type of the struct net_device::ml_priv pointer */ 1723 enum netdev_ml_priv_type { 1724 ML_PRIV_NONE, 1725 ML_PRIV_CAN, 1726 }; 1727 1728 enum netdev_stat_type { 1729 NETDEV_PCPU_STAT_NONE, 1730 NETDEV_PCPU_STAT_LSTATS, /* struct pcpu_lstats */ 1731 NETDEV_PCPU_STAT_TSTATS, /* struct pcpu_sw_netstats */ 1732 NETDEV_PCPU_STAT_DSTATS, /* struct pcpu_dstats */ 1733 }; 1734 1735 enum netdev_reg_state { 1736 NETREG_UNINITIALIZED = 0, 1737 NETREG_REGISTERED, /* completed register_netdevice */ 1738 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1739 NETREG_UNREGISTERED, /* completed unregister todo */ 1740 NETREG_RELEASED, /* called free_netdev */ 1741 NETREG_DUMMY, /* dummy device for NAPI poll */ 1742 }; 1743 1744 /** 1745 * struct net_device - The DEVICE structure. 1746 * 1747 * Actually, this whole structure is a big mistake. It mixes I/O 1748 * data with strictly "high-level" data, and it has to know about 1749 * almost every data structure used in the INET module. 1750 * 1751 * @name: This is the first field of the "visible" part of this structure 1752 * (i.e. as seen by users in the "Space.c" file). It is the name 1753 * of the interface. 1754 * 1755 * @name_node: Name hashlist node 1756 * @ifalias: SNMP alias 1757 * @mem_end: Shared memory end 1758 * @mem_start: Shared memory start 1759 * @base_addr: Device I/O address 1760 * @irq: Device IRQ number 1761 * 1762 * @state: Generic network queuing layer state, see netdev_state_t 1763 * @dev_list: The global list of network devices 1764 * @napi_list: List entry used for polling NAPI devices 1765 * @unreg_list: List entry when we are unregistering the 1766 * device; see the function unregister_netdev 1767 * @close_list: List entry used when we are closing the device 1768 * @ptype_all: Device-specific packet handlers for all protocols 1769 * @ptype_specific: Device-specific, protocol-specific packet handlers 1770 * 1771 * @adj_list: Directly linked devices, like slaves for bonding 1772 * @features: Currently active device features 1773 * @hw_features: User-changeable features 1774 * 1775 * @wanted_features: User-requested features 1776 * @vlan_features: Mask of features inheritable by VLAN devices 1777 * 1778 * @hw_enc_features: Mask of features inherited by encapsulating devices 1779 * This field indicates what encapsulation 1780 * offloads the hardware is capable of doing, 1781 * and drivers will need to set them appropriately. 1782 * 1783 * @mpls_features: Mask of features inheritable by MPLS 1784 * @gso_partial_features: value(s) from NETIF_F_GSO\* 1785 * 1786 * @ifindex: interface index 1787 * @group: The group the device belongs to 1788 * 1789 * @stats: Statistics struct, which was left as a legacy, use 1790 * rtnl_link_stats64 instead 1791 * 1792 * @core_stats: core networking counters, 1793 * do not use this in drivers 1794 * @carrier_up_count: Number of times the carrier has been up 1795 * @carrier_down_count: Number of times the carrier has been down 1796 * 1797 * @wireless_handlers: List of functions to handle Wireless Extensions, 1798 * instead of ioctl, 1799 * see <net/iw_handler.h> for details. 1800 * @wireless_data: Instance data managed by the core of wireless extensions 1801 * 1802 * @netdev_ops: Includes several pointers to callbacks, 1803 * if one wants to override the ndo_*() functions 1804 * @xdp_metadata_ops: Includes pointers to XDP metadata callbacks. 1805 * @xsk_tx_metadata_ops: Includes pointers to AF_XDP TX metadata callbacks. 1806 * @ethtool_ops: Management operations 1807 * @l3mdev_ops: Layer 3 master device operations 1808 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1809 * discovery handling. Necessary for e.g. 6LoWPAN. 1810 * @xfrmdev_ops: Transformation offload operations 1811 * @tlsdev_ops: Transport Layer Security offload operations 1812 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1813 * of Layer 2 headers. 1814 * 1815 * @flags: Interface flags (a la BSD) 1816 * @xdp_features: XDP capability supported by the device 1817 * @priv_flags: Like 'flags' but invisible to userspace, 1818 * see if.h for the definitions 1819 * @gflags: Global flags ( kept as legacy ) 1820 * @padded: How much padding added by alloc_netdev() 1821 * @operstate: RFC2863 operstate 1822 * @link_mode: Mapping policy to operstate 1823 * @if_port: Selectable AUI, TP, ... 1824 * @dma: DMA channel 1825 * @mtu: Interface MTU value 1826 * @min_mtu: Interface Minimum MTU value 1827 * @max_mtu: Interface Maximum MTU value 1828 * @type: Interface hardware type 1829 * @hard_header_len: Maximum hardware header length. 1830 * @min_header_len: Minimum hardware header length 1831 * 1832 * @needed_headroom: Extra headroom the hardware may need, but not in all 1833 * cases can this be guaranteed 1834 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1835 * cases can this be guaranteed. Some cases also use 1836 * LL_MAX_HEADER instead to allocate the skb 1837 * 1838 * interface address info: 1839 * 1840 * @perm_addr: Permanent hw address 1841 * @addr_assign_type: Hw address assignment type 1842 * @addr_len: Hardware address length 1843 * @upper_level: Maximum depth level of upper devices. 1844 * @lower_level: Maximum depth level of lower devices. 1845 * @neigh_priv_len: Used in neigh_alloc() 1846 * @dev_id: Used to differentiate devices that share 1847 * the same link layer address 1848 * @dev_port: Used to differentiate devices that share 1849 * the same function 1850 * @addr_list_lock: XXX: need comments on this one 1851 * @name_assign_type: network interface name assignment type 1852 * @uc_promisc: Counter that indicates promiscuous mode 1853 * has been enabled due to the need to listen to 1854 * additional unicast addresses in a device that 1855 * does not implement ndo_set_rx_mode() 1856 * @uc: unicast mac addresses 1857 * @mc: multicast mac addresses 1858 * @dev_addrs: list of device hw addresses 1859 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1860 * @promiscuity: Number of times the NIC is told to work in 1861 * promiscuous mode; if it becomes 0 the NIC will 1862 * exit promiscuous mode 1863 * @allmulti: Counter, enables or disables allmulticast mode 1864 * 1865 * @vlan_info: VLAN info 1866 * @dsa_ptr: dsa specific data 1867 * @tipc_ptr: TIPC specific data 1868 * @atalk_ptr: AppleTalk link 1869 * @ip_ptr: IPv4 specific data 1870 * @ip6_ptr: IPv6 specific data 1871 * @ax25_ptr: AX.25 specific data 1872 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1873 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network 1874 * device struct 1875 * @mpls_ptr: mpls_dev struct pointer 1876 * @mctp_ptr: MCTP specific data 1877 * 1878 * @dev_addr: Hw address (before bcast, 1879 * because most packets are unicast) 1880 * 1881 * @_rx: Array of RX queues 1882 * @num_rx_queues: Number of RX queues 1883 * allocated at register_netdev() time 1884 * @real_num_rx_queues: Number of RX queues currently active in device 1885 * @xdp_prog: XDP sockets filter program pointer 1886 * @gro_flush_timeout: timeout for GRO layer in NAPI 1887 * @napi_defer_hard_irqs: If not zero, provides a counter that would 1888 * allow to avoid NIC hard IRQ, on busy queues. 1889 * 1890 * @rx_handler: handler for received packets 1891 * @rx_handler_data: XXX: need comments on this one 1892 * @tcx_ingress: BPF & clsact qdisc specific data for ingress processing 1893 * @ingress_queue: XXX: need comments on this one 1894 * @nf_hooks_ingress: netfilter hooks executed for ingress packets 1895 * @broadcast: hw bcast address 1896 * 1897 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1898 * indexed by RX queue number. Assigned by driver. 1899 * This must only be set if the ndo_rx_flow_steer 1900 * operation is defined 1901 * @index_hlist: Device index hash chain 1902 * 1903 * @_tx: Array of TX queues 1904 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1905 * @real_num_tx_queues: Number of TX queues currently active in device 1906 * @qdisc: Root qdisc from userspace point of view 1907 * @tx_queue_len: Max frames per queue allowed 1908 * @tx_global_lock: XXX: need comments on this one 1909 * @xdp_bulkq: XDP device bulk queue 1910 * @xps_maps: all CPUs/RXQs maps for XPS device 1911 * 1912 * @xps_maps: XXX: need comments on this one 1913 * @tcx_egress: BPF & clsact qdisc specific data for egress processing 1914 * @nf_hooks_egress: netfilter hooks executed for egress packets 1915 * @qdisc_hash: qdisc hash table 1916 * @watchdog_timeo: Represents the timeout that is used by 1917 * the watchdog (see dev_watchdog()) 1918 * @watchdog_timer: List of timers 1919 * 1920 * @proto_down_reason: reason a netdev interface is held down 1921 * @pcpu_refcnt: Number of references to this device 1922 * @dev_refcnt: Number of references to this device 1923 * @refcnt_tracker: Tracker directory for tracked references to this device 1924 * @todo_list: Delayed register/unregister 1925 * @link_watch_list: XXX: need comments on this one 1926 * 1927 * @reg_state: Register/unregister state machine 1928 * @dismantle: Device is going to be freed 1929 * @rtnl_link_state: This enum represents the phases of creating 1930 * a new link 1931 * 1932 * @needs_free_netdev: Should unregister perform free_netdev? 1933 * @priv_destructor: Called from unregister 1934 * @npinfo: XXX: need comments on this one 1935 * @nd_net: Network namespace this network device is inside 1936 * 1937 * @ml_priv: Mid-layer private 1938 * @ml_priv_type: Mid-layer private type 1939 * 1940 * @pcpu_stat_type: Type of device statistics which the core should 1941 * allocate/free: none, lstats, tstats, dstats. none 1942 * means the driver is handling statistics allocation/ 1943 * freeing internally. 1944 * @lstats: Loopback statistics: packets, bytes 1945 * @tstats: Tunnel statistics: RX/TX packets, RX/TX bytes 1946 * @dstats: Dummy statistics: RX/TX/drop packets, RX/TX bytes 1947 * 1948 * @garp_port: GARP 1949 * @mrp_port: MRP 1950 * 1951 * @dm_private: Drop monitor private 1952 * 1953 * @dev: Class/net/name entry 1954 * @sysfs_groups: Space for optional device, statistics and wireless 1955 * sysfs groups 1956 * 1957 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1958 * @rtnl_link_ops: Rtnl_link_ops 1959 * @stat_ops: Optional ops for queue-aware statistics 1960 * 1961 * @gso_max_size: Maximum size of generic segmentation offload 1962 * @tso_max_size: Device (as in HW) limit on the max TSO request size 1963 * @gso_max_segs: Maximum number of segments that can be passed to the 1964 * NIC for GSO 1965 * @tso_max_segs: Device (as in HW) limit on the max TSO segment count 1966 * @gso_ipv4_max_size: Maximum size of generic segmentation offload, 1967 * for IPv4. 1968 * 1969 * @dcbnl_ops: Data Center Bridging netlink ops 1970 * @num_tc: Number of traffic classes in the net device 1971 * @tc_to_txq: XXX: need comments on this one 1972 * @prio_tc_map: XXX: need comments on this one 1973 * 1974 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1975 * 1976 * @priomap: XXX: need comments on this one 1977 * @link_topo: Physical link topology tracking attached PHYs 1978 * @phydev: Physical device may attach itself 1979 * for hardware timestamping 1980 * @sfp_bus: attached &struct sfp_bus structure. 1981 * 1982 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 1983 * 1984 * @proto_down: protocol port state information can be sent to the 1985 * switch driver and used to set the phys state of the 1986 * switch port. 1987 * 1988 * @wol_enabled: Wake-on-LAN is enabled 1989 * 1990 * @threaded: napi threaded mode is enabled 1991 * 1992 * @net_notifier_list: List of per-net netdev notifier block 1993 * that follow this device when it is moved 1994 * to another network namespace. 1995 * 1996 * @macsec_ops: MACsec offloading ops 1997 * 1998 * @udp_tunnel_nic_info: static structure describing the UDP tunnel 1999 * offload capabilities of the device 2000 * @udp_tunnel_nic: UDP tunnel offload state 2001 * @xdp_state: stores info on attached XDP BPF programs 2002 * 2003 * @nested_level: Used as a parameter of spin_lock_nested() of 2004 * dev->addr_list_lock. 2005 * @unlink_list: As netif_addr_lock() can be called recursively, 2006 * keep a list of interfaces to be deleted. 2007 * @gro_max_size: Maximum size of aggregated packet in generic 2008 * receive offload (GRO) 2009 * @gro_ipv4_max_size: Maximum size of aggregated packet in generic 2010 * receive offload (GRO), for IPv4. 2011 * @xdp_zc_max_segs: Maximum number of segments supported by AF_XDP 2012 * zero copy driver 2013 * 2014 * @dev_addr_shadow: Copy of @dev_addr to catch direct writes. 2015 * @linkwatch_dev_tracker: refcount tracker used by linkwatch. 2016 * @watchdog_dev_tracker: refcount tracker used by watchdog. 2017 * @dev_registered_tracker: tracker for reference held while 2018 * registered 2019 * @offload_xstats_l3: L3 HW stats for this netdevice. 2020 * 2021 * @devlink_port: Pointer to related devlink port structure. 2022 * Assigned by a driver before netdev registration using 2023 * SET_NETDEV_DEVLINK_PORT macro. This pointer is static 2024 * during the time netdevice is registered. 2025 * 2026 * @dpll_pin: Pointer to the SyncE source pin of a DPLL subsystem, 2027 * where the clock is recovered. 2028 * 2029 * FIXME: cleanup struct net_device such that network protocol info 2030 * moves out. 2031 */ 2032 2033 struct net_device { 2034 /* Cacheline organization can be found documented in 2035 * Documentation/networking/net_cachelines/net_device.rst. 2036 * Please update the document when adding new fields. 2037 */ 2038 2039 /* TX read-mostly hotpath */ 2040 __cacheline_group_begin(net_device_read_tx); 2041 unsigned long long priv_flags; 2042 const struct net_device_ops *netdev_ops; 2043 const struct header_ops *header_ops; 2044 struct netdev_queue *_tx; 2045 netdev_features_t gso_partial_features; 2046 unsigned int real_num_tx_queues; 2047 unsigned int gso_max_size; 2048 unsigned int gso_ipv4_max_size; 2049 u16 gso_max_segs; 2050 s16 num_tc; 2051 /* Note : dev->mtu is often read without holding a lock. 2052 * Writers usually hold RTNL. 2053 * It is recommended to use READ_ONCE() to annotate the reads, 2054 * and to use WRITE_ONCE() to annotate the writes. 2055 */ 2056 unsigned int mtu; 2057 unsigned short needed_headroom; 2058 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 2059 #ifdef CONFIG_XPS 2060 struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX]; 2061 #endif 2062 #ifdef CONFIG_NETFILTER_EGRESS 2063 struct nf_hook_entries __rcu *nf_hooks_egress; 2064 #endif 2065 #ifdef CONFIG_NET_XGRESS 2066 struct bpf_mprog_entry __rcu *tcx_egress; 2067 #endif 2068 __cacheline_group_end(net_device_read_tx); 2069 2070 /* TXRX read-mostly hotpath */ 2071 __cacheline_group_begin(net_device_read_txrx); 2072 union { 2073 struct pcpu_lstats __percpu *lstats; 2074 struct pcpu_sw_netstats __percpu *tstats; 2075 struct pcpu_dstats __percpu *dstats; 2076 }; 2077 unsigned long state; 2078 unsigned int flags; 2079 unsigned short hard_header_len; 2080 netdev_features_t features; 2081 struct inet6_dev __rcu *ip6_ptr; 2082 __cacheline_group_end(net_device_read_txrx); 2083 2084 /* RX read-mostly hotpath */ 2085 __cacheline_group_begin(net_device_read_rx); 2086 struct bpf_prog __rcu *xdp_prog; 2087 struct list_head ptype_specific; 2088 int ifindex; 2089 unsigned int real_num_rx_queues; 2090 struct netdev_rx_queue *_rx; 2091 unsigned long gro_flush_timeout; 2092 int napi_defer_hard_irqs; 2093 unsigned int gro_max_size; 2094 unsigned int gro_ipv4_max_size; 2095 rx_handler_func_t __rcu *rx_handler; 2096 void __rcu *rx_handler_data; 2097 possible_net_t nd_net; 2098 #ifdef CONFIG_NETPOLL 2099 struct netpoll_info __rcu *npinfo; 2100 #endif 2101 #ifdef CONFIG_NET_XGRESS 2102 struct bpf_mprog_entry __rcu *tcx_ingress; 2103 #endif 2104 __cacheline_group_end(net_device_read_rx); 2105 2106 char name[IFNAMSIZ]; 2107 struct netdev_name_node *name_node; 2108 struct dev_ifalias __rcu *ifalias; 2109 /* 2110 * I/O specific fields 2111 * FIXME: Merge these and struct ifmap into one 2112 */ 2113 unsigned long mem_end; 2114 unsigned long mem_start; 2115 unsigned long base_addr; 2116 2117 /* 2118 * Some hardware also needs these fields (state,dev_list, 2119 * napi_list,unreg_list,close_list) but they are not 2120 * part of the usual set specified in Space.c. 2121 */ 2122 2123 2124 struct list_head dev_list; 2125 struct list_head napi_list; 2126 struct list_head unreg_list; 2127 struct list_head close_list; 2128 struct list_head ptype_all; 2129 2130 struct { 2131 struct list_head upper; 2132 struct list_head lower; 2133 } adj_list; 2134 2135 /* Read-mostly cache-line for fast-path access */ 2136 xdp_features_t xdp_features; 2137 const struct xdp_metadata_ops *xdp_metadata_ops; 2138 const struct xsk_tx_metadata_ops *xsk_tx_metadata_ops; 2139 unsigned short gflags; 2140 2141 unsigned short needed_tailroom; 2142 2143 netdev_features_t hw_features; 2144 netdev_features_t wanted_features; 2145 netdev_features_t vlan_features; 2146 netdev_features_t hw_enc_features; 2147 netdev_features_t mpls_features; 2148 2149 unsigned int min_mtu; 2150 unsigned int max_mtu; 2151 unsigned short type; 2152 unsigned char min_header_len; 2153 unsigned char name_assign_type; 2154 2155 int group; 2156 2157 struct net_device_stats stats; /* not used by modern drivers */ 2158 2159 struct net_device_core_stats __percpu *core_stats; 2160 2161 /* Stats to monitor link on/off, flapping */ 2162 atomic_t carrier_up_count; 2163 atomic_t carrier_down_count; 2164 2165 #ifdef CONFIG_WIRELESS_EXT 2166 const struct iw_handler_def *wireless_handlers; 2167 struct iw_public_data *wireless_data; 2168 #endif 2169 const struct ethtool_ops *ethtool_ops; 2170 #ifdef CONFIG_NET_L3_MASTER_DEV 2171 const struct l3mdev_ops *l3mdev_ops; 2172 #endif 2173 #if IS_ENABLED(CONFIG_IPV6) 2174 const struct ndisc_ops *ndisc_ops; 2175 #endif 2176 2177 #ifdef CONFIG_XFRM_OFFLOAD 2178 const struct xfrmdev_ops *xfrmdev_ops; 2179 #endif 2180 2181 #if IS_ENABLED(CONFIG_TLS_DEVICE) 2182 const struct tlsdev_ops *tlsdev_ops; 2183 #endif 2184 2185 unsigned int operstate; 2186 unsigned char link_mode; 2187 2188 unsigned char if_port; 2189 unsigned char dma; 2190 2191 /* Interface address info. */ 2192 unsigned char perm_addr[MAX_ADDR_LEN]; 2193 unsigned char addr_assign_type; 2194 unsigned char addr_len; 2195 unsigned char upper_level; 2196 unsigned char lower_level; 2197 2198 unsigned short neigh_priv_len; 2199 unsigned short dev_id; 2200 unsigned short dev_port; 2201 unsigned short padded; 2202 2203 spinlock_t addr_list_lock; 2204 int irq; 2205 2206 struct netdev_hw_addr_list uc; 2207 struct netdev_hw_addr_list mc; 2208 struct netdev_hw_addr_list dev_addrs; 2209 2210 #ifdef CONFIG_SYSFS 2211 struct kset *queues_kset; 2212 #endif 2213 #ifdef CONFIG_LOCKDEP 2214 struct list_head unlink_list; 2215 #endif 2216 unsigned int promiscuity; 2217 unsigned int allmulti; 2218 bool uc_promisc; 2219 #ifdef CONFIG_LOCKDEP 2220 unsigned char nested_level; 2221 #endif 2222 2223 2224 /* Protocol-specific pointers */ 2225 struct in_device __rcu *ip_ptr; 2226 #if IS_ENABLED(CONFIG_VLAN_8021Q) 2227 struct vlan_info __rcu *vlan_info; 2228 #endif 2229 #if IS_ENABLED(CONFIG_NET_DSA) 2230 struct dsa_port *dsa_ptr; 2231 #endif 2232 #if IS_ENABLED(CONFIG_TIPC) 2233 struct tipc_bearer __rcu *tipc_ptr; 2234 #endif 2235 #if IS_ENABLED(CONFIG_ATALK) 2236 void *atalk_ptr; 2237 #endif 2238 #if IS_ENABLED(CONFIG_AX25) 2239 void *ax25_ptr; 2240 #endif 2241 #if IS_ENABLED(CONFIG_CFG80211) 2242 struct wireless_dev *ieee80211_ptr; 2243 #endif 2244 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN) 2245 struct wpan_dev *ieee802154_ptr; 2246 #endif 2247 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 2248 struct mpls_dev __rcu *mpls_ptr; 2249 #endif 2250 #if IS_ENABLED(CONFIG_MCTP) 2251 struct mctp_dev __rcu *mctp_ptr; 2252 #endif 2253 2254 /* 2255 * Cache lines mostly used on receive path (including eth_type_trans()) 2256 */ 2257 /* Interface address info used in eth_type_trans() */ 2258 const unsigned char *dev_addr; 2259 2260 unsigned int num_rx_queues; 2261 #define GRO_LEGACY_MAX_SIZE 65536u 2262 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), 2263 * and shinfo->gso_segs is a 16bit field. 2264 */ 2265 #define GRO_MAX_SIZE (8 * 65535u) 2266 unsigned int xdp_zc_max_segs; 2267 struct netdev_queue __rcu *ingress_queue; 2268 #ifdef CONFIG_NETFILTER_INGRESS 2269 struct nf_hook_entries __rcu *nf_hooks_ingress; 2270 #endif 2271 2272 unsigned char broadcast[MAX_ADDR_LEN]; 2273 #ifdef CONFIG_RFS_ACCEL 2274 struct cpu_rmap *rx_cpu_rmap; 2275 #endif 2276 struct hlist_node index_hlist; 2277 2278 /* 2279 * Cache lines mostly used on transmit path 2280 */ 2281 unsigned int num_tx_queues; 2282 struct Qdisc __rcu *qdisc; 2283 unsigned int tx_queue_len; 2284 spinlock_t tx_global_lock; 2285 2286 struct xdp_dev_bulk_queue __percpu *xdp_bulkq; 2287 2288 #ifdef CONFIG_NET_SCHED 2289 DECLARE_HASHTABLE (qdisc_hash, 4); 2290 #endif 2291 /* These may be needed for future network-power-down code. */ 2292 struct timer_list watchdog_timer; 2293 int watchdog_timeo; 2294 2295 u32 proto_down_reason; 2296 2297 struct list_head todo_list; 2298 2299 #ifdef CONFIG_PCPU_DEV_REFCNT 2300 int __percpu *pcpu_refcnt; 2301 #else 2302 refcount_t dev_refcnt; 2303 #endif 2304 struct ref_tracker_dir refcnt_tracker; 2305 2306 struct list_head link_watch_list; 2307 2308 u8 reg_state; 2309 2310 bool dismantle; 2311 2312 enum { 2313 RTNL_LINK_INITIALIZED, 2314 RTNL_LINK_INITIALIZING, 2315 } rtnl_link_state:16; 2316 2317 bool needs_free_netdev; 2318 void (*priv_destructor)(struct net_device *dev); 2319 2320 /* mid-layer private */ 2321 void *ml_priv; 2322 enum netdev_ml_priv_type ml_priv_type; 2323 2324 enum netdev_stat_type pcpu_stat_type:8; 2325 2326 #if IS_ENABLED(CONFIG_GARP) 2327 struct garp_port __rcu *garp_port; 2328 #endif 2329 #if IS_ENABLED(CONFIG_MRP) 2330 struct mrp_port __rcu *mrp_port; 2331 #endif 2332 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR) 2333 struct dm_hw_stat_delta __rcu *dm_private; 2334 #endif 2335 struct device dev; 2336 const struct attribute_group *sysfs_groups[4]; 2337 const struct attribute_group *sysfs_rx_queue_group; 2338 2339 const struct rtnl_link_ops *rtnl_link_ops; 2340 2341 const struct netdev_stat_ops *stat_ops; 2342 2343 /* for setting kernel sock attribute on TCP connection setup */ 2344 #define GSO_MAX_SEGS 65535u 2345 #define GSO_LEGACY_MAX_SIZE 65536u 2346 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), 2347 * and shinfo->gso_segs is a 16bit field. 2348 */ 2349 #define GSO_MAX_SIZE (8 * GSO_MAX_SEGS) 2350 2351 #define TSO_LEGACY_MAX_SIZE 65536 2352 #define TSO_MAX_SIZE UINT_MAX 2353 unsigned int tso_max_size; 2354 #define TSO_MAX_SEGS U16_MAX 2355 u16 tso_max_segs; 2356 2357 #ifdef CONFIG_DCB 2358 const struct dcbnl_rtnl_ops *dcbnl_ops; 2359 #endif 2360 u8 prio_tc_map[TC_BITMASK + 1]; 2361 2362 #if IS_ENABLED(CONFIG_FCOE) 2363 unsigned int fcoe_ddp_xid; 2364 #endif 2365 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2366 struct netprio_map __rcu *priomap; 2367 #endif 2368 struct phy_link_topology *link_topo; 2369 struct phy_device *phydev; 2370 struct sfp_bus *sfp_bus; 2371 struct lock_class_key *qdisc_tx_busylock; 2372 bool proto_down; 2373 unsigned wol_enabled:1; 2374 unsigned threaded:1; 2375 2376 struct list_head net_notifier_list; 2377 2378 #if IS_ENABLED(CONFIG_MACSEC) 2379 /* MACsec management functions */ 2380 const struct macsec_ops *macsec_ops; 2381 #endif 2382 const struct udp_tunnel_nic_info *udp_tunnel_nic_info; 2383 struct udp_tunnel_nic *udp_tunnel_nic; 2384 2385 /* protected by rtnl_lock */ 2386 struct bpf_xdp_entity xdp_state[__MAX_XDP_MODE]; 2387 2388 u8 dev_addr_shadow[MAX_ADDR_LEN]; 2389 netdevice_tracker linkwatch_dev_tracker; 2390 netdevice_tracker watchdog_dev_tracker; 2391 netdevice_tracker dev_registered_tracker; 2392 struct rtnl_hw_stats64 *offload_xstats_l3; 2393 2394 struct devlink_port *devlink_port; 2395 2396 #if IS_ENABLED(CONFIG_DPLL) 2397 struct dpll_pin __rcu *dpll_pin; 2398 #endif 2399 #if IS_ENABLED(CONFIG_PAGE_POOL) 2400 /** @page_pools: page pools created for this netdevice */ 2401 struct hlist_head page_pools; 2402 #endif 2403 }; 2404 #define to_net_dev(d) container_of(d, struct net_device, dev) 2405 2406 /* 2407 * Driver should use this to assign devlink port instance to a netdevice 2408 * before it registers the netdevice. Therefore devlink_port is static 2409 * during the netdev lifetime after it is registered. 2410 */ 2411 #define SET_NETDEV_DEVLINK_PORT(dev, port) \ 2412 ({ \ 2413 WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED); \ 2414 ((dev)->devlink_port = (port)); \ 2415 }) 2416 2417 static inline bool netif_elide_gro(const struct net_device *dev) 2418 { 2419 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 2420 return true; 2421 return false; 2422 } 2423 2424 #define NETDEV_ALIGN 32 2425 2426 static inline 2427 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 2428 { 2429 return dev->prio_tc_map[prio & TC_BITMASK]; 2430 } 2431 2432 static inline 2433 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 2434 { 2435 if (tc >= dev->num_tc) 2436 return -EINVAL; 2437 2438 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 2439 return 0; 2440 } 2441 2442 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 2443 void netdev_reset_tc(struct net_device *dev); 2444 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 2445 int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 2446 2447 static inline 2448 int netdev_get_num_tc(struct net_device *dev) 2449 { 2450 return dev->num_tc; 2451 } 2452 2453 static inline void net_prefetch(void *p) 2454 { 2455 prefetch(p); 2456 #if L1_CACHE_BYTES < 128 2457 prefetch((u8 *)p + L1_CACHE_BYTES); 2458 #endif 2459 } 2460 2461 static inline void net_prefetchw(void *p) 2462 { 2463 prefetchw(p); 2464 #if L1_CACHE_BYTES < 128 2465 prefetchw((u8 *)p + L1_CACHE_BYTES); 2466 #endif 2467 } 2468 2469 void netdev_unbind_sb_channel(struct net_device *dev, 2470 struct net_device *sb_dev); 2471 int netdev_bind_sb_channel_queue(struct net_device *dev, 2472 struct net_device *sb_dev, 2473 u8 tc, u16 count, u16 offset); 2474 int netdev_set_sb_channel(struct net_device *dev, u16 channel); 2475 static inline int netdev_get_sb_channel(struct net_device *dev) 2476 { 2477 return max_t(int, -dev->num_tc, 0); 2478 } 2479 2480 static inline 2481 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 2482 unsigned int index) 2483 { 2484 DEBUG_NET_WARN_ON_ONCE(index >= dev->num_tx_queues); 2485 return &dev->_tx[index]; 2486 } 2487 2488 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 2489 const struct sk_buff *skb) 2490 { 2491 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 2492 } 2493 2494 static inline void netdev_for_each_tx_queue(struct net_device *dev, 2495 void (*f)(struct net_device *, 2496 struct netdev_queue *, 2497 void *), 2498 void *arg) 2499 { 2500 unsigned int i; 2501 2502 for (i = 0; i < dev->num_tx_queues; i++) 2503 f(dev, &dev->_tx[i], arg); 2504 } 2505 2506 #define netdev_lockdep_set_classes(dev) \ 2507 { \ 2508 static struct lock_class_key qdisc_tx_busylock_key; \ 2509 static struct lock_class_key qdisc_xmit_lock_key; \ 2510 static struct lock_class_key dev_addr_list_lock_key; \ 2511 unsigned int i; \ 2512 \ 2513 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 2514 lockdep_set_class(&(dev)->addr_list_lock, \ 2515 &dev_addr_list_lock_key); \ 2516 for (i = 0; i < (dev)->num_tx_queues; i++) \ 2517 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 2518 &qdisc_xmit_lock_key); \ 2519 } 2520 2521 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 2522 struct net_device *sb_dev); 2523 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 2524 struct sk_buff *skb, 2525 struct net_device *sb_dev); 2526 2527 /* returns the headroom that the master device needs to take in account 2528 * when forwarding to this dev 2529 */ 2530 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2531 { 2532 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2533 } 2534 2535 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2536 { 2537 if (dev->netdev_ops->ndo_set_rx_headroom) 2538 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2539 } 2540 2541 /* set the device rx headroom to the dev's default */ 2542 static inline void netdev_reset_rx_headroom(struct net_device *dev) 2543 { 2544 netdev_set_rx_headroom(dev, -1); 2545 } 2546 2547 static inline void *netdev_get_ml_priv(struct net_device *dev, 2548 enum netdev_ml_priv_type type) 2549 { 2550 if (dev->ml_priv_type != type) 2551 return NULL; 2552 2553 return dev->ml_priv; 2554 } 2555 2556 static inline void netdev_set_ml_priv(struct net_device *dev, 2557 void *ml_priv, 2558 enum netdev_ml_priv_type type) 2559 { 2560 WARN(dev->ml_priv_type && dev->ml_priv_type != type, 2561 "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n", 2562 dev->ml_priv_type, type); 2563 WARN(!dev->ml_priv_type && dev->ml_priv, 2564 "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n"); 2565 2566 dev->ml_priv = ml_priv; 2567 dev->ml_priv_type = type; 2568 } 2569 2570 /* 2571 * Net namespace inlines 2572 */ 2573 static inline 2574 struct net *dev_net(const struct net_device *dev) 2575 { 2576 return read_pnet(&dev->nd_net); 2577 } 2578 2579 static inline 2580 void dev_net_set(struct net_device *dev, struct net *net) 2581 { 2582 write_pnet(&dev->nd_net, net); 2583 } 2584 2585 /** 2586 * netdev_priv - access network device private data 2587 * @dev: network device 2588 * 2589 * Get network device private data 2590 */ 2591 static inline void *netdev_priv(const struct net_device *dev) 2592 { 2593 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2594 } 2595 2596 /* Set the sysfs physical device reference for the network logical device 2597 * if set prior to registration will cause a symlink during initialization. 2598 */ 2599 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2600 2601 /* Set the sysfs device type for the network logical device to allow 2602 * fine-grained identification of different network device types. For 2603 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2604 */ 2605 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2606 2607 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index, 2608 enum netdev_queue_type type, 2609 struct napi_struct *napi); 2610 2611 static inline void netif_napi_set_irq(struct napi_struct *napi, int irq) 2612 { 2613 napi->irq = irq; 2614 } 2615 2616 /* Default NAPI poll() weight 2617 * Device drivers are strongly advised to not use bigger value 2618 */ 2619 #define NAPI_POLL_WEIGHT 64 2620 2621 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi, 2622 int (*poll)(struct napi_struct *, int), int weight); 2623 2624 /** 2625 * netif_napi_add() - initialize a NAPI context 2626 * @dev: network device 2627 * @napi: NAPI context 2628 * @poll: polling function 2629 * 2630 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2631 * *any* of the other NAPI-related functions. 2632 */ 2633 static inline void 2634 netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2635 int (*poll)(struct napi_struct *, int)) 2636 { 2637 netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT); 2638 } 2639 2640 static inline void 2641 netif_napi_add_tx_weight(struct net_device *dev, 2642 struct napi_struct *napi, 2643 int (*poll)(struct napi_struct *, int), 2644 int weight) 2645 { 2646 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2647 netif_napi_add_weight(dev, napi, poll, weight); 2648 } 2649 2650 /** 2651 * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only 2652 * @dev: network device 2653 * @napi: NAPI context 2654 * @poll: polling function 2655 * 2656 * This variant of netif_napi_add() should be used from drivers using NAPI 2657 * to exclusively poll a TX queue. 2658 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2659 */ 2660 static inline void netif_napi_add_tx(struct net_device *dev, 2661 struct napi_struct *napi, 2662 int (*poll)(struct napi_struct *, int)) 2663 { 2664 netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT); 2665 } 2666 2667 /** 2668 * __netif_napi_del - remove a NAPI context 2669 * @napi: NAPI context 2670 * 2671 * Warning: caller must observe RCU grace period before freeing memory 2672 * containing @napi. Drivers might want to call this helper to combine 2673 * all the needed RCU grace periods into a single one. 2674 */ 2675 void __netif_napi_del(struct napi_struct *napi); 2676 2677 /** 2678 * netif_napi_del - remove a NAPI context 2679 * @napi: NAPI context 2680 * 2681 * netif_napi_del() removes a NAPI context from the network device NAPI list 2682 */ 2683 static inline void netif_napi_del(struct napi_struct *napi) 2684 { 2685 __netif_napi_del(napi); 2686 synchronize_net(); 2687 } 2688 2689 struct packet_type { 2690 __be16 type; /* This is really htons(ether_type). */ 2691 bool ignore_outgoing; 2692 struct net_device *dev; /* NULL is wildcarded here */ 2693 netdevice_tracker dev_tracker; 2694 int (*func) (struct sk_buff *, 2695 struct net_device *, 2696 struct packet_type *, 2697 struct net_device *); 2698 void (*list_func) (struct list_head *, 2699 struct packet_type *, 2700 struct net_device *); 2701 bool (*id_match)(struct packet_type *ptype, 2702 struct sock *sk); 2703 struct net *af_packet_net; 2704 void *af_packet_priv; 2705 struct list_head list; 2706 }; 2707 2708 struct offload_callbacks { 2709 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2710 netdev_features_t features); 2711 struct sk_buff *(*gro_receive)(struct list_head *head, 2712 struct sk_buff *skb); 2713 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2714 }; 2715 2716 struct packet_offload { 2717 __be16 type; /* This is really htons(ether_type). */ 2718 u16 priority; 2719 struct offload_callbacks callbacks; 2720 struct list_head list; 2721 }; 2722 2723 /* often modified stats are per-CPU, other are shared (netdev->stats) */ 2724 struct pcpu_sw_netstats { 2725 u64_stats_t rx_packets; 2726 u64_stats_t rx_bytes; 2727 u64_stats_t tx_packets; 2728 u64_stats_t tx_bytes; 2729 struct u64_stats_sync syncp; 2730 } __aligned(4 * sizeof(u64)); 2731 2732 struct pcpu_dstats { 2733 u64 rx_packets; 2734 u64 rx_bytes; 2735 u64 rx_drops; 2736 u64 tx_packets; 2737 u64 tx_bytes; 2738 u64 tx_drops; 2739 struct u64_stats_sync syncp; 2740 } __aligned(8 * sizeof(u64)); 2741 2742 struct pcpu_lstats { 2743 u64_stats_t packets; 2744 u64_stats_t bytes; 2745 struct u64_stats_sync syncp; 2746 } __aligned(2 * sizeof(u64)); 2747 2748 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes); 2749 2750 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len) 2751 { 2752 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2753 2754 u64_stats_update_begin(&tstats->syncp); 2755 u64_stats_add(&tstats->rx_bytes, len); 2756 u64_stats_inc(&tstats->rx_packets); 2757 u64_stats_update_end(&tstats->syncp); 2758 } 2759 2760 static inline void dev_sw_netstats_tx_add(struct net_device *dev, 2761 unsigned int packets, 2762 unsigned int len) 2763 { 2764 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2765 2766 u64_stats_update_begin(&tstats->syncp); 2767 u64_stats_add(&tstats->tx_bytes, len); 2768 u64_stats_add(&tstats->tx_packets, packets); 2769 u64_stats_update_end(&tstats->syncp); 2770 } 2771 2772 static inline void dev_lstats_add(struct net_device *dev, unsigned int len) 2773 { 2774 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats); 2775 2776 u64_stats_update_begin(&lstats->syncp); 2777 u64_stats_add(&lstats->bytes, len); 2778 u64_stats_inc(&lstats->packets); 2779 u64_stats_update_end(&lstats->syncp); 2780 } 2781 2782 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2783 ({ \ 2784 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2785 if (pcpu_stats) { \ 2786 int __cpu; \ 2787 for_each_possible_cpu(__cpu) { \ 2788 typeof(type) *stat; \ 2789 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2790 u64_stats_init(&stat->syncp); \ 2791 } \ 2792 } \ 2793 pcpu_stats; \ 2794 }) 2795 2796 #define netdev_alloc_pcpu_stats(type) \ 2797 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2798 2799 #define devm_netdev_alloc_pcpu_stats(dev, type) \ 2800 ({ \ 2801 typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\ 2802 if (pcpu_stats) { \ 2803 int __cpu; \ 2804 for_each_possible_cpu(__cpu) { \ 2805 typeof(type) *stat; \ 2806 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2807 u64_stats_init(&stat->syncp); \ 2808 } \ 2809 } \ 2810 pcpu_stats; \ 2811 }) 2812 2813 enum netdev_lag_tx_type { 2814 NETDEV_LAG_TX_TYPE_UNKNOWN, 2815 NETDEV_LAG_TX_TYPE_RANDOM, 2816 NETDEV_LAG_TX_TYPE_BROADCAST, 2817 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2818 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2819 NETDEV_LAG_TX_TYPE_HASH, 2820 }; 2821 2822 enum netdev_lag_hash { 2823 NETDEV_LAG_HASH_NONE, 2824 NETDEV_LAG_HASH_L2, 2825 NETDEV_LAG_HASH_L34, 2826 NETDEV_LAG_HASH_L23, 2827 NETDEV_LAG_HASH_E23, 2828 NETDEV_LAG_HASH_E34, 2829 NETDEV_LAG_HASH_VLAN_SRCMAC, 2830 NETDEV_LAG_HASH_UNKNOWN, 2831 }; 2832 2833 struct netdev_lag_upper_info { 2834 enum netdev_lag_tx_type tx_type; 2835 enum netdev_lag_hash hash_type; 2836 }; 2837 2838 struct netdev_lag_lower_state_info { 2839 u8 link_up : 1, 2840 tx_enabled : 1; 2841 }; 2842 2843 #include <linux/notifier.h> 2844 2845 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name() 2846 * and the rtnetlink notification exclusion list in rtnetlink_event() when 2847 * adding new types. 2848 */ 2849 enum netdev_cmd { 2850 NETDEV_UP = 1, /* For now you can't veto a device up/down */ 2851 NETDEV_DOWN, 2852 NETDEV_REBOOT, /* Tell a protocol stack a network interface 2853 detected a hardware crash and restarted 2854 - we can use this eg to kick tcp sessions 2855 once done */ 2856 NETDEV_CHANGE, /* Notify device state change */ 2857 NETDEV_REGISTER, 2858 NETDEV_UNREGISTER, 2859 NETDEV_CHANGEMTU, /* notify after mtu change happened */ 2860 NETDEV_CHANGEADDR, /* notify after the address change */ 2861 NETDEV_PRE_CHANGEADDR, /* notify before the address change */ 2862 NETDEV_GOING_DOWN, 2863 NETDEV_CHANGENAME, 2864 NETDEV_FEAT_CHANGE, 2865 NETDEV_BONDING_FAILOVER, 2866 NETDEV_PRE_UP, 2867 NETDEV_PRE_TYPE_CHANGE, 2868 NETDEV_POST_TYPE_CHANGE, 2869 NETDEV_POST_INIT, 2870 NETDEV_PRE_UNINIT, 2871 NETDEV_RELEASE, 2872 NETDEV_NOTIFY_PEERS, 2873 NETDEV_JOIN, 2874 NETDEV_CHANGEUPPER, 2875 NETDEV_RESEND_IGMP, 2876 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ 2877 NETDEV_CHANGEINFODATA, 2878 NETDEV_BONDING_INFO, 2879 NETDEV_PRECHANGEUPPER, 2880 NETDEV_CHANGELOWERSTATE, 2881 NETDEV_UDP_TUNNEL_PUSH_INFO, 2882 NETDEV_UDP_TUNNEL_DROP_INFO, 2883 NETDEV_CHANGE_TX_QUEUE_LEN, 2884 NETDEV_CVLAN_FILTER_PUSH_INFO, 2885 NETDEV_CVLAN_FILTER_DROP_INFO, 2886 NETDEV_SVLAN_FILTER_PUSH_INFO, 2887 NETDEV_SVLAN_FILTER_DROP_INFO, 2888 NETDEV_OFFLOAD_XSTATS_ENABLE, 2889 NETDEV_OFFLOAD_XSTATS_DISABLE, 2890 NETDEV_OFFLOAD_XSTATS_REPORT_USED, 2891 NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 2892 NETDEV_XDP_FEAT_CHANGE, 2893 }; 2894 const char *netdev_cmd_to_name(enum netdev_cmd cmd); 2895 2896 int register_netdevice_notifier(struct notifier_block *nb); 2897 int unregister_netdevice_notifier(struct notifier_block *nb); 2898 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb); 2899 int unregister_netdevice_notifier_net(struct net *net, 2900 struct notifier_block *nb); 2901 int register_netdevice_notifier_dev_net(struct net_device *dev, 2902 struct notifier_block *nb, 2903 struct netdev_net_notifier *nn); 2904 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 2905 struct notifier_block *nb, 2906 struct netdev_net_notifier *nn); 2907 2908 struct netdev_notifier_info { 2909 struct net_device *dev; 2910 struct netlink_ext_ack *extack; 2911 }; 2912 2913 struct netdev_notifier_info_ext { 2914 struct netdev_notifier_info info; /* must be first */ 2915 union { 2916 u32 mtu; 2917 } ext; 2918 }; 2919 2920 struct netdev_notifier_change_info { 2921 struct netdev_notifier_info info; /* must be first */ 2922 unsigned int flags_changed; 2923 }; 2924 2925 struct netdev_notifier_changeupper_info { 2926 struct netdev_notifier_info info; /* must be first */ 2927 struct net_device *upper_dev; /* new upper dev */ 2928 bool master; /* is upper dev master */ 2929 bool linking; /* is the notification for link or unlink */ 2930 void *upper_info; /* upper dev info */ 2931 }; 2932 2933 struct netdev_notifier_changelowerstate_info { 2934 struct netdev_notifier_info info; /* must be first */ 2935 void *lower_state_info; /* is lower dev state */ 2936 }; 2937 2938 struct netdev_notifier_pre_changeaddr_info { 2939 struct netdev_notifier_info info; /* must be first */ 2940 const unsigned char *dev_addr; 2941 }; 2942 2943 enum netdev_offload_xstats_type { 2944 NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1, 2945 }; 2946 2947 struct netdev_notifier_offload_xstats_info { 2948 struct netdev_notifier_info info; /* must be first */ 2949 enum netdev_offload_xstats_type type; 2950 2951 union { 2952 /* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */ 2953 struct netdev_notifier_offload_xstats_rd *report_delta; 2954 /* NETDEV_OFFLOAD_XSTATS_REPORT_USED */ 2955 struct netdev_notifier_offload_xstats_ru *report_used; 2956 }; 2957 }; 2958 2959 int netdev_offload_xstats_enable(struct net_device *dev, 2960 enum netdev_offload_xstats_type type, 2961 struct netlink_ext_ack *extack); 2962 int netdev_offload_xstats_disable(struct net_device *dev, 2963 enum netdev_offload_xstats_type type); 2964 bool netdev_offload_xstats_enabled(const struct net_device *dev, 2965 enum netdev_offload_xstats_type type); 2966 int netdev_offload_xstats_get(struct net_device *dev, 2967 enum netdev_offload_xstats_type type, 2968 struct rtnl_hw_stats64 *stats, bool *used, 2969 struct netlink_ext_ack *extack); 2970 void 2971 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd, 2972 const struct rtnl_hw_stats64 *stats); 2973 void 2974 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru); 2975 void netdev_offload_xstats_push_delta(struct net_device *dev, 2976 enum netdev_offload_xstats_type type, 2977 const struct rtnl_hw_stats64 *stats); 2978 2979 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2980 struct net_device *dev) 2981 { 2982 info->dev = dev; 2983 info->extack = NULL; 2984 } 2985 2986 static inline struct net_device * 2987 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2988 { 2989 return info->dev; 2990 } 2991 2992 static inline struct netlink_ext_ack * 2993 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 2994 { 2995 return info->extack; 2996 } 2997 2998 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2999 int call_netdevice_notifiers_info(unsigned long val, 3000 struct netdev_notifier_info *info); 3001 3002 #define for_each_netdev(net, d) \ 3003 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 3004 #define for_each_netdev_reverse(net, d) \ 3005 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 3006 #define for_each_netdev_rcu(net, d) \ 3007 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 3008 #define for_each_netdev_safe(net, d, n) \ 3009 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 3010 #define for_each_netdev_continue(net, d) \ 3011 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 3012 #define for_each_netdev_continue_reverse(net, d) \ 3013 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \ 3014 dev_list) 3015 #define for_each_netdev_continue_rcu(net, d) \ 3016 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 3017 #define for_each_netdev_in_bond_rcu(bond, slave) \ 3018 for_each_netdev_rcu(&init_net, slave) \ 3019 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 3020 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 3021 3022 #define for_each_netdev_dump(net, d, ifindex) \ 3023 xa_for_each_start(&(net)->dev_by_index, (ifindex), (d), (ifindex)) 3024 3025 static inline struct net_device *next_net_device(struct net_device *dev) 3026 { 3027 struct list_head *lh; 3028 struct net *net; 3029 3030 net = dev_net(dev); 3031 lh = dev->dev_list.next; 3032 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3033 } 3034 3035 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 3036 { 3037 struct list_head *lh; 3038 struct net *net; 3039 3040 net = dev_net(dev); 3041 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 3042 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3043 } 3044 3045 static inline struct net_device *first_net_device(struct net *net) 3046 { 3047 return list_empty(&net->dev_base_head) ? NULL : 3048 net_device_entry(net->dev_base_head.next); 3049 } 3050 3051 static inline struct net_device *first_net_device_rcu(struct net *net) 3052 { 3053 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 3054 3055 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3056 } 3057 3058 int netdev_boot_setup_check(struct net_device *dev); 3059 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 3060 const char *hwaddr); 3061 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 3062 void dev_add_pack(struct packet_type *pt); 3063 void dev_remove_pack(struct packet_type *pt); 3064 void __dev_remove_pack(struct packet_type *pt); 3065 void dev_add_offload(struct packet_offload *po); 3066 void dev_remove_offload(struct packet_offload *po); 3067 3068 int dev_get_iflink(const struct net_device *dev); 3069 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 3070 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 3071 struct net_device_path_stack *stack); 3072 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 3073 unsigned short mask); 3074 struct net_device *dev_get_by_name(struct net *net, const char *name); 3075 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 3076 struct net_device *__dev_get_by_name(struct net *net, const char *name); 3077 bool netdev_name_in_use(struct net *net, const char *name); 3078 int dev_alloc_name(struct net_device *dev, const char *name); 3079 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack); 3080 void dev_close(struct net_device *dev); 3081 void dev_close_many(struct list_head *head, bool unlink); 3082 void dev_disable_lro(struct net_device *dev); 3083 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 3084 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 3085 struct net_device *sb_dev); 3086 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 3087 struct net_device *sb_dev); 3088 3089 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev); 3090 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id); 3091 3092 static inline int dev_queue_xmit(struct sk_buff *skb) 3093 { 3094 return __dev_queue_xmit(skb, NULL); 3095 } 3096 3097 static inline int dev_queue_xmit_accel(struct sk_buff *skb, 3098 struct net_device *sb_dev) 3099 { 3100 return __dev_queue_xmit(skb, sb_dev); 3101 } 3102 3103 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 3104 { 3105 int ret; 3106 3107 ret = __dev_direct_xmit(skb, queue_id); 3108 if (!dev_xmit_complete(ret)) 3109 kfree_skb(skb); 3110 return ret; 3111 } 3112 3113 int register_netdevice(struct net_device *dev); 3114 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 3115 void unregister_netdevice_many(struct list_head *head); 3116 static inline void unregister_netdevice(struct net_device *dev) 3117 { 3118 unregister_netdevice_queue(dev, NULL); 3119 } 3120 3121 int netdev_refcnt_read(const struct net_device *dev); 3122 void free_netdev(struct net_device *dev); 3123 void netdev_freemem(struct net_device *dev); 3124 void init_dummy_netdev(struct net_device *dev); 3125 3126 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 3127 struct sk_buff *skb, 3128 bool all_slaves); 3129 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 3130 struct sock *sk); 3131 struct net_device *dev_get_by_index(struct net *net, int ifindex); 3132 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 3133 struct net_device *netdev_get_by_index(struct net *net, int ifindex, 3134 netdevice_tracker *tracker, gfp_t gfp); 3135 struct net_device *netdev_get_by_name(struct net *net, const char *name, 3136 netdevice_tracker *tracker, gfp_t gfp); 3137 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 3138 struct net_device *dev_get_by_napi_id(unsigned int napi_id); 3139 3140 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 3141 unsigned short type, 3142 const void *daddr, const void *saddr, 3143 unsigned int len) 3144 { 3145 if (!dev->header_ops || !dev->header_ops->create) 3146 return 0; 3147 3148 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 3149 } 3150 3151 static inline int dev_parse_header(const struct sk_buff *skb, 3152 unsigned char *haddr) 3153 { 3154 const struct net_device *dev = skb->dev; 3155 3156 if (!dev->header_ops || !dev->header_ops->parse) 3157 return 0; 3158 return dev->header_ops->parse(skb, haddr); 3159 } 3160 3161 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb) 3162 { 3163 const struct net_device *dev = skb->dev; 3164 3165 if (!dev->header_ops || !dev->header_ops->parse_protocol) 3166 return 0; 3167 return dev->header_ops->parse_protocol(skb); 3168 } 3169 3170 /* ll_header must have at least hard_header_len allocated */ 3171 static inline bool dev_validate_header(const struct net_device *dev, 3172 char *ll_header, int len) 3173 { 3174 if (likely(len >= dev->hard_header_len)) 3175 return true; 3176 if (len < dev->min_header_len) 3177 return false; 3178 3179 if (capable(CAP_SYS_RAWIO)) { 3180 memset(ll_header + len, 0, dev->hard_header_len - len); 3181 return true; 3182 } 3183 3184 if (dev->header_ops && dev->header_ops->validate) 3185 return dev->header_ops->validate(ll_header, len); 3186 3187 return false; 3188 } 3189 3190 static inline bool dev_has_header(const struct net_device *dev) 3191 { 3192 return dev->header_ops && dev->header_ops->create; 3193 } 3194 3195 /* 3196 * Incoming packets are placed on per-CPU queues 3197 */ 3198 struct softnet_data { 3199 struct list_head poll_list; 3200 struct sk_buff_head process_queue; 3201 3202 /* stats */ 3203 unsigned int processed; 3204 unsigned int time_squeeze; 3205 #ifdef CONFIG_RPS 3206 struct softnet_data *rps_ipi_list; 3207 #endif 3208 3209 unsigned int received_rps; 3210 bool in_net_rx_action; 3211 bool in_napi_threaded_poll; 3212 3213 #ifdef CONFIG_NET_FLOW_LIMIT 3214 struct sd_flow_limit __rcu *flow_limit; 3215 #endif 3216 struct Qdisc *output_queue; 3217 struct Qdisc **output_queue_tailp; 3218 struct sk_buff *completion_queue; 3219 #ifdef CONFIG_XFRM_OFFLOAD 3220 struct sk_buff_head xfrm_backlog; 3221 #endif 3222 /* written and read only by owning cpu: */ 3223 struct { 3224 u16 recursion; 3225 u8 more; 3226 #ifdef CONFIG_NET_EGRESS 3227 u8 skip_txqueue; 3228 #endif 3229 } xmit; 3230 #ifdef CONFIG_RPS 3231 /* input_queue_head should be written by cpu owning this struct, 3232 * and only read by other cpus. Worth using a cache line. 3233 */ 3234 unsigned int input_queue_head ____cacheline_aligned_in_smp; 3235 3236 /* Elements below can be accessed between CPUs for RPS/RFS */ 3237 call_single_data_t csd ____cacheline_aligned_in_smp; 3238 struct softnet_data *rps_ipi_next; 3239 unsigned int cpu; 3240 unsigned int input_queue_tail; 3241 #endif 3242 struct sk_buff_head input_pkt_queue; 3243 struct napi_struct backlog; 3244 3245 atomic_t dropped ____cacheline_aligned_in_smp; 3246 3247 /* Another possibly contended cache line */ 3248 spinlock_t defer_lock ____cacheline_aligned_in_smp; 3249 int defer_count; 3250 int defer_ipi_scheduled; 3251 struct sk_buff *defer_list; 3252 call_single_data_t defer_csd; 3253 }; 3254 3255 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 3256 3257 static inline int dev_recursion_level(void) 3258 { 3259 return this_cpu_read(softnet_data.xmit.recursion); 3260 } 3261 3262 void __netif_schedule(struct Qdisc *q); 3263 void netif_schedule_queue(struct netdev_queue *txq); 3264 3265 static inline void netif_tx_schedule_all(struct net_device *dev) 3266 { 3267 unsigned int i; 3268 3269 for (i = 0; i < dev->num_tx_queues; i++) 3270 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 3271 } 3272 3273 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 3274 { 3275 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3276 } 3277 3278 /** 3279 * netif_start_queue - allow transmit 3280 * @dev: network device 3281 * 3282 * Allow upper layers to call the device hard_start_xmit routine. 3283 */ 3284 static inline void netif_start_queue(struct net_device *dev) 3285 { 3286 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 3287 } 3288 3289 static inline void netif_tx_start_all_queues(struct net_device *dev) 3290 { 3291 unsigned int i; 3292 3293 for (i = 0; i < dev->num_tx_queues; i++) { 3294 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3295 netif_tx_start_queue(txq); 3296 } 3297 } 3298 3299 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 3300 3301 /** 3302 * netif_wake_queue - restart transmit 3303 * @dev: network device 3304 * 3305 * Allow upper layers to call the device hard_start_xmit routine. 3306 * Used for flow control when transmit resources are available. 3307 */ 3308 static inline void netif_wake_queue(struct net_device *dev) 3309 { 3310 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 3311 } 3312 3313 static inline void netif_tx_wake_all_queues(struct net_device *dev) 3314 { 3315 unsigned int i; 3316 3317 for (i = 0; i < dev->num_tx_queues; i++) { 3318 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3319 netif_tx_wake_queue(txq); 3320 } 3321 } 3322 3323 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 3324 { 3325 /* Must be an atomic op see netif_txq_try_stop() */ 3326 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3327 } 3328 3329 /** 3330 * netif_stop_queue - stop transmitted packets 3331 * @dev: network device 3332 * 3333 * Stop upper layers calling the device hard_start_xmit routine. 3334 * Used for flow control when transmit resources are unavailable. 3335 */ 3336 static inline void netif_stop_queue(struct net_device *dev) 3337 { 3338 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 3339 } 3340 3341 void netif_tx_stop_all_queues(struct net_device *dev); 3342 3343 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 3344 { 3345 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3346 } 3347 3348 /** 3349 * netif_queue_stopped - test if transmit queue is flowblocked 3350 * @dev: network device 3351 * 3352 * Test if transmit queue on device is currently unable to send. 3353 */ 3354 static inline bool netif_queue_stopped(const struct net_device *dev) 3355 { 3356 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 3357 } 3358 3359 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 3360 { 3361 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 3362 } 3363 3364 static inline bool 3365 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 3366 { 3367 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 3368 } 3369 3370 static inline bool 3371 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 3372 { 3373 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 3374 } 3375 3376 /** 3377 * netdev_queue_set_dql_min_limit - set dql minimum limit 3378 * @dev_queue: pointer to transmit queue 3379 * @min_limit: dql minimum limit 3380 * 3381 * Forces xmit_more() to return true until the minimum threshold 3382 * defined by @min_limit is reached (or until the tx queue is 3383 * empty). Warning: to be use with care, misuse will impact the 3384 * latency. 3385 */ 3386 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue, 3387 unsigned int min_limit) 3388 { 3389 #ifdef CONFIG_BQL 3390 dev_queue->dql.min_limit = min_limit; 3391 #endif 3392 } 3393 3394 static inline int netdev_queue_dql_avail(const struct netdev_queue *txq) 3395 { 3396 #ifdef CONFIG_BQL 3397 /* Non-BQL migrated drivers will return 0, too. */ 3398 return dql_avail(&txq->dql); 3399 #else 3400 return 0; 3401 #endif 3402 } 3403 3404 /** 3405 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 3406 * @dev_queue: pointer to transmit queue 3407 * 3408 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 3409 * to give appropriate hint to the CPU. 3410 */ 3411 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 3412 { 3413 #ifdef CONFIG_BQL 3414 prefetchw(&dev_queue->dql.num_queued); 3415 #endif 3416 } 3417 3418 /** 3419 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 3420 * @dev_queue: pointer to transmit queue 3421 * 3422 * BQL enabled drivers might use this helper in their TX completion path, 3423 * to give appropriate hint to the CPU. 3424 */ 3425 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 3426 { 3427 #ifdef CONFIG_BQL 3428 prefetchw(&dev_queue->dql.limit); 3429 #endif 3430 } 3431 3432 /** 3433 * netdev_tx_sent_queue - report the number of bytes queued to a given tx queue 3434 * @dev_queue: network device queue 3435 * @bytes: number of bytes queued to the device queue 3436 * 3437 * Report the number of bytes queued for sending/completion to the network 3438 * device hardware queue. @bytes should be a good approximation and should 3439 * exactly match netdev_completed_queue() @bytes. 3440 * This is typically called once per packet, from ndo_start_xmit(). 3441 */ 3442 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3443 unsigned int bytes) 3444 { 3445 #ifdef CONFIG_BQL 3446 dql_queued(&dev_queue->dql, bytes); 3447 3448 if (likely(dql_avail(&dev_queue->dql) >= 0)) 3449 return; 3450 3451 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3452 3453 /* 3454 * The XOFF flag must be set before checking the dql_avail below, 3455 * because in netdev_tx_completed_queue we update the dql_completed 3456 * before checking the XOFF flag. 3457 */ 3458 smp_mb(); 3459 3460 /* check again in case another CPU has just made room avail */ 3461 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3462 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3463 #endif 3464 } 3465 3466 /* Variant of netdev_tx_sent_queue() for drivers that are aware 3467 * that they should not test BQL status themselves. 3468 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last 3469 * skb of a batch. 3470 * Returns true if the doorbell must be used to kick the NIC. 3471 */ 3472 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3473 unsigned int bytes, 3474 bool xmit_more) 3475 { 3476 if (xmit_more) { 3477 #ifdef CONFIG_BQL 3478 dql_queued(&dev_queue->dql, bytes); 3479 #endif 3480 return netif_tx_queue_stopped(dev_queue); 3481 } 3482 netdev_tx_sent_queue(dev_queue, bytes); 3483 return true; 3484 } 3485 3486 /** 3487 * netdev_sent_queue - report the number of bytes queued to hardware 3488 * @dev: network device 3489 * @bytes: number of bytes queued to the hardware device queue 3490 * 3491 * Report the number of bytes queued for sending/completion to the network 3492 * device hardware queue#0. @bytes should be a good approximation and should 3493 * exactly match netdev_completed_queue() @bytes. 3494 * This is typically called once per packet, from ndo_start_xmit(). 3495 */ 3496 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3497 { 3498 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3499 } 3500 3501 static inline bool __netdev_sent_queue(struct net_device *dev, 3502 unsigned int bytes, 3503 bool xmit_more) 3504 { 3505 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes, 3506 xmit_more); 3507 } 3508 3509 /** 3510 * netdev_tx_completed_queue - report number of packets/bytes at TX completion. 3511 * @dev_queue: network device queue 3512 * @pkts: number of packets (currently ignored) 3513 * @bytes: number of bytes dequeued from the device queue 3514 * 3515 * Must be called at most once per TX completion round (and not per 3516 * individual packet), so that BQL can adjust its limits appropriately. 3517 */ 3518 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3519 unsigned int pkts, unsigned int bytes) 3520 { 3521 #ifdef CONFIG_BQL 3522 if (unlikely(!bytes)) 3523 return; 3524 3525 dql_completed(&dev_queue->dql, bytes); 3526 3527 /* 3528 * Without the memory barrier there is a small possiblity that 3529 * netdev_tx_sent_queue will miss the update and cause the queue to 3530 * be stopped forever 3531 */ 3532 smp_mb(); /* NOTE: netdev_txq_completed_mb() assumes this exists */ 3533 3534 if (unlikely(dql_avail(&dev_queue->dql) < 0)) 3535 return; 3536 3537 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3538 netif_schedule_queue(dev_queue); 3539 #endif 3540 } 3541 3542 /** 3543 * netdev_completed_queue - report bytes and packets completed by device 3544 * @dev: network device 3545 * @pkts: actual number of packets sent over the medium 3546 * @bytes: actual number of bytes sent over the medium 3547 * 3548 * Report the number of bytes and packets transmitted by the network device 3549 * hardware queue over the physical medium, @bytes must exactly match the 3550 * @bytes amount passed to netdev_sent_queue() 3551 */ 3552 static inline void netdev_completed_queue(struct net_device *dev, 3553 unsigned int pkts, unsigned int bytes) 3554 { 3555 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3556 } 3557 3558 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3559 { 3560 #ifdef CONFIG_BQL 3561 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3562 dql_reset(&q->dql); 3563 #endif 3564 } 3565 3566 /** 3567 * netdev_reset_queue - reset the packets and bytes count of a network device 3568 * @dev_queue: network device 3569 * 3570 * Reset the bytes and packet count of a network device and clear the 3571 * software flow control OFF bit for this network device 3572 */ 3573 static inline void netdev_reset_queue(struct net_device *dev_queue) 3574 { 3575 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3576 } 3577 3578 /** 3579 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3580 * @dev: network device 3581 * @queue_index: given tx queue index 3582 * 3583 * Returns 0 if given tx queue index >= number of device tx queues, 3584 * otherwise returns the originally passed tx queue index. 3585 */ 3586 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3587 { 3588 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3589 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3590 dev->name, queue_index, 3591 dev->real_num_tx_queues); 3592 return 0; 3593 } 3594 3595 return queue_index; 3596 } 3597 3598 /** 3599 * netif_running - test if up 3600 * @dev: network device 3601 * 3602 * Test if the device has been brought up. 3603 */ 3604 static inline bool netif_running(const struct net_device *dev) 3605 { 3606 return test_bit(__LINK_STATE_START, &dev->state); 3607 } 3608 3609 /* 3610 * Routines to manage the subqueues on a device. We only need start, 3611 * stop, and a check if it's stopped. All other device management is 3612 * done at the overall netdevice level. 3613 * Also test the device if we're multiqueue. 3614 */ 3615 3616 /** 3617 * netif_start_subqueue - allow sending packets on subqueue 3618 * @dev: network device 3619 * @queue_index: sub queue index 3620 * 3621 * Start individual transmit queue of a device with multiple transmit queues. 3622 */ 3623 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3624 { 3625 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3626 3627 netif_tx_start_queue(txq); 3628 } 3629 3630 /** 3631 * netif_stop_subqueue - stop sending packets on subqueue 3632 * @dev: network device 3633 * @queue_index: sub queue index 3634 * 3635 * Stop individual transmit queue of a device with multiple transmit queues. 3636 */ 3637 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3638 { 3639 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3640 netif_tx_stop_queue(txq); 3641 } 3642 3643 /** 3644 * __netif_subqueue_stopped - test status of subqueue 3645 * @dev: network device 3646 * @queue_index: sub queue index 3647 * 3648 * Check individual transmit queue of a device with multiple transmit queues. 3649 */ 3650 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3651 u16 queue_index) 3652 { 3653 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3654 3655 return netif_tx_queue_stopped(txq); 3656 } 3657 3658 /** 3659 * netif_subqueue_stopped - test status of subqueue 3660 * @dev: network device 3661 * @skb: sub queue buffer pointer 3662 * 3663 * Check individual transmit queue of a device with multiple transmit queues. 3664 */ 3665 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3666 struct sk_buff *skb) 3667 { 3668 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3669 } 3670 3671 /** 3672 * netif_wake_subqueue - allow sending packets on subqueue 3673 * @dev: network device 3674 * @queue_index: sub queue index 3675 * 3676 * Resume individual transmit queue of a device with multiple transmit queues. 3677 */ 3678 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3679 { 3680 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3681 3682 netif_tx_wake_queue(txq); 3683 } 3684 3685 #ifdef CONFIG_XPS 3686 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3687 u16 index); 3688 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 3689 u16 index, enum xps_map_type type); 3690 3691 /** 3692 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask 3693 * @j: CPU/Rx queue index 3694 * @mask: bitmask of all cpus/rx queues 3695 * @nr_bits: number of bits in the bitmask 3696 * 3697 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues. 3698 */ 3699 static inline bool netif_attr_test_mask(unsigned long j, 3700 const unsigned long *mask, 3701 unsigned int nr_bits) 3702 { 3703 cpu_max_bits_warn(j, nr_bits); 3704 return test_bit(j, mask); 3705 } 3706 3707 /** 3708 * netif_attr_test_online - Test for online CPU/Rx queue 3709 * @j: CPU/Rx queue index 3710 * @online_mask: bitmask for CPUs/Rx queues that are online 3711 * @nr_bits: number of bits in the bitmask 3712 * 3713 * Returns true if a CPU/Rx queue is online. 3714 */ 3715 static inline bool netif_attr_test_online(unsigned long j, 3716 const unsigned long *online_mask, 3717 unsigned int nr_bits) 3718 { 3719 cpu_max_bits_warn(j, nr_bits); 3720 3721 if (online_mask) 3722 return test_bit(j, online_mask); 3723 3724 return (j < nr_bits); 3725 } 3726 3727 /** 3728 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask 3729 * @n: CPU/Rx queue index 3730 * @srcp: the cpumask/Rx queue mask pointer 3731 * @nr_bits: number of bits in the bitmask 3732 * 3733 * Returns >= nr_bits if no further CPUs/Rx queues set. 3734 */ 3735 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp, 3736 unsigned int nr_bits) 3737 { 3738 /* -1 is a legal arg here. */ 3739 if (n != -1) 3740 cpu_max_bits_warn(n, nr_bits); 3741 3742 if (srcp) 3743 return find_next_bit(srcp, nr_bits, n + 1); 3744 3745 return n + 1; 3746 } 3747 3748 /** 3749 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p 3750 * @n: CPU/Rx queue index 3751 * @src1p: the first CPUs/Rx queues mask pointer 3752 * @src2p: the second CPUs/Rx queues mask pointer 3753 * @nr_bits: number of bits in the bitmask 3754 * 3755 * Returns >= nr_bits if no further CPUs/Rx queues set in both. 3756 */ 3757 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p, 3758 const unsigned long *src2p, 3759 unsigned int nr_bits) 3760 { 3761 /* -1 is a legal arg here. */ 3762 if (n != -1) 3763 cpu_max_bits_warn(n, nr_bits); 3764 3765 if (src1p && src2p) 3766 return find_next_and_bit(src1p, src2p, nr_bits, n + 1); 3767 else if (src1p) 3768 return find_next_bit(src1p, nr_bits, n + 1); 3769 else if (src2p) 3770 return find_next_bit(src2p, nr_bits, n + 1); 3771 3772 return n + 1; 3773 } 3774 #else 3775 static inline int netif_set_xps_queue(struct net_device *dev, 3776 const struct cpumask *mask, 3777 u16 index) 3778 { 3779 return 0; 3780 } 3781 3782 static inline int __netif_set_xps_queue(struct net_device *dev, 3783 const unsigned long *mask, 3784 u16 index, enum xps_map_type type) 3785 { 3786 return 0; 3787 } 3788 #endif 3789 3790 /** 3791 * netif_is_multiqueue - test if device has multiple transmit queues 3792 * @dev: network device 3793 * 3794 * Check if device has multiple transmit queues 3795 */ 3796 static inline bool netif_is_multiqueue(const struct net_device *dev) 3797 { 3798 return dev->num_tx_queues > 1; 3799 } 3800 3801 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3802 3803 #ifdef CONFIG_SYSFS 3804 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3805 #else 3806 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3807 unsigned int rxqs) 3808 { 3809 dev->real_num_rx_queues = rxqs; 3810 return 0; 3811 } 3812 #endif 3813 int netif_set_real_num_queues(struct net_device *dev, 3814 unsigned int txq, unsigned int rxq); 3815 3816 int netif_get_num_default_rss_queues(void); 3817 3818 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason); 3819 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason); 3820 3821 /* 3822 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3823 * interrupt context or with hardware interrupts being disabled. 3824 * (in_hardirq() || irqs_disabled()) 3825 * 3826 * We provide four helpers that can be used in following contexts : 3827 * 3828 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3829 * replacing kfree_skb(skb) 3830 * 3831 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3832 * Typically used in place of consume_skb(skb) in TX completion path 3833 * 3834 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3835 * replacing kfree_skb(skb) 3836 * 3837 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3838 * and consumed a packet. Used in place of consume_skb(skb) 3839 */ 3840 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3841 { 3842 dev_kfree_skb_irq_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 3843 } 3844 3845 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3846 { 3847 dev_kfree_skb_irq_reason(skb, SKB_CONSUMED); 3848 } 3849 3850 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3851 { 3852 dev_kfree_skb_any_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 3853 } 3854 3855 static inline void dev_consume_skb_any(struct sk_buff *skb) 3856 { 3857 dev_kfree_skb_any_reason(skb, SKB_CONSUMED); 3858 } 3859 3860 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 3861 struct bpf_prog *xdp_prog); 3862 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 3863 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff **pskb); 3864 int netif_rx(struct sk_buff *skb); 3865 int __netif_rx(struct sk_buff *skb); 3866 3867 int netif_receive_skb(struct sk_buff *skb); 3868 int netif_receive_skb_core(struct sk_buff *skb); 3869 void netif_receive_skb_list_internal(struct list_head *head); 3870 void netif_receive_skb_list(struct list_head *head); 3871 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3872 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3873 struct sk_buff *napi_get_frags(struct napi_struct *napi); 3874 void napi_get_frags_check(struct napi_struct *napi); 3875 gro_result_t napi_gro_frags(struct napi_struct *napi); 3876 3877 static inline void napi_free_frags(struct napi_struct *napi) 3878 { 3879 kfree_skb(napi->skb); 3880 napi->skb = NULL; 3881 } 3882 3883 bool netdev_is_rx_handler_busy(struct net_device *dev); 3884 int netdev_rx_handler_register(struct net_device *dev, 3885 rx_handler_func_t *rx_handler, 3886 void *rx_handler_data); 3887 void netdev_rx_handler_unregister(struct net_device *dev); 3888 3889 bool dev_valid_name(const char *name); 3890 static inline bool is_socket_ioctl_cmd(unsigned int cmd) 3891 { 3892 return _IOC_TYPE(cmd) == SOCK_IOC_TYPE; 3893 } 3894 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg); 3895 int put_user_ifreq(struct ifreq *ifr, void __user *arg); 3896 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 3897 void __user *data, bool *need_copyout); 3898 int dev_ifconf(struct net *net, struct ifconf __user *ifc); 3899 int generic_hwtstamp_get_lower(struct net_device *dev, 3900 struct kernel_hwtstamp_config *kernel_cfg); 3901 int generic_hwtstamp_set_lower(struct net_device *dev, 3902 struct kernel_hwtstamp_config *kernel_cfg, 3903 struct netlink_ext_ack *extack); 3904 int dev_set_hwtstamp_phylib(struct net_device *dev, 3905 struct kernel_hwtstamp_config *cfg, 3906 struct netlink_ext_ack *extack); 3907 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata); 3908 unsigned int dev_get_flags(const struct net_device *); 3909 int __dev_change_flags(struct net_device *dev, unsigned int flags, 3910 struct netlink_ext_ack *extack); 3911 int dev_change_flags(struct net_device *dev, unsigned int flags, 3912 struct netlink_ext_ack *extack); 3913 int dev_set_alias(struct net_device *, const char *, size_t); 3914 int dev_get_alias(const struct net_device *, char *, size_t); 3915 int __dev_change_net_namespace(struct net_device *dev, struct net *net, 3916 const char *pat, int new_ifindex); 3917 static inline 3918 int dev_change_net_namespace(struct net_device *dev, struct net *net, 3919 const char *pat) 3920 { 3921 return __dev_change_net_namespace(dev, net, pat, 0); 3922 } 3923 int __dev_set_mtu(struct net_device *, int); 3924 int dev_set_mtu(struct net_device *, int); 3925 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 3926 struct netlink_ext_ack *extack); 3927 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 3928 struct netlink_ext_ack *extack); 3929 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, 3930 struct netlink_ext_ack *extack); 3931 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name); 3932 int dev_get_port_parent_id(struct net_device *dev, 3933 struct netdev_phys_item_id *ppid, bool recurse); 3934 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b); 3935 3936 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 3937 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3938 struct netdev_queue *txq, int *ret); 3939 3940 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog); 3941 u8 dev_xdp_prog_count(struct net_device *dev); 3942 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode); 3943 3944 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3945 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3946 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb); 3947 bool is_skb_forwardable(const struct net_device *dev, 3948 const struct sk_buff *skb); 3949 3950 static __always_inline bool __is_skb_forwardable(const struct net_device *dev, 3951 const struct sk_buff *skb, 3952 const bool check_mtu) 3953 { 3954 const u32 vlan_hdr_len = 4; /* VLAN_HLEN */ 3955 unsigned int len; 3956 3957 if (!(dev->flags & IFF_UP)) 3958 return false; 3959 3960 if (!check_mtu) 3961 return true; 3962 3963 len = dev->mtu + dev->hard_header_len + vlan_hdr_len; 3964 if (skb->len <= len) 3965 return true; 3966 3967 /* if TSO is enabled, we don't care about the length as the packet 3968 * could be forwarded without being segmented before 3969 */ 3970 if (skb_is_gso(skb)) 3971 return true; 3972 3973 return false; 3974 } 3975 3976 void netdev_core_stats_inc(struct net_device *dev, u32 offset); 3977 3978 #define DEV_CORE_STATS_INC(FIELD) \ 3979 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev) \ 3980 { \ 3981 netdev_core_stats_inc(dev, \ 3982 offsetof(struct net_device_core_stats, FIELD)); \ 3983 } 3984 DEV_CORE_STATS_INC(rx_dropped) 3985 DEV_CORE_STATS_INC(tx_dropped) 3986 DEV_CORE_STATS_INC(rx_nohandler) 3987 DEV_CORE_STATS_INC(rx_otherhost_dropped) 3988 #undef DEV_CORE_STATS_INC 3989 3990 static __always_inline int ____dev_forward_skb(struct net_device *dev, 3991 struct sk_buff *skb, 3992 const bool check_mtu) 3993 { 3994 if (skb_orphan_frags(skb, GFP_ATOMIC) || 3995 unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) { 3996 dev_core_stats_rx_dropped_inc(dev); 3997 kfree_skb(skb); 3998 return NET_RX_DROP; 3999 } 4000 4001 skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev))); 4002 skb->priority = 0; 4003 return 0; 4004 } 4005 4006 bool dev_nit_active(struct net_device *dev); 4007 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 4008 4009 static inline void __dev_put(struct net_device *dev) 4010 { 4011 if (dev) { 4012 #ifdef CONFIG_PCPU_DEV_REFCNT 4013 this_cpu_dec(*dev->pcpu_refcnt); 4014 #else 4015 refcount_dec(&dev->dev_refcnt); 4016 #endif 4017 } 4018 } 4019 4020 static inline void __dev_hold(struct net_device *dev) 4021 { 4022 if (dev) { 4023 #ifdef CONFIG_PCPU_DEV_REFCNT 4024 this_cpu_inc(*dev->pcpu_refcnt); 4025 #else 4026 refcount_inc(&dev->dev_refcnt); 4027 #endif 4028 } 4029 } 4030 4031 static inline void __netdev_tracker_alloc(struct net_device *dev, 4032 netdevice_tracker *tracker, 4033 gfp_t gfp) 4034 { 4035 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4036 ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp); 4037 #endif 4038 } 4039 4040 /* netdev_tracker_alloc() can upgrade a prior untracked reference 4041 * taken by dev_get_by_name()/dev_get_by_index() to a tracked one. 4042 */ 4043 static inline void netdev_tracker_alloc(struct net_device *dev, 4044 netdevice_tracker *tracker, gfp_t gfp) 4045 { 4046 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4047 refcount_dec(&dev->refcnt_tracker.no_tracker); 4048 __netdev_tracker_alloc(dev, tracker, gfp); 4049 #endif 4050 } 4051 4052 static inline void netdev_tracker_free(struct net_device *dev, 4053 netdevice_tracker *tracker) 4054 { 4055 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4056 ref_tracker_free(&dev->refcnt_tracker, tracker); 4057 #endif 4058 } 4059 4060 static inline void netdev_hold(struct net_device *dev, 4061 netdevice_tracker *tracker, gfp_t gfp) 4062 { 4063 if (dev) { 4064 __dev_hold(dev); 4065 __netdev_tracker_alloc(dev, tracker, gfp); 4066 } 4067 } 4068 4069 static inline void netdev_put(struct net_device *dev, 4070 netdevice_tracker *tracker) 4071 { 4072 if (dev) { 4073 netdev_tracker_free(dev, tracker); 4074 __dev_put(dev); 4075 } 4076 } 4077 4078 /** 4079 * dev_hold - get reference to device 4080 * @dev: network device 4081 * 4082 * Hold reference to device to keep it from being freed. 4083 * Try using netdev_hold() instead. 4084 */ 4085 static inline void dev_hold(struct net_device *dev) 4086 { 4087 netdev_hold(dev, NULL, GFP_ATOMIC); 4088 } 4089 4090 /** 4091 * dev_put - release reference to device 4092 * @dev: network device 4093 * 4094 * Release reference to device to allow it to be freed. 4095 * Try using netdev_put() instead. 4096 */ 4097 static inline void dev_put(struct net_device *dev) 4098 { 4099 netdev_put(dev, NULL); 4100 } 4101 4102 DEFINE_FREE(dev_put, struct net_device *, if (_T) dev_put(_T)) 4103 4104 static inline void netdev_ref_replace(struct net_device *odev, 4105 struct net_device *ndev, 4106 netdevice_tracker *tracker, 4107 gfp_t gfp) 4108 { 4109 if (odev) 4110 netdev_tracker_free(odev, tracker); 4111 4112 __dev_hold(ndev); 4113 __dev_put(odev); 4114 4115 if (ndev) 4116 __netdev_tracker_alloc(ndev, tracker, gfp); 4117 } 4118 4119 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 4120 * and _off may be called from IRQ context, but it is caller 4121 * who is responsible for serialization of these calls. 4122 * 4123 * The name carrier is inappropriate, these functions should really be 4124 * called netif_lowerlayer_*() because they represent the state of any 4125 * kind of lower layer not just hardware media. 4126 */ 4127 void linkwatch_fire_event(struct net_device *dev); 4128 4129 /** 4130 * linkwatch_sync_dev - sync linkwatch for the given device 4131 * @dev: network device to sync linkwatch for 4132 * 4133 * Sync linkwatch for the given device, removing it from the 4134 * pending work list (if queued). 4135 */ 4136 void linkwatch_sync_dev(struct net_device *dev); 4137 4138 /** 4139 * netif_carrier_ok - test if carrier present 4140 * @dev: network device 4141 * 4142 * Check if carrier is present on device 4143 */ 4144 static inline bool netif_carrier_ok(const struct net_device *dev) 4145 { 4146 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 4147 } 4148 4149 unsigned long dev_trans_start(struct net_device *dev); 4150 4151 void __netdev_watchdog_up(struct net_device *dev); 4152 4153 void netif_carrier_on(struct net_device *dev); 4154 void netif_carrier_off(struct net_device *dev); 4155 void netif_carrier_event(struct net_device *dev); 4156 4157 /** 4158 * netif_dormant_on - mark device as dormant. 4159 * @dev: network device 4160 * 4161 * Mark device as dormant (as per RFC2863). 4162 * 4163 * The dormant state indicates that the relevant interface is not 4164 * actually in a condition to pass packets (i.e., it is not 'up') but is 4165 * in a "pending" state, waiting for some external event. For "on- 4166 * demand" interfaces, this new state identifies the situation where the 4167 * interface is waiting for events to place it in the up state. 4168 */ 4169 static inline void netif_dormant_on(struct net_device *dev) 4170 { 4171 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 4172 linkwatch_fire_event(dev); 4173 } 4174 4175 /** 4176 * netif_dormant_off - set device as not dormant. 4177 * @dev: network device 4178 * 4179 * Device is not in dormant state. 4180 */ 4181 static inline void netif_dormant_off(struct net_device *dev) 4182 { 4183 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 4184 linkwatch_fire_event(dev); 4185 } 4186 4187 /** 4188 * netif_dormant - test if device is dormant 4189 * @dev: network device 4190 * 4191 * Check if device is dormant. 4192 */ 4193 static inline bool netif_dormant(const struct net_device *dev) 4194 { 4195 return test_bit(__LINK_STATE_DORMANT, &dev->state); 4196 } 4197 4198 4199 /** 4200 * netif_testing_on - mark device as under test. 4201 * @dev: network device 4202 * 4203 * Mark device as under test (as per RFC2863). 4204 * 4205 * The testing state indicates that some test(s) must be performed on 4206 * the interface. After completion, of the test, the interface state 4207 * will change to up, dormant, or down, as appropriate. 4208 */ 4209 static inline void netif_testing_on(struct net_device *dev) 4210 { 4211 if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state)) 4212 linkwatch_fire_event(dev); 4213 } 4214 4215 /** 4216 * netif_testing_off - set device as not under test. 4217 * @dev: network device 4218 * 4219 * Device is not in testing state. 4220 */ 4221 static inline void netif_testing_off(struct net_device *dev) 4222 { 4223 if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state)) 4224 linkwatch_fire_event(dev); 4225 } 4226 4227 /** 4228 * netif_testing - test if device is under test 4229 * @dev: network device 4230 * 4231 * Check if device is under test 4232 */ 4233 static inline bool netif_testing(const struct net_device *dev) 4234 { 4235 return test_bit(__LINK_STATE_TESTING, &dev->state); 4236 } 4237 4238 4239 /** 4240 * netif_oper_up - test if device is operational 4241 * @dev: network device 4242 * 4243 * Check if carrier is operational 4244 */ 4245 static inline bool netif_oper_up(const struct net_device *dev) 4246 { 4247 unsigned int operstate = READ_ONCE(dev->operstate); 4248 4249 return operstate == IF_OPER_UP || 4250 operstate == IF_OPER_UNKNOWN /* backward compat */; 4251 } 4252 4253 /** 4254 * netif_device_present - is device available or removed 4255 * @dev: network device 4256 * 4257 * Check if device has not been removed from system. 4258 */ 4259 static inline bool netif_device_present(const struct net_device *dev) 4260 { 4261 return test_bit(__LINK_STATE_PRESENT, &dev->state); 4262 } 4263 4264 void netif_device_detach(struct net_device *dev); 4265 4266 void netif_device_attach(struct net_device *dev); 4267 4268 /* 4269 * Network interface message level settings 4270 */ 4271 4272 enum { 4273 NETIF_MSG_DRV_BIT, 4274 NETIF_MSG_PROBE_BIT, 4275 NETIF_MSG_LINK_BIT, 4276 NETIF_MSG_TIMER_BIT, 4277 NETIF_MSG_IFDOWN_BIT, 4278 NETIF_MSG_IFUP_BIT, 4279 NETIF_MSG_RX_ERR_BIT, 4280 NETIF_MSG_TX_ERR_BIT, 4281 NETIF_MSG_TX_QUEUED_BIT, 4282 NETIF_MSG_INTR_BIT, 4283 NETIF_MSG_TX_DONE_BIT, 4284 NETIF_MSG_RX_STATUS_BIT, 4285 NETIF_MSG_PKTDATA_BIT, 4286 NETIF_MSG_HW_BIT, 4287 NETIF_MSG_WOL_BIT, 4288 4289 /* When you add a new bit above, update netif_msg_class_names array 4290 * in net/ethtool/common.c 4291 */ 4292 NETIF_MSG_CLASS_COUNT, 4293 }; 4294 /* Both ethtool_ops interface and internal driver implementation use u32 */ 4295 static_assert(NETIF_MSG_CLASS_COUNT <= 32); 4296 4297 #define __NETIF_MSG_BIT(bit) ((u32)1 << (bit)) 4298 #define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT) 4299 4300 #define NETIF_MSG_DRV __NETIF_MSG(DRV) 4301 #define NETIF_MSG_PROBE __NETIF_MSG(PROBE) 4302 #define NETIF_MSG_LINK __NETIF_MSG(LINK) 4303 #define NETIF_MSG_TIMER __NETIF_MSG(TIMER) 4304 #define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN) 4305 #define NETIF_MSG_IFUP __NETIF_MSG(IFUP) 4306 #define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR) 4307 #define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR) 4308 #define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED) 4309 #define NETIF_MSG_INTR __NETIF_MSG(INTR) 4310 #define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE) 4311 #define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS) 4312 #define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA) 4313 #define NETIF_MSG_HW __NETIF_MSG(HW) 4314 #define NETIF_MSG_WOL __NETIF_MSG(WOL) 4315 4316 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 4317 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 4318 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 4319 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 4320 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 4321 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 4322 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 4323 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 4324 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 4325 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 4326 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 4327 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 4328 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 4329 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 4330 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 4331 4332 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 4333 { 4334 /* use default */ 4335 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 4336 return default_msg_enable_bits; 4337 if (debug_value == 0) /* no output */ 4338 return 0; 4339 /* set low N bits */ 4340 return (1U << debug_value) - 1; 4341 } 4342 4343 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 4344 { 4345 spin_lock(&txq->_xmit_lock); 4346 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4347 WRITE_ONCE(txq->xmit_lock_owner, cpu); 4348 } 4349 4350 static inline bool __netif_tx_acquire(struct netdev_queue *txq) 4351 { 4352 __acquire(&txq->_xmit_lock); 4353 return true; 4354 } 4355 4356 static inline void __netif_tx_release(struct netdev_queue *txq) 4357 { 4358 __release(&txq->_xmit_lock); 4359 } 4360 4361 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 4362 { 4363 spin_lock_bh(&txq->_xmit_lock); 4364 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4365 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4366 } 4367 4368 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 4369 { 4370 bool ok = spin_trylock(&txq->_xmit_lock); 4371 4372 if (likely(ok)) { 4373 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4374 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4375 } 4376 return ok; 4377 } 4378 4379 static inline void __netif_tx_unlock(struct netdev_queue *txq) 4380 { 4381 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4382 WRITE_ONCE(txq->xmit_lock_owner, -1); 4383 spin_unlock(&txq->_xmit_lock); 4384 } 4385 4386 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 4387 { 4388 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4389 WRITE_ONCE(txq->xmit_lock_owner, -1); 4390 spin_unlock_bh(&txq->_xmit_lock); 4391 } 4392 4393 /* 4394 * txq->trans_start can be read locklessly from dev_watchdog() 4395 */ 4396 static inline void txq_trans_update(struct netdev_queue *txq) 4397 { 4398 if (txq->xmit_lock_owner != -1) 4399 WRITE_ONCE(txq->trans_start, jiffies); 4400 } 4401 4402 static inline void txq_trans_cond_update(struct netdev_queue *txq) 4403 { 4404 unsigned long now = jiffies; 4405 4406 if (READ_ONCE(txq->trans_start) != now) 4407 WRITE_ONCE(txq->trans_start, now); 4408 } 4409 4410 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 4411 static inline void netif_trans_update(struct net_device *dev) 4412 { 4413 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 4414 4415 txq_trans_cond_update(txq); 4416 } 4417 4418 /** 4419 * netif_tx_lock - grab network device transmit lock 4420 * @dev: network device 4421 * 4422 * Get network device transmit lock 4423 */ 4424 void netif_tx_lock(struct net_device *dev); 4425 4426 static inline void netif_tx_lock_bh(struct net_device *dev) 4427 { 4428 local_bh_disable(); 4429 netif_tx_lock(dev); 4430 } 4431 4432 void netif_tx_unlock(struct net_device *dev); 4433 4434 static inline void netif_tx_unlock_bh(struct net_device *dev) 4435 { 4436 netif_tx_unlock(dev); 4437 local_bh_enable(); 4438 } 4439 4440 #define HARD_TX_LOCK(dev, txq, cpu) { \ 4441 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4442 __netif_tx_lock(txq, cpu); \ 4443 } else { \ 4444 __netif_tx_acquire(txq); \ 4445 } \ 4446 } 4447 4448 #define HARD_TX_TRYLOCK(dev, txq) \ 4449 (((dev->features & NETIF_F_LLTX) == 0) ? \ 4450 __netif_tx_trylock(txq) : \ 4451 __netif_tx_acquire(txq)) 4452 4453 #define HARD_TX_UNLOCK(dev, txq) { \ 4454 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4455 __netif_tx_unlock(txq); \ 4456 } else { \ 4457 __netif_tx_release(txq); \ 4458 } \ 4459 } 4460 4461 static inline void netif_tx_disable(struct net_device *dev) 4462 { 4463 unsigned int i; 4464 int cpu; 4465 4466 local_bh_disable(); 4467 cpu = smp_processor_id(); 4468 spin_lock(&dev->tx_global_lock); 4469 for (i = 0; i < dev->num_tx_queues; i++) { 4470 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4471 4472 __netif_tx_lock(txq, cpu); 4473 netif_tx_stop_queue(txq); 4474 __netif_tx_unlock(txq); 4475 } 4476 spin_unlock(&dev->tx_global_lock); 4477 local_bh_enable(); 4478 } 4479 4480 static inline void netif_addr_lock(struct net_device *dev) 4481 { 4482 unsigned char nest_level = 0; 4483 4484 #ifdef CONFIG_LOCKDEP 4485 nest_level = dev->nested_level; 4486 #endif 4487 spin_lock_nested(&dev->addr_list_lock, nest_level); 4488 } 4489 4490 static inline void netif_addr_lock_bh(struct net_device *dev) 4491 { 4492 unsigned char nest_level = 0; 4493 4494 #ifdef CONFIG_LOCKDEP 4495 nest_level = dev->nested_level; 4496 #endif 4497 local_bh_disable(); 4498 spin_lock_nested(&dev->addr_list_lock, nest_level); 4499 } 4500 4501 static inline void netif_addr_unlock(struct net_device *dev) 4502 { 4503 spin_unlock(&dev->addr_list_lock); 4504 } 4505 4506 static inline void netif_addr_unlock_bh(struct net_device *dev) 4507 { 4508 spin_unlock_bh(&dev->addr_list_lock); 4509 } 4510 4511 /* 4512 * dev_addrs walker. Should be used only for read access. Call with 4513 * rcu_read_lock held. 4514 */ 4515 #define for_each_dev_addr(dev, ha) \ 4516 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 4517 4518 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 4519 4520 void ether_setup(struct net_device *dev); 4521 4522 /* Support for loadable net-drivers */ 4523 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 4524 unsigned char name_assign_type, 4525 void (*setup)(struct net_device *), 4526 unsigned int txqs, unsigned int rxqs); 4527 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 4528 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 4529 4530 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 4531 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 4532 count) 4533 4534 int register_netdev(struct net_device *dev); 4535 void unregister_netdev(struct net_device *dev); 4536 4537 int devm_register_netdev(struct device *dev, struct net_device *ndev); 4538 4539 /* General hardware address lists handling functions */ 4540 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 4541 struct netdev_hw_addr_list *from_list, int addr_len); 4542 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 4543 struct netdev_hw_addr_list *from_list, int addr_len); 4544 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 4545 struct net_device *dev, 4546 int (*sync)(struct net_device *, const unsigned char *), 4547 int (*unsync)(struct net_device *, 4548 const unsigned char *)); 4549 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list, 4550 struct net_device *dev, 4551 int (*sync)(struct net_device *, 4552 const unsigned char *, int), 4553 int (*unsync)(struct net_device *, 4554 const unsigned char *, int)); 4555 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list, 4556 struct net_device *dev, 4557 int (*unsync)(struct net_device *, 4558 const unsigned char *, int)); 4559 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 4560 struct net_device *dev, 4561 int (*unsync)(struct net_device *, 4562 const unsigned char *)); 4563 void __hw_addr_init(struct netdev_hw_addr_list *list); 4564 4565 /* Functions used for device addresses handling */ 4566 void dev_addr_mod(struct net_device *dev, unsigned int offset, 4567 const void *addr, size_t len); 4568 4569 static inline void 4570 __dev_addr_set(struct net_device *dev, const void *addr, size_t len) 4571 { 4572 dev_addr_mod(dev, 0, addr, len); 4573 } 4574 4575 static inline void dev_addr_set(struct net_device *dev, const u8 *addr) 4576 { 4577 __dev_addr_set(dev, addr, dev->addr_len); 4578 } 4579 4580 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 4581 unsigned char addr_type); 4582 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 4583 unsigned char addr_type); 4584 4585 /* Functions used for unicast addresses handling */ 4586 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 4587 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 4588 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 4589 int dev_uc_sync(struct net_device *to, struct net_device *from); 4590 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 4591 void dev_uc_unsync(struct net_device *to, struct net_device *from); 4592 void dev_uc_flush(struct net_device *dev); 4593 void dev_uc_init(struct net_device *dev); 4594 4595 /** 4596 * __dev_uc_sync - Synchonize device's unicast list 4597 * @dev: device to sync 4598 * @sync: function to call if address should be added 4599 * @unsync: function to call if address should be removed 4600 * 4601 * Add newly added addresses to the interface, and release 4602 * addresses that have been deleted. 4603 */ 4604 static inline int __dev_uc_sync(struct net_device *dev, 4605 int (*sync)(struct net_device *, 4606 const unsigned char *), 4607 int (*unsync)(struct net_device *, 4608 const unsigned char *)) 4609 { 4610 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 4611 } 4612 4613 /** 4614 * __dev_uc_unsync - Remove synchronized addresses from device 4615 * @dev: device to sync 4616 * @unsync: function to call if address should be removed 4617 * 4618 * Remove all addresses that were added to the device by dev_uc_sync(). 4619 */ 4620 static inline void __dev_uc_unsync(struct net_device *dev, 4621 int (*unsync)(struct net_device *, 4622 const unsigned char *)) 4623 { 4624 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 4625 } 4626 4627 /* Functions used for multicast addresses handling */ 4628 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 4629 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 4630 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 4631 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 4632 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 4633 int dev_mc_sync(struct net_device *to, struct net_device *from); 4634 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 4635 void dev_mc_unsync(struct net_device *to, struct net_device *from); 4636 void dev_mc_flush(struct net_device *dev); 4637 void dev_mc_init(struct net_device *dev); 4638 4639 /** 4640 * __dev_mc_sync - Synchonize device's multicast list 4641 * @dev: device to sync 4642 * @sync: function to call if address should be added 4643 * @unsync: function to call if address should be removed 4644 * 4645 * Add newly added addresses to the interface, and release 4646 * addresses that have been deleted. 4647 */ 4648 static inline int __dev_mc_sync(struct net_device *dev, 4649 int (*sync)(struct net_device *, 4650 const unsigned char *), 4651 int (*unsync)(struct net_device *, 4652 const unsigned char *)) 4653 { 4654 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 4655 } 4656 4657 /** 4658 * __dev_mc_unsync - Remove synchronized addresses from device 4659 * @dev: device to sync 4660 * @unsync: function to call if address should be removed 4661 * 4662 * Remove all addresses that were added to the device by dev_mc_sync(). 4663 */ 4664 static inline void __dev_mc_unsync(struct net_device *dev, 4665 int (*unsync)(struct net_device *, 4666 const unsigned char *)) 4667 { 4668 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 4669 } 4670 4671 /* Functions used for secondary unicast and multicast support */ 4672 void dev_set_rx_mode(struct net_device *dev); 4673 int dev_set_promiscuity(struct net_device *dev, int inc); 4674 int dev_set_allmulti(struct net_device *dev, int inc); 4675 void netdev_state_change(struct net_device *dev); 4676 void __netdev_notify_peers(struct net_device *dev); 4677 void netdev_notify_peers(struct net_device *dev); 4678 void netdev_features_change(struct net_device *dev); 4679 /* Load a device via the kmod */ 4680 void dev_load(struct net *net, const char *name); 4681 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 4682 struct rtnl_link_stats64 *storage); 4683 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 4684 const struct net_device_stats *netdev_stats); 4685 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 4686 const struct pcpu_sw_netstats __percpu *netstats); 4687 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s); 4688 4689 enum { 4690 NESTED_SYNC_IMM_BIT, 4691 NESTED_SYNC_TODO_BIT, 4692 }; 4693 4694 #define __NESTED_SYNC_BIT(bit) ((u32)1 << (bit)) 4695 #define __NESTED_SYNC(name) __NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT) 4696 4697 #define NESTED_SYNC_IMM __NESTED_SYNC(IMM) 4698 #define NESTED_SYNC_TODO __NESTED_SYNC(TODO) 4699 4700 struct netdev_nested_priv { 4701 unsigned char flags; 4702 void *data; 4703 }; 4704 4705 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 4706 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4707 struct list_head **iter); 4708 4709 /* iterate through upper list, must be called under RCU read lock */ 4710 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 4711 for (iter = &(dev)->adj_list.upper, \ 4712 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 4713 updev; \ 4714 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 4715 4716 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 4717 int (*fn)(struct net_device *upper_dev, 4718 struct netdev_nested_priv *priv), 4719 struct netdev_nested_priv *priv); 4720 4721 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 4722 struct net_device *upper_dev); 4723 4724 bool netdev_has_any_upper_dev(struct net_device *dev); 4725 4726 void *netdev_lower_get_next_private(struct net_device *dev, 4727 struct list_head **iter); 4728 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4729 struct list_head **iter); 4730 4731 #define netdev_for_each_lower_private(dev, priv, iter) \ 4732 for (iter = (dev)->adj_list.lower.next, \ 4733 priv = netdev_lower_get_next_private(dev, &(iter)); \ 4734 priv; \ 4735 priv = netdev_lower_get_next_private(dev, &(iter))) 4736 4737 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 4738 for (iter = &(dev)->adj_list.lower, \ 4739 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 4740 priv; \ 4741 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 4742 4743 void *netdev_lower_get_next(struct net_device *dev, 4744 struct list_head **iter); 4745 4746 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 4747 for (iter = (dev)->adj_list.lower.next, \ 4748 ldev = netdev_lower_get_next(dev, &(iter)); \ 4749 ldev; \ 4750 ldev = netdev_lower_get_next(dev, &(iter))) 4751 4752 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 4753 struct list_head **iter); 4754 int netdev_walk_all_lower_dev(struct net_device *dev, 4755 int (*fn)(struct net_device *lower_dev, 4756 struct netdev_nested_priv *priv), 4757 struct netdev_nested_priv *priv); 4758 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 4759 int (*fn)(struct net_device *lower_dev, 4760 struct netdev_nested_priv *priv), 4761 struct netdev_nested_priv *priv); 4762 4763 void *netdev_adjacent_get_private(struct list_head *adj_list); 4764 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 4765 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 4766 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 4767 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 4768 struct netlink_ext_ack *extack); 4769 int netdev_master_upper_dev_link(struct net_device *dev, 4770 struct net_device *upper_dev, 4771 void *upper_priv, void *upper_info, 4772 struct netlink_ext_ack *extack); 4773 void netdev_upper_dev_unlink(struct net_device *dev, 4774 struct net_device *upper_dev); 4775 int netdev_adjacent_change_prepare(struct net_device *old_dev, 4776 struct net_device *new_dev, 4777 struct net_device *dev, 4778 struct netlink_ext_ack *extack); 4779 void netdev_adjacent_change_commit(struct net_device *old_dev, 4780 struct net_device *new_dev, 4781 struct net_device *dev); 4782 void netdev_adjacent_change_abort(struct net_device *old_dev, 4783 struct net_device *new_dev, 4784 struct net_device *dev); 4785 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 4786 void *netdev_lower_dev_get_private(struct net_device *dev, 4787 struct net_device *lower_dev); 4788 void netdev_lower_state_changed(struct net_device *lower_dev, 4789 void *lower_state_info); 4790 4791 /* RSS keys are 40 or 52 bytes long */ 4792 #define NETDEV_RSS_KEY_LEN 52 4793 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 4794 void netdev_rss_key_fill(void *buffer, size_t len); 4795 4796 int skb_checksum_help(struct sk_buff *skb); 4797 int skb_crc32c_csum_help(struct sk_buff *skb); 4798 int skb_csum_hwoffload_help(struct sk_buff *skb, 4799 const netdev_features_t features); 4800 4801 struct netdev_bonding_info { 4802 ifslave slave; 4803 ifbond master; 4804 }; 4805 4806 struct netdev_notifier_bonding_info { 4807 struct netdev_notifier_info info; /* must be first */ 4808 struct netdev_bonding_info bonding_info; 4809 }; 4810 4811 void netdev_bonding_info_change(struct net_device *dev, 4812 struct netdev_bonding_info *bonding_info); 4813 4814 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK) 4815 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data); 4816 #else 4817 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd, 4818 const void *data) 4819 { 4820 } 4821 #endif 4822 4823 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 4824 4825 static inline bool can_checksum_protocol(netdev_features_t features, 4826 __be16 protocol) 4827 { 4828 if (protocol == htons(ETH_P_FCOE)) 4829 return !!(features & NETIF_F_FCOE_CRC); 4830 4831 /* Assume this is an IP checksum (not SCTP CRC) */ 4832 4833 if (features & NETIF_F_HW_CSUM) { 4834 /* Can checksum everything */ 4835 return true; 4836 } 4837 4838 switch (protocol) { 4839 case htons(ETH_P_IP): 4840 return !!(features & NETIF_F_IP_CSUM); 4841 case htons(ETH_P_IPV6): 4842 return !!(features & NETIF_F_IPV6_CSUM); 4843 default: 4844 return false; 4845 } 4846 } 4847 4848 #ifdef CONFIG_BUG 4849 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb); 4850 #else 4851 static inline void netdev_rx_csum_fault(struct net_device *dev, 4852 struct sk_buff *skb) 4853 { 4854 } 4855 #endif 4856 /* rx skb timestamps */ 4857 void net_enable_timestamp(void); 4858 void net_disable_timestamp(void); 4859 4860 static inline ktime_t netdev_get_tstamp(struct net_device *dev, 4861 const struct skb_shared_hwtstamps *hwtstamps, 4862 bool cycles) 4863 { 4864 const struct net_device_ops *ops = dev->netdev_ops; 4865 4866 if (ops->ndo_get_tstamp) 4867 return ops->ndo_get_tstamp(dev, hwtstamps, cycles); 4868 4869 return hwtstamps->hwtstamp; 4870 } 4871 4872 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4873 struct sk_buff *skb, struct net_device *dev, 4874 bool more) 4875 { 4876 __this_cpu_write(softnet_data.xmit.more, more); 4877 return ops->ndo_start_xmit(skb, dev); 4878 } 4879 4880 static inline bool netdev_xmit_more(void) 4881 { 4882 return __this_cpu_read(softnet_data.xmit.more); 4883 } 4884 4885 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4886 struct netdev_queue *txq, bool more) 4887 { 4888 const struct net_device_ops *ops = dev->netdev_ops; 4889 netdev_tx_t rc; 4890 4891 rc = __netdev_start_xmit(ops, skb, dev, more); 4892 if (rc == NETDEV_TX_OK) 4893 txq_trans_update(txq); 4894 4895 return rc; 4896 } 4897 4898 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 4899 const void *ns); 4900 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 4901 const void *ns); 4902 4903 extern const struct kobj_ns_type_operations net_ns_type_operations; 4904 4905 const char *netdev_drivername(const struct net_device *dev); 4906 4907 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4908 netdev_features_t f2) 4909 { 4910 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4911 if (f1 & NETIF_F_HW_CSUM) 4912 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4913 else 4914 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4915 } 4916 4917 return f1 & f2; 4918 } 4919 4920 static inline netdev_features_t netdev_get_wanted_features( 4921 struct net_device *dev) 4922 { 4923 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4924 } 4925 netdev_features_t netdev_increment_features(netdev_features_t all, 4926 netdev_features_t one, netdev_features_t mask); 4927 4928 /* Allow TSO being used on stacked device : 4929 * Performing the GSO segmentation before last device 4930 * is a performance improvement. 4931 */ 4932 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4933 netdev_features_t mask) 4934 { 4935 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4936 } 4937 4938 int __netdev_update_features(struct net_device *dev); 4939 void netdev_update_features(struct net_device *dev); 4940 void netdev_change_features(struct net_device *dev); 4941 4942 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4943 struct net_device *dev); 4944 4945 netdev_features_t passthru_features_check(struct sk_buff *skb, 4946 struct net_device *dev, 4947 netdev_features_t features); 4948 netdev_features_t netif_skb_features(struct sk_buff *skb); 4949 void skb_warn_bad_offload(const struct sk_buff *skb); 4950 4951 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4952 { 4953 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4954 4955 /* check flags correspondence */ 4956 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4957 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4958 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4959 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4960 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4961 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4962 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 4963 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 4964 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 4965 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 4966 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 4967 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 4968 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 4969 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 4970 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 4971 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 4972 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 4973 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT)); 4974 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT)); 4975 4976 return (features & feature) == feature; 4977 } 4978 4979 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 4980 { 4981 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 4982 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 4983 } 4984 4985 static inline bool netif_needs_gso(struct sk_buff *skb, 4986 netdev_features_t features) 4987 { 4988 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 4989 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 4990 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 4991 } 4992 4993 void netif_set_tso_max_size(struct net_device *dev, unsigned int size); 4994 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs); 4995 void netif_inherit_tso_max(struct net_device *to, 4996 const struct net_device *from); 4997 4998 static inline bool netif_is_macsec(const struct net_device *dev) 4999 { 5000 return dev->priv_flags & IFF_MACSEC; 5001 } 5002 5003 static inline bool netif_is_macvlan(const struct net_device *dev) 5004 { 5005 return dev->priv_flags & IFF_MACVLAN; 5006 } 5007 5008 static inline bool netif_is_macvlan_port(const struct net_device *dev) 5009 { 5010 return dev->priv_flags & IFF_MACVLAN_PORT; 5011 } 5012 5013 static inline bool netif_is_bond_master(const struct net_device *dev) 5014 { 5015 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 5016 } 5017 5018 static inline bool netif_is_bond_slave(const struct net_device *dev) 5019 { 5020 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 5021 } 5022 5023 static inline bool netif_supports_nofcs(struct net_device *dev) 5024 { 5025 return dev->priv_flags & IFF_SUPP_NOFCS; 5026 } 5027 5028 static inline bool netif_has_l3_rx_handler(const struct net_device *dev) 5029 { 5030 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER; 5031 } 5032 5033 static inline bool netif_is_l3_master(const struct net_device *dev) 5034 { 5035 return dev->priv_flags & IFF_L3MDEV_MASTER; 5036 } 5037 5038 static inline bool netif_is_l3_slave(const struct net_device *dev) 5039 { 5040 return dev->priv_flags & IFF_L3MDEV_SLAVE; 5041 } 5042 5043 static inline int dev_sdif(const struct net_device *dev) 5044 { 5045 #ifdef CONFIG_NET_L3_MASTER_DEV 5046 if (netif_is_l3_slave(dev)) 5047 return dev->ifindex; 5048 #endif 5049 return 0; 5050 } 5051 5052 static inline bool netif_is_bridge_master(const struct net_device *dev) 5053 { 5054 return dev->priv_flags & IFF_EBRIDGE; 5055 } 5056 5057 static inline bool netif_is_bridge_port(const struct net_device *dev) 5058 { 5059 return dev->priv_flags & IFF_BRIDGE_PORT; 5060 } 5061 5062 static inline bool netif_is_ovs_master(const struct net_device *dev) 5063 { 5064 return dev->priv_flags & IFF_OPENVSWITCH; 5065 } 5066 5067 static inline bool netif_is_ovs_port(const struct net_device *dev) 5068 { 5069 return dev->priv_flags & IFF_OVS_DATAPATH; 5070 } 5071 5072 static inline bool netif_is_any_bridge_master(const struct net_device *dev) 5073 { 5074 return netif_is_bridge_master(dev) || netif_is_ovs_master(dev); 5075 } 5076 5077 static inline bool netif_is_any_bridge_port(const struct net_device *dev) 5078 { 5079 return netif_is_bridge_port(dev) || netif_is_ovs_port(dev); 5080 } 5081 5082 static inline bool netif_is_team_master(const struct net_device *dev) 5083 { 5084 return dev->priv_flags & IFF_TEAM; 5085 } 5086 5087 static inline bool netif_is_team_port(const struct net_device *dev) 5088 { 5089 return dev->priv_flags & IFF_TEAM_PORT; 5090 } 5091 5092 static inline bool netif_is_lag_master(const struct net_device *dev) 5093 { 5094 return netif_is_bond_master(dev) || netif_is_team_master(dev); 5095 } 5096 5097 static inline bool netif_is_lag_port(const struct net_device *dev) 5098 { 5099 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 5100 } 5101 5102 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 5103 { 5104 return dev->priv_flags & IFF_RXFH_CONFIGURED; 5105 } 5106 5107 static inline bool netif_is_failover(const struct net_device *dev) 5108 { 5109 return dev->priv_flags & IFF_FAILOVER; 5110 } 5111 5112 static inline bool netif_is_failover_slave(const struct net_device *dev) 5113 { 5114 return dev->priv_flags & IFF_FAILOVER_SLAVE; 5115 } 5116 5117 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 5118 static inline void netif_keep_dst(struct net_device *dev) 5119 { 5120 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 5121 } 5122 5123 /* return true if dev can't cope with mtu frames that need vlan tag insertion */ 5124 static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 5125 { 5126 /* TODO: reserve and use an additional IFF bit, if we get more users */ 5127 return netif_is_macsec(dev); 5128 } 5129 5130 extern struct pernet_operations __net_initdata loopback_net_ops; 5131 5132 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 5133 5134 /* netdev_printk helpers, similar to dev_printk */ 5135 5136 static inline const char *netdev_name(const struct net_device *dev) 5137 { 5138 if (!dev->name[0] || strchr(dev->name, '%')) 5139 return "(unnamed net_device)"; 5140 return dev->name; 5141 } 5142 5143 static inline const char *netdev_reg_state(const struct net_device *dev) 5144 { 5145 u8 reg_state = READ_ONCE(dev->reg_state); 5146 5147 switch (reg_state) { 5148 case NETREG_UNINITIALIZED: return " (uninitialized)"; 5149 case NETREG_REGISTERED: return ""; 5150 case NETREG_UNREGISTERING: return " (unregistering)"; 5151 case NETREG_UNREGISTERED: return " (unregistered)"; 5152 case NETREG_RELEASED: return " (released)"; 5153 case NETREG_DUMMY: return " (dummy)"; 5154 } 5155 5156 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, reg_state); 5157 return " (unknown)"; 5158 } 5159 5160 #define MODULE_ALIAS_NETDEV(device) \ 5161 MODULE_ALIAS("netdev-" device) 5162 5163 /* 5164 * netdev_WARN() acts like dev_printk(), but with the key difference 5165 * of using a WARN/WARN_ON to get the message out, including the 5166 * file/line information and a backtrace. 5167 */ 5168 #define netdev_WARN(dev, format, args...) \ 5169 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5170 netdev_reg_state(dev), ##args) 5171 5172 #define netdev_WARN_ONCE(dev, format, args...) \ 5173 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5174 netdev_reg_state(dev), ##args) 5175 5176 /* 5177 * The list of packet types we will receive (as opposed to discard) 5178 * and the routines to invoke. 5179 * 5180 * Why 16. Because with 16 the only overlap we get on a hash of the 5181 * low nibble of the protocol value is RARP/SNAP/X.25. 5182 * 5183 * 0800 IP 5184 * 0001 802.3 5185 * 0002 AX.25 5186 * 0004 802.2 5187 * 8035 RARP 5188 * 0005 SNAP 5189 * 0805 X.25 5190 * 0806 ARP 5191 * 8137 IPX 5192 * 0009 Localtalk 5193 * 86DD IPv6 5194 */ 5195 #define PTYPE_HASH_SIZE (16) 5196 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 5197 5198 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 5199 5200 extern struct net_device *blackhole_netdev; 5201 5202 /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */ 5203 #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD) 5204 #define DEV_STATS_ADD(DEV, FIELD, VAL) \ 5205 atomic_long_add((VAL), &(DEV)->stats.__##FIELD) 5206 #define DEV_STATS_READ(DEV, FIELD) atomic_long_read(&(DEV)->stats.__##FIELD) 5207 5208 #endif /* _LINUX_NETDEVICE_H */ 5209