xref: /linux-6.15/include/linux/netdevice.h (revision fee6d4c7)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <[email protected]>
12  *		Corey Minyard <[email protected]>
13  *		Donald J. Becker, <[email protected]>
14  *		Alan Cox, <[email protected]>
15  *		Bjorn Ekwall. <[email protected]>
16  *              Pekka Riikonen <[email protected]>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35 
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41 
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49 
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53 #include <uapi/linux/if_bonding.h>
54 
55 struct netpoll_info;
56 struct device;
57 struct phy_device;
58 /* 802.11 specific */
59 struct wireless_dev;
60 /* 802.15.4 specific */
61 struct wpan_dev;
62 struct mpls_dev;
63 
64 void netdev_set_default_ethtool_ops(struct net_device *dev,
65 				    const struct ethtool_ops *ops);
66 
67 /* Backlog congestion levels */
68 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
69 #define NET_RX_DROP		1	/* packet dropped */
70 
71 /*
72  * Transmit return codes: transmit return codes originate from three different
73  * namespaces:
74  *
75  * - qdisc return codes
76  * - driver transmit return codes
77  * - errno values
78  *
79  * Drivers are allowed to return any one of those in their hard_start_xmit()
80  * function. Real network devices commonly used with qdiscs should only return
81  * the driver transmit return codes though - when qdiscs are used, the actual
82  * transmission happens asynchronously, so the value is not propagated to
83  * higher layers. Virtual network devices transmit synchronously, in this case
84  * the driver transmit return codes are consumed by dev_queue_xmit(), all
85  * others are propagated to higher layers.
86  */
87 
88 /* qdisc ->enqueue() return codes. */
89 #define NET_XMIT_SUCCESS	0x00
90 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
91 #define NET_XMIT_CN		0x02	/* congestion notification	*/
92 #define NET_XMIT_POLICED	0x03	/* skb is shot by police	*/
93 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
94 
95 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
96  * indicates that the device will soon be dropping packets, or already drops
97  * some packets of the same priority; prompting us to send less aggressively. */
98 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
99 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
100 
101 /* Driver transmit return codes */
102 #define NETDEV_TX_MASK		0xf0
103 
104 enum netdev_tx {
105 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
106 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
107 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
108 	NETDEV_TX_LOCKED = 0x20,	/* driver tx lock was already taken */
109 };
110 typedef enum netdev_tx netdev_tx_t;
111 
112 /*
113  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
114  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
115  */
116 static inline bool dev_xmit_complete(int rc)
117 {
118 	/*
119 	 * Positive cases with an skb consumed by a driver:
120 	 * - successful transmission (rc == NETDEV_TX_OK)
121 	 * - error while transmitting (rc < 0)
122 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
123 	 */
124 	if (likely(rc < NET_XMIT_MASK))
125 		return true;
126 
127 	return false;
128 }
129 
130 /*
131  *	Compute the worst case header length according to the protocols
132  *	used.
133  */
134 
135 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
136 # if defined(CONFIG_MAC80211_MESH)
137 #  define LL_MAX_HEADER 128
138 # else
139 #  define LL_MAX_HEADER 96
140 # endif
141 #else
142 # define LL_MAX_HEADER 32
143 #endif
144 
145 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
146     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
147 #define MAX_HEADER LL_MAX_HEADER
148 #else
149 #define MAX_HEADER (LL_MAX_HEADER + 48)
150 #endif
151 
152 /*
153  *	Old network device statistics. Fields are native words
154  *	(unsigned long) so they can be read and written atomically.
155  */
156 
157 struct net_device_stats {
158 	unsigned long	rx_packets;
159 	unsigned long	tx_packets;
160 	unsigned long	rx_bytes;
161 	unsigned long	tx_bytes;
162 	unsigned long	rx_errors;
163 	unsigned long	tx_errors;
164 	unsigned long	rx_dropped;
165 	unsigned long	tx_dropped;
166 	unsigned long	multicast;
167 	unsigned long	collisions;
168 	unsigned long	rx_length_errors;
169 	unsigned long	rx_over_errors;
170 	unsigned long	rx_crc_errors;
171 	unsigned long	rx_frame_errors;
172 	unsigned long	rx_fifo_errors;
173 	unsigned long	rx_missed_errors;
174 	unsigned long	tx_aborted_errors;
175 	unsigned long	tx_carrier_errors;
176 	unsigned long	tx_fifo_errors;
177 	unsigned long	tx_heartbeat_errors;
178 	unsigned long	tx_window_errors;
179 	unsigned long	rx_compressed;
180 	unsigned long	tx_compressed;
181 };
182 
183 
184 #include <linux/cache.h>
185 #include <linux/skbuff.h>
186 
187 #ifdef CONFIG_RPS
188 #include <linux/static_key.h>
189 extern struct static_key rps_needed;
190 #endif
191 
192 struct neighbour;
193 struct neigh_parms;
194 struct sk_buff;
195 
196 struct netdev_hw_addr {
197 	struct list_head	list;
198 	unsigned char		addr[MAX_ADDR_LEN];
199 	unsigned char		type;
200 #define NETDEV_HW_ADDR_T_LAN		1
201 #define NETDEV_HW_ADDR_T_SAN		2
202 #define NETDEV_HW_ADDR_T_SLAVE		3
203 #define NETDEV_HW_ADDR_T_UNICAST	4
204 #define NETDEV_HW_ADDR_T_MULTICAST	5
205 	bool			global_use;
206 	int			sync_cnt;
207 	int			refcount;
208 	int			synced;
209 	struct rcu_head		rcu_head;
210 };
211 
212 struct netdev_hw_addr_list {
213 	struct list_head	list;
214 	int			count;
215 };
216 
217 #define netdev_hw_addr_list_count(l) ((l)->count)
218 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
219 #define netdev_hw_addr_list_for_each(ha, l) \
220 	list_for_each_entry(ha, &(l)->list, list)
221 
222 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
223 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
224 #define netdev_for_each_uc_addr(ha, dev) \
225 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
226 
227 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
228 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
229 #define netdev_for_each_mc_addr(ha, dev) \
230 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
231 
232 struct hh_cache {
233 	u16		hh_len;
234 	u16		__pad;
235 	seqlock_t	hh_lock;
236 
237 	/* cached hardware header; allow for machine alignment needs.        */
238 #define HH_DATA_MOD	16
239 #define HH_DATA_OFF(__len) \
240 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
241 #define HH_DATA_ALIGN(__len) \
242 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
243 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
244 };
245 
246 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
247  * Alternative is:
248  *   dev->hard_header_len ? (dev->hard_header_len +
249  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
250  *
251  * We could use other alignment values, but we must maintain the
252  * relationship HH alignment <= LL alignment.
253  */
254 #define LL_RESERVED_SPACE(dev) \
255 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
256 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
257 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
258 
259 struct header_ops {
260 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
261 			   unsigned short type, const void *daddr,
262 			   const void *saddr, unsigned int len);
263 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
264 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
265 	void	(*cache_update)(struct hh_cache *hh,
266 				const struct net_device *dev,
267 				const unsigned char *haddr);
268 };
269 
270 /* These flag bits are private to the generic network queueing
271  * layer, they may not be explicitly referenced by any other
272  * code.
273  */
274 
275 enum netdev_state_t {
276 	__LINK_STATE_START,
277 	__LINK_STATE_PRESENT,
278 	__LINK_STATE_NOCARRIER,
279 	__LINK_STATE_LINKWATCH_PENDING,
280 	__LINK_STATE_DORMANT,
281 };
282 
283 
284 /*
285  * This structure holds at boot time configured netdevice settings. They
286  * are then used in the device probing.
287  */
288 struct netdev_boot_setup {
289 	char name[IFNAMSIZ];
290 	struct ifmap map;
291 };
292 #define NETDEV_BOOT_SETUP_MAX 8
293 
294 int __init netdev_boot_setup(char *str);
295 
296 /*
297  * Structure for NAPI scheduling similar to tasklet but with weighting
298  */
299 struct napi_struct {
300 	/* The poll_list must only be managed by the entity which
301 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
302 	 * whoever atomically sets that bit can add this napi_struct
303 	 * to the per-cpu poll_list, and whoever clears that bit
304 	 * can remove from the list right before clearing the bit.
305 	 */
306 	struct list_head	poll_list;
307 
308 	unsigned long		state;
309 	int			weight;
310 	unsigned int		gro_count;
311 	int			(*poll)(struct napi_struct *, int);
312 #ifdef CONFIG_NETPOLL
313 	spinlock_t		poll_lock;
314 	int			poll_owner;
315 #endif
316 	struct net_device	*dev;
317 	struct sk_buff		*gro_list;
318 	struct sk_buff		*skb;
319 	struct hrtimer		timer;
320 	struct list_head	dev_list;
321 	struct hlist_node	napi_hash_node;
322 	unsigned int		napi_id;
323 };
324 
325 enum {
326 	NAPI_STATE_SCHED,	/* Poll is scheduled */
327 	NAPI_STATE_DISABLE,	/* Disable pending */
328 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
329 	NAPI_STATE_HASHED,	/* In NAPI hash */
330 };
331 
332 enum gro_result {
333 	GRO_MERGED,
334 	GRO_MERGED_FREE,
335 	GRO_HELD,
336 	GRO_NORMAL,
337 	GRO_DROP,
338 };
339 typedef enum gro_result gro_result_t;
340 
341 /*
342  * enum rx_handler_result - Possible return values for rx_handlers.
343  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
344  * further.
345  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
346  * case skb->dev was changed by rx_handler.
347  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
348  * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
349  *
350  * rx_handlers are functions called from inside __netif_receive_skb(), to do
351  * special processing of the skb, prior to delivery to protocol handlers.
352  *
353  * Currently, a net_device can only have a single rx_handler registered. Trying
354  * to register a second rx_handler will return -EBUSY.
355  *
356  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
357  * To unregister a rx_handler on a net_device, use
358  * netdev_rx_handler_unregister().
359  *
360  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
361  * do with the skb.
362  *
363  * If the rx_handler consumed to skb in some way, it should return
364  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
365  * the skb to be delivered in some other ways.
366  *
367  * If the rx_handler changed skb->dev, to divert the skb to another
368  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
369  * new device will be called if it exists.
370  *
371  * If the rx_handler consider the skb should be ignored, it should return
372  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
373  * are registered on exact device (ptype->dev == skb->dev).
374  *
375  * If the rx_handler didn't changed skb->dev, but want the skb to be normally
376  * delivered, it should return RX_HANDLER_PASS.
377  *
378  * A device without a registered rx_handler will behave as if rx_handler
379  * returned RX_HANDLER_PASS.
380  */
381 
382 enum rx_handler_result {
383 	RX_HANDLER_CONSUMED,
384 	RX_HANDLER_ANOTHER,
385 	RX_HANDLER_EXACT,
386 	RX_HANDLER_PASS,
387 };
388 typedef enum rx_handler_result rx_handler_result_t;
389 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
390 
391 void __napi_schedule(struct napi_struct *n);
392 void __napi_schedule_irqoff(struct napi_struct *n);
393 
394 static inline bool napi_disable_pending(struct napi_struct *n)
395 {
396 	return test_bit(NAPI_STATE_DISABLE, &n->state);
397 }
398 
399 /**
400  *	napi_schedule_prep - check if napi can be scheduled
401  *	@n: napi context
402  *
403  * Test if NAPI routine is already running, and if not mark
404  * it as running.  This is used as a condition variable
405  * insure only one NAPI poll instance runs.  We also make
406  * sure there is no pending NAPI disable.
407  */
408 static inline bool napi_schedule_prep(struct napi_struct *n)
409 {
410 	return !napi_disable_pending(n) &&
411 		!test_and_set_bit(NAPI_STATE_SCHED, &n->state);
412 }
413 
414 /**
415  *	napi_schedule - schedule NAPI poll
416  *	@n: napi context
417  *
418  * Schedule NAPI poll routine to be called if it is not already
419  * running.
420  */
421 static inline void napi_schedule(struct napi_struct *n)
422 {
423 	if (napi_schedule_prep(n))
424 		__napi_schedule(n);
425 }
426 
427 /**
428  *	napi_schedule_irqoff - schedule NAPI poll
429  *	@n: napi context
430  *
431  * Variant of napi_schedule(), assuming hard irqs are masked.
432  */
433 static inline void napi_schedule_irqoff(struct napi_struct *n)
434 {
435 	if (napi_schedule_prep(n))
436 		__napi_schedule_irqoff(n);
437 }
438 
439 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
440 static inline bool napi_reschedule(struct napi_struct *napi)
441 {
442 	if (napi_schedule_prep(napi)) {
443 		__napi_schedule(napi);
444 		return true;
445 	}
446 	return false;
447 }
448 
449 void __napi_complete(struct napi_struct *n);
450 void napi_complete_done(struct napi_struct *n, int work_done);
451 /**
452  *	napi_complete - NAPI processing complete
453  *	@n: napi context
454  *
455  * Mark NAPI processing as complete.
456  * Consider using napi_complete_done() instead.
457  */
458 static inline void napi_complete(struct napi_struct *n)
459 {
460 	return napi_complete_done(n, 0);
461 }
462 
463 /**
464  *	napi_by_id - lookup a NAPI by napi_id
465  *	@napi_id: hashed napi_id
466  *
467  * lookup @napi_id in napi_hash table
468  * must be called under rcu_read_lock()
469  */
470 struct napi_struct *napi_by_id(unsigned int napi_id);
471 
472 /**
473  *	napi_hash_add - add a NAPI to global hashtable
474  *	@napi: napi context
475  *
476  * generate a new napi_id and store a @napi under it in napi_hash
477  */
478 void napi_hash_add(struct napi_struct *napi);
479 
480 /**
481  *	napi_hash_del - remove a NAPI from global table
482  *	@napi: napi context
483  *
484  * Warning: caller must observe rcu grace period
485  * before freeing memory containing @napi
486  */
487 void napi_hash_del(struct napi_struct *napi);
488 
489 /**
490  *	napi_disable - prevent NAPI from scheduling
491  *	@n: napi context
492  *
493  * Stop NAPI from being scheduled on this context.
494  * Waits till any outstanding processing completes.
495  */
496 void napi_disable(struct napi_struct *n);
497 
498 /**
499  *	napi_enable - enable NAPI scheduling
500  *	@n: napi context
501  *
502  * Resume NAPI from being scheduled on this context.
503  * Must be paired with napi_disable.
504  */
505 static inline void napi_enable(struct napi_struct *n)
506 {
507 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
508 	smp_mb__before_atomic();
509 	clear_bit(NAPI_STATE_SCHED, &n->state);
510 	clear_bit(NAPI_STATE_NPSVC, &n->state);
511 }
512 
513 #ifdef CONFIG_SMP
514 /**
515  *	napi_synchronize - wait until NAPI is not running
516  *	@n: napi context
517  *
518  * Wait until NAPI is done being scheduled on this context.
519  * Waits till any outstanding processing completes but
520  * does not disable future activations.
521  */
522 static inline void napi_synchronize(const struct napi_struct *n)
523 {
524 	while (test_bit(NAPI_STATE_SCHED, &n->state))
525 		msleep(1);
526 }
527 #else
528 # define napi_synchronize(n)	barrier()
529 #endif
530 
531 enum netdev_queue_state_t {
532 	__QUEUE_STATE_DRV_XOFF,
533 	__QUEUE_STATE_STACK_XOFF,
534 	__QUEUE_STATE_FROZEN,
535 };
536 
537 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
538 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
539 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
540 
541 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
542 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
543 					QUEUE_STATE_FROZEN)
544 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
545 					QUEUE_STATE_FROZEN)
546 
547 /*
548  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
549  * netif_tx_* functions below are used to manipulate this flag.  The
550  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
551  * queue independently.  The netif_xmit_*stopped functions below are called
552  * to check if the queue has been stopped by the driver or stack (either
553  * of the XOFF bits are set in the state).  Drivers should not need to call
554  * netif_xmit*stopped functions, they should only be using netif_tx_*.
555  */
556 
557 struct netdev_queue {
558 /*
559  * read mostly part
560  */
561 	struct net_device	*dev;
562 	struct Qdisc __rcu	*qdisc;
563 	struct Qdisc		*qdisc_sleeping;
564 #ifdef CONFIG_SYSFS
565 	struct kobject		kobj;
566 #endif
567 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
568 	int			numa_node;
569 #endif
570 /*
571  * write mostly part
572  */
573 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
574 	int			xmit_lock_owner;
575 	/*
576 	 * please use this field instead of dev->trans_start
577 	 */
578 	unsigned long		trans_start;
579 
580 	/*
581 	 * Number of TX timeouts for this queue
582 	 * (/sys/class/net/DEV/Q/trans_timeout)
583 	 */
584 	unsigned long		trans_timeout;
585 
586 	unsigned long		state;
587 
588 #ifdef CONFIG_BQL
589 	struct dql		dql;
590 #endif
591 	unsigned long		tx_maxrate;
592 } ____cacheline_aligned_in_smp;
593 
594 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
595 {
596 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
597 	return q->numa_node;
598 #else
599 	return NUMA_NO_NODE;
600 #endif
601 }
602 
603 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
604 {
605 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
606 	q->numa_node = node;
607 #endif
608 }
609 
610 #ifdef CONFIG_RPS
611 /*
612  * This structure holds an RPS map which can be of variable length.  The
613  * map is an array of CPUs.
614  */
615 struct rps_map {
616 	unsigned int len;
617 	struct rcu_head rcu;
618 	u16 cpus[0];
619 };
620 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
621 
622 /*
623  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
624  * tail pointer for that CPU's input queue at the time of last enqueue, and
625  * a hardware filter index.
626  */
627 struct rps_dev_flow {
628 	u16 cpu;
629 	u16 filter;
630 	unsigned int last_qtail;
631 };
632 #define RPS_NO_FILTER 0xffff
633 
634 /*
635  * The rps_dev_flow_table structure contains a table of flow mappings.
636  */
637 struct rps_dev_flow_table {
638 	unsigned int mask;
639 	struct rcu_head rcu;
640 	struct rps_dev_flow flows[0];
641 };
642 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
643     ((_num) * sizeof(struct rps_dev_flow)))
644 
645 /*
646  * The rps_sock_flow_table contains mappings of flows to the last CPU
647  * on which they were processed by the application (set in recvmsg).
648  * Each entry is a 32bit value. Upper part is the high order bits
649  * of flow hash, lower part is cpu number.
650  * rps_cpu_mask is used to partition the space, depending on number of
651  * possible cpus : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
652  * For example, if 64 cpus are possible, rps_cpu_mask = 0x3f,
653  * meaning we use 32-6=26 bits for the hash.
654  */
655 struct rps_sock_flow_table {
656 	u32	mask;
657 
658 	u32	ents[0] ____cacheline_aligned_in_smp;
659 };
660 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
661 
662 #define RPS_NO_CPU 0xffff
663 
664 extern u32 rps_cpu_mask;
665 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
666 
667 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
668 					u32 hash)
669 {
670 	if (table && hash) {
671 		unsigned int index = hash & table->mask;
672 		u32 val = hash & ~rps_cpu_mask;
673 
674 		/* We only give a hint, preemption can change cpu under us */
675 		val |= raw_smp_processor_id();
676 
677 		if (table->ents[index] != val)
678 			table->ents[index] = val;
679 	}
680 }
681 
682 #ifdef CONFIG_RFS_ACCEL
683 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
684 			 u16 filter_id);
685 #endif
686 #endif /* CONFIG_RPS */
687 
688 /* This structure contains an instance of an RX queue. */
689 struct netdev_rx_queue {
690 #ifdef CONFIG_RPS
691 	struct rps_map __rcu		*rps_map;
692 	struct rps_dev_flow_table __rcu	*rps_flow_table;
693 #endif
694 	struct kobject			kobj;
695 	struct net_device		*dev;
696 } ____cacheline_aligned_in_smp;
697 
698 /*
699  * RX queue sysfs structures and functions.
700  */
701 struct rx_queue_attribute {
702 	struct attribute attr;
703 	ssize_t (*show)(struct netdev_rx_queue *queue,
704 	    struct rx_queue_attribute *attr, char *buf);
705 	ssize_t (*store)(struct netdev_rx_queue *queue,
706 	    struct rx_queue_attribute *attr, const char *buf, size_t len);
707 };
708 
709 #ifdef CONFIG_XPS
710 /*
711  * This structure holds an XPS map which can be of variable length.  The
712  * map is an array of queues.
713  */
714 struct xps_map {
715 	unsigned int len;
716 	unsigned int alloc_len;
717 	struct rcu_head rcu;
718 	u16 queues[0];
719 };
720 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
721 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map))	\
722     / sizeof(u16))
723 
724 /*
725  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
726  */
727 struct xps_dev_maps {
728 	struct rcu_head rcu;
729 	struct xps_map __rcu *cpu_map[0];
730 };
731 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +		\
732     (nr_cpu_ids * sizeof(struct xps_map *)))
733 #endif /* CONFIG_XPS */
734 
735 #define TC_MAX_QUEUE	16
736 #define TC_BITMASK	15
737 /* HW offloaded queuing disciplines txq count and offset maps */
738 struct netdev_tc_txq {
739 	u16 count;
740 	u16 offset;
741 };
742 
743 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
744 /*
745  * This structure is to hold information about the device
746  * configured to run FCoE protocol stack.
747  */
748 struct netdev_fcoe_hbainfo {
749 	char	manufacturer[64];
750 	char	serial_number[64];
751 	char	hardware_version[64];
752 	char	driver_version[64];
753 	char	optionrom_version[64];
754 	char	firmware_version[64];
755 	char	model[256];
756 	char	model_description[256];
757 };
758 #endif
759 
760 #define MAX_PHYS_ITEM_ID_LEN 32
761 
762 /* This structure holds a unique identifier to identify some
763  * physical item (port for example) used by a netdevice.
764  */
765 struct netdev_phys_item_id {
766 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
767 	unsigned char id_len;
768 };
769 
770 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
771 					    struct netdev_phys_item_id *b)
772 {
773 	return a->id_len == b->id_len &&
774 	       memcmp(a->id, b->id, a->id_len) == 0;
775 }
776 
777 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
778 				       struct sk_buff *skb);
779 
780 /*
781  * This structure defines the management hooks for network devices.
782  * The following hooks can be defined; unless noted otherwise, they are
783  * optional and can be filled with a null pointer.
784  *
785  * int (*ndo_init)(struct net_device *dev);
786  *     This function is called once when network device is registered.
787  *     The network device can use this to any late stage initializaton
788  *     or semantic validattion. It can fail with an error code which will
789  *     be propogated back to register_netdev
790  *
791  * void (*ndo_uninit)(struct net_device *dev);
792  *     This function is called when device is unregistered or when registration
793  *     fails. It is not called if init fails.
794  *
795  * int (*ndo_open)(struct net_device *dev);
796  *     This function is called when network device transistions to the up
797  *     state.
798  *
799  * int (*ndo_stop)(struct net_device *dev);
800  *     This function is called when network device transistions to the down
801  *     state.
802  *
803  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
804  *                               struct net_device *dev);
805  *	Called when a packet needs to be transmitted.
806  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
807  *	the queue before that can happen; it's for obsolete devices and weird
808  *	corner cases, but the stack really does a non-trivial amount
809  *	of useless work if you return NETDEV_TX_BUSY.
810  *        (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
811  *	Required can not be NULL.
812  *
813  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
814  *                         void *accel_priv, select_queue_fallback_t fallback);
815  *	Called to decide which queue to when device supports multiple
816  *	transmit queues.
817  *
818  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
819  *	This function is called to allow device receiver to make
820  *	changes to configuration when multicast or promiscious is enabled.
821  *
822  * void (*ndo_set_rx_mode)(struct net_device *dev);
823  *	This function is called device changes address list filtering.
824  *	If driver handles unicast address filtering, it should set
825  *	IFF_UNICAST_FLT to its priv_flags.
826  *
827  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
828  *	This function  is called when the Media Access Control address
829  *	needs to be changed. If this interface is not defined, the
830  *	mac address can not be changed.
831  *
832  * int (*ndo_validate_addr)(struct net_device *dev);
833  *	Test if Media Access Control address is valid for the device.
834  *
835  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
836  *	Called when a user request an ioctl which can't be handled by
837  *	the generic interface code. If not defined ioctl's return
838  *	not supported error code.
839  *
840  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
841  *	Used to set network devices bus interface parameters. This interface
842  *	is retained for legacy reason, new devices should use the bus
843  *	interface (PCI) for low level management.
844  *
845  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
846  *	Called when a user wants to change the Maximum Transfer Unit
847  *	of a device. If not defined, any request to change MTU will
848  *	will return an error.
849  *
850  * void (*ndo_tx_timeout)(struct net_device *dev);
851  *	Callback uses when the transmitter has not made any progress
852  *	for dev->watchdog ticks.
853  *
854  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
855  *                      struct rtnl_link_stats64 *storage);
856  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
857  *	Called when a user wants to get the network device usage
858  *	statistics. Drivers must do one of the following:
859  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
860  *	   rtnl_link_stats64 structure passed by the caller.
861  *	2. Define @ndo_get_stats to update a net_device_stats structure
862  *	   (which should normally be dev->stats) and return a pointer to
863  *	   it. The structure may be changed asynchronously only if each
864  *	   field is written atomically.
865  *	3. Update dev->stats asynchronously and atomically, and define
866  *	   neither operation.
867  *
868  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
869  *	If device support VLAN filtering this function is called when a
870  *	VLAN id is registered.
871  *
872  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
873  *	If device support VLAN filtering this function is called when a
874  *	VLAN id is unregistered.
875  *
876  * void (*ndo_poll_controller)(struct net_device *dev);
877  *
878  *	SR-IOV management functions.
879  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
880  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
881  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
882  *			  int max_tx_rate);
883  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
884  * int (*ndo_get_vf_config)(struct net_device *dev,
885  *			    int vf, struct ifla_vf_info *ivf);
886  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
887  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
888  *			  struct nlattr *port[]);
889  *
890  *      Enable or disable the VF ability to query its RSS Redirection Table and
891  *      Hash Key. This is needed since on some devices VF share this information
892  *      with PF and querying it may adduce a theoretical security risk.
893  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
894  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
895  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
896  * 	Called to setup 'tc' number of traffic classes in the net device. This
897  * 	is always called from the stack with the rtnl lock held and netif tx
898  * 	queues stopped. This allows the netdevice to perform queue management
899  * 	safely.
900  *
901  *	Fiber Channel over Ethernet (FCoE) offload functions.
902  * int (*ndo_fcoe_enable)(struct net_device *dev);
903  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
904  *	so the underlying device can perform whatever needed configuration or
905  *	initialization to support acceleration of FCoE traffic.
906  *
907  * int (*ndo_fcoe_disable)(struct net_device *dev);
908  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
909  *	so the underlying device can perform whatever needed clean-ups to
910  *	stop supporting acceleration of FCoE traffic.
911  *
912  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
913  *			     struct scatterlist *sgl, unsigned int sgc);
914  *	Called when the FCoE Initiator wants to initialize an I/O that
915  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
916  *	perform necessary setup and returns 1 to indicate the device is set up
917  *	successfully to perform DDP on this I/O, otherwise this returns 0.
918  *
919  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
920  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
921  *	indicated by the FC exchange id 'xid', so the underlying device can
922  *	clean up and reuse resources for later DDP requests.
923  *
924  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
925  *			      struct scatterlist *sgl, unsigned int sgc);
926  *	Called when the FCoE Target wants to initialize an I/O that
927  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
928  *	perform necessary setup and returns 1 to indicate the device is set up
929  *	successfully to perform DDP on this I/O, otherwise this returns 0.
930  *
931  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
932  *			       struct netdev_fcoe_hbainfo *hbainfo);
933  *	Called when the FCoE Protocol stack wants information on the underlying
934  *	device. This information is utilized by the FCoE protocol stack to
935  *	register attributes with Fiber Channel management service as per the
936  *	FC-GS Fabric Device Management Information(FDMI) specification.
937  *
938  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
939  *	Called when the underlying device wants to override default World Wide
940  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
941  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
942  *	protocol stack to use.
943  *
944  *	RFS acceleration.
945  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
946  *			    u16 rxq_index, u32 flow_id);
947  *	Set hardware filter for RFS.  rxq_index is the target queue index;
948  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
949  *	Return the filter ID on success, or a negative error code.
950  *
951  *	Slave management functions (for bridge, bonding, etc).
952  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
953  *	Called to make another netdev an underling.
954  *
955  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
956  *	Called to release previously enslaved netdev.
957  *
958  *      Feature/offload setting functions.
959  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
960  *		netdev_features_t features);
961  *	Adjusts the requested feature flags according to device-specific
962  *	constraints, and returns the resulting flags. Must not modify
963  *	the device state.
964  *
965  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
966  *	Called to update device configuration to new features. Passed
967  *	feature set might be less than what was returned by ndo_fix_features()).
968  *	Must return >0 or -errno if it changed dev->features itself.
969  *
970  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
971  *		      struct net_device *dev,
972  *		      const unsigned char *addr, u16 vid, u16 flags)
973  *	Adds an FDB entry to dev for addr.
974  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
975  *		      struct net_device *dev,
976  *		      const unsigned char *addr, u16 vid)
977  *	Deletes the FDB entry from dev coresponding to addr.
978  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
979  *		       struct net_device *dev, struct net_device *filter_dev,
980  *		       int idx)
981  *	Used to add FDB entries to dump requests. Implementers should add
982  *	entries to skb and update idx with the number of entries.
983  *
984  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
985  *			     u16 flags)
986  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
987  *			     struct net_device *dev, u32 filter_mask,
988  *			     int nlflags)
989  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
990  *			     u16 flags);
991  *
992  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
993  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
994  *	which do not represent real hardware may define this to allow their
995  *	userspace components to manage their virtual carrier state. Devices
996  *	that determine carrier state from physical hardware properties (eg
997  *	network cables) or protocol-dependent mechanisms (eg
998  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
999  *
1000  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1001  *			       struct netdev_phys_item_id *ppid);
1002  *	Called to get ID of physical port of this device. If driver does
1003  *	not implement this, it is assumed that the hw is not able to have
1004  *	multiple net devices on single physical port.
1005  *
1006  * void (*ndo_add_vxlan_port)(struct  net_device *dev,
1007  *			      sa_family_t sa_family, __be16 port);
1008  *	Called by vxlan to notiy a driver about the UDP port and socket
1009  *	address family that vxlan is listnening to. It is called only when
1010  *	a new port starts listening. The operation is protected by the
1011  *	vxlan_net->sock_lock.
1012  *
1013  * void (*ndo_del_vxlan_port)(struct  net_device *dev,
1014  *			      sa_family_t sa_family, __be16 port);
1015  *	Called by vxlan to notify the driver about a UDP port and socket
1016  *	address family that vxlan is not listening to anymore. The operation
1017  *	is protected by the vxlan_net->sock_lock.
1018  *
1019  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1020  *				 struct net_device *dev)
1021  *	Called by upper layer devices to accelerate switching or other
1022  *	station functionality into hardware. 'pdev is the lowerdev
1023  *	to use for the offload and 'dev' is the net device that will
1024  *	back the offload. Returns a pointer to the private structure
1025  *	the upper layer will maintain.
1026  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1027  *	Called by upper layer device to delete the station created
1028  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1029  *	the station and priv is the structure returned by the add
1030  *	operation.
1031  * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1032  *				      struct net_device *dev,
1033  *				      void *priv);
1034  *	Callback to use for xmit over the accelerated station. This
1035  *	is used in place of ndo_start_xmit on accelerated net
1036  *	devices.
1037  * netdev_features_t (*ndo_features_check) (struct sk_buff *skb,
1038  *					    struct net_device *dev
1039  *					    netdev_features_t features);
1040  *	Called by core transmit path to determine if device is capable of
1041  *	performing offload operations on a given packet. This is to give
1042  *	the device an opportunity to implement any restrictions that cannot
1043  *	be otherwise expressed by feature flags. The check is called with
1044  *	the set of features that the stack has calculated and it returns
1045  *	those the driver believes to be appropriate.
1046  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1047  *			     int queue_index, u32 maxrate);
1048  *	Called when a user wants to set a max-rate limitation of specific
1049  *	TX queue.
1050  * int (*ndo_get_iflink)(const struct net_device *dev);
1051  *	Called to get the iflink value of this device.
1052  * void (*ndo_change_proto_down)(struct net_device *dev,
1053  *				  bool proto_down);
1054  *	This function is used to pass protocol port error state information
1055  *	to the switch driver. The switch driver can react to the proto_down
1056  *      by doing a phys down on the associated switch port.
1057  *
1058  */
1059 struct net_device_ops {
1060 	int			(*ndo_init)(struct net_device *dev);
1061 	void			(*ndo_uninit)(struct net_device *dev);
1062 	int			(*ndo_open)(struct net_device *dev);
1063 	int			(*ndo_stop)(struct net_device *dev);
1064 	netdev_tx_t		(*ndo_start_xmit) (struct sk_buff *skb,
1065 						   struct net_device *dev);
1066 	u16			(*ndo_select_queue)(struct net_device *dev,
1067 						    struct sk_buff *skb,
1068 						    void *accel_priv,
1069 						    select_queue_fallback_t fallback);
1070 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1071 						       int flags);
1072 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1073 	int			(*ndo_set_mac_address)(struct net_device *dev,
1074 						       void *addr);
1075 	int			(*ndo_validate_addr)(struct net_device *dev);
1076 	int			(*ndo_do_ioctl)(struct net_device *dev,
1077 					        struct ifreq *ifr, int cmd);
1078 	int			(*ndo_set_config)(struct net_device *dev,
1079 					          struct ifmap *map);
1080 	int			(*ndo_change_mtu)(struct net_device *dev,
1081 						  int new_mtu);
1082 	int			(*ndo_neigh_setup)(struct net_device *dev,
1083 						   struct neigh_parms *);
1084 	void			(*ndo_tx_timeout) (struct net_device *dev);
1085 
1086 	struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1087 						     struct rtnl_link_stats64 *storage);
1088 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1089 
1090 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1091 						       __be16 proto, u16 vid);
1092 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1093 						        __be16 proto, u16 vid);
1094 #ifdef CONFIG_NET_POLL_CONTROLLER
1095 	void                    (*ndo_poll_controller)(struct net_device *dev);
1096 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1097 						     struct netpoll_info *info);
1098 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1099 #endif
1100 #ifdef CONFIG_NET_RX_BUSY_POLL
1101 	int			(*ndo_busy_poll)(struct napi_struct *dev);
1102 #endif
1103 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1104 						  int queue, u8 *mac);
1105 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1106 						   int queue, u16 vlan, u8 qos);
1107 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1108 						   int vf, int min_tx_rate,
1109 						   int max_tx_rate);
1110 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1111 						       int vf, bool setting);
1112 	int			(*ndo_get_vf_config)(struct net_device *dev,
1113 						     int vf,
1114 						     struct ifla_vf_info *ivf);
1115 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1116 							 int vf, int link_state);
1117 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1118 						    int vf,
1119 						    struct ifla_vf_stats
1120 						    *vf_stats);
1121 	int			(*ndo_set_vf_port)(struct net_device *dev,
1122 						   int vf,
1123 						   struct nlattr *port[]);
1124 	int			(*ndo_get_vf_port)(struct net_device *dev,
1125 						   int vf, struct sk_buff *skb);
1126 	int			(*ndo_set_vf_rss_query_en)(
1127 						   struct net_device *dev,
1128 						   int vf, bool setting);
1129 	int			(*ndo_setup_tc)(struct net_device *dev, u8 tc);
1130 #if IS_ENABLED(CONFIG_FCOE)
1131 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1132 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1133 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1134 						      u16 xid,
1135 						      struct scatterlist *sgl,
1136 						      unsigned int sgc);
1137 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1138 						     u16 xid);
1139 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1140 						       u16 xid,
1141 						       struct scatterlist *sgl,
1142 						       unsigned int sgc);
1143 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1144 							struct netdev_fcoe_hbainfo *hbainfo);
1145 #endif
1146 
1147 #if IS_ENABLED(CONFIG_LIBFCOE)
1148 #define NETDEV_FCOE_WWNN 0
1149 #define NETDEV_FCOE_WWPN 1
1150 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1151 						    u64 *wwn, int type);
1152 #endif
1153 
1154 #ifdef CONFIG_RFS_ACCEL
1155 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1156 						     const struct sk_buff *skb,
1157 						     u16 rxq_index,
1158 						     u32 flow_id);
1159 #endif
1160 	int			(*ndo_add_slave)(struct net_device *dev,
1161 						 struct net_device *slave_dev);
1162 	int			(*ndo_del_slave)(struct net_device *dev,
1163 						 struct net_device *slave_dev);
1164 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1165 						    netdev_features_t features);
1166 	int			(*ndo_set_features)(struct net_device *dev,
1167 						    netdev_features_t features);
1168 	int			(*ndo_neigh_construct)(struct neighbour *n);
1169 	void			(*ndo_neigh_destroy)(struct neighbour *n);
1170 
1171 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1172 					       struct nlattr *tb[],
1173 					       struct net_device *dev,
1174 					       const unsigned char *addr,
1175 					       u16 vid,
1176 					       u16 flags);
1177 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1178 					       struct nlattr *tb[],
1179 					       struct net_device *dev,
1180 					       const unsigned char *addr,
1181 					       u16 vid);
1182 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1183 						struct netlink_callback *cb,
1184 						struct net_device *dev,
1185 						struct net_device *filter_dev,
1186 						int idx);
1187 
1188 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1189 						      struct nlmsghdr *nlh,
1190 						      u16 flags);
1191 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1192 						      u32 pid, u32 seq,
1193 						      struct net_device *dev,
1194 						      u32 filter_mask,
1195 						      int nlflags);
1196 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1197 						      struct nlmsghdr *nlh,
1198 						      u16 flags);
1199 	int			(*ndo_change_carrier)(struct net_device *dev,
1200 						      bool new_carrier);
1201 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1202 							struct netdev_phys_item_id *ppid);
1203 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1204 							  char *name, size_t len);
1205 	void			(*ndo_add_vxlan_port)(struct  net_device *dev,
1206 						      sa_family_t sa_family,
1207 						      __be16 port);
1208 	void			(*ndo_del_vxlan_port)(struct  net_device *dev,
1209 						      sa_family_t sa_family,
1210 						      __be16 port);
1211 
1212 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1213 							struct net_device *dev);
1214 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1215 							void *priv);
1216 
1217 	netdev_tx_t		(*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1218 							struct net_device *dev,
1219 							void *priv);
1220 	int			(*ndo_get_lock_subclass)(struct net_device *dev);
1221 	netdev_features_t	(*ndo_features_check) (struct sk_buff *skb,
1222 						       struct net_device *dev,
1223 						       netdev_features_t features);
1224 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1225 						      int queue_index,
1226 						      u32 maxrate);
1227 	int			(*ndo_get_iflink)(const struct net_device *dev);
1228 	int			(*ndo_change_proto_down)(struct net_device *dev,
1229 							 bool proto_down);
1230 };
1231 
1232 /**
1233  * enum net_device_priv_flags - &struct net_device priv_flags
1234  *
1235  * These are the &struct net_device, they are only set internally
1236  * by drivers and used in the kernel. These flags are invisible to
1237  * userspace, this means that the order of these flags can change
1238  * during any kernel release.
1239  *
1240  * You should have a pretty good reason to be extending these flags.
1241  *
1242  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1243  * @IFF_EBRIDGE: Ethernet bridging device
1244  * @IFF_BONDING: bonding master or slave
1245  * @IFF_ISATAP: ISATAP interface (RFC4214)
1246  * @IFF_WAN_HDLC: WAN HDLC device
1247  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1248  *	release skb->dst
1249  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1250  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1251  * @IFF_MACVLAN_PORT: device used as macvlan port
1252  * @IFF_BRIDGE_PORT: device used as bridge port
1253  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1254  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1255  * @IFF_UNICAST_FLT: Supports unicast filtering
1256  * @IFF_TEAM_PORT: device used as team port
1257  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1258  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1259  *	change when it's running
1260  * @IFF_MACVLAN: Macvlan device
1261  * @IFF_L3MDEV_MASTER: device is an L3 master device
1262  * @IFF_NO_QUEUE: device can run without qdisc attached
1263  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1264  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1265  */
1266 enum netdev_priv_flags {
1267 	IFF_802_1Q_VLAN			= 1<<0,
1268 	IFF_EBRIDGE			= 1<<1,
1269 	IFF_BONDING			= 1<<2,
1270 	IFF_ISATAP			= 1<<3,
1271 	IFF_WAN_HDLC			= 1<<4,
1272 	IFF_XMIT_DST_RELEASE		= 1<<5,
1273 	IFF_DONT_BRIDGE			= 1<<6,
1274 	IFF_DISABLE_NETPOLL		= 1<<7,
1275 	IFF_MACVLAN_PORT		= 1<<8,
1276 	IFF_BRIDGE_PORT			= 1<<9,
1277 	IFF_OVS_DATAPATH		= 1<<10,
1278 	IFF_TX_SKB_SHARING		= 1<<11,
1279 	IFF_UNICAST_FLT			= 1<<12,
1280 	IFF_TEAM_PORT			= 1<<13,
1281 	IFF_SUPP_NOFCS			= 1<<14,
1282 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1283 	IFF_MACVLAN			= 1<<16,
1284 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1285 	IFF_IPVLAN_MASTER		= 1<<18,
1286 	IFF_IPVLAN_SLAVE		= 1<<19,
1287 	IFF_L3MDEV_MASTER		= 1<<20,
1288 	IFF_NO_QUEUE			= 1<<21,
1289 	IFF_OPENVSWITCH			= 1<<22,
1290 	IFF_L3MDEV_SLAVE		= 1<<23,
1291 };
1292 
1293 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1294 #define IFF_EBRIDGE			IFF_EBRIDGE
1295 #define IFF_BONDING			IFF_BONDING
1296 #define IFF_ISATAP			IFF_ISATAP
1297 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1298 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1299 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1300 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1301 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1302 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1303 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1304 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1305 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1306 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1307 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1308 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1309 #define IFF_MACVLAN			IFF_MACVLAN
1310 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1311 #define IFF_IPVLAN_MASTER		IFF_IPVLAN_MASTER
1312 #define IFF_IPVLAN_SLAVE		IFF_IPVLAN_SLAVE
1313 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1314 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1315 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1316 
1317 /**
1318  *	struct net_device - The DEVICE structure.
1319  *		Actually, this whole structure is a big mistake.  It mixes I/O
1320  *		data with strictly "high-level" data, and it has to know about
1321  *		almost every data structure used in the INET module.
1322  *
1323  *	@name:	This is the first field of the "visible" part of this structure
1324  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1325  *	 	of the interface.
1326  *
1327  *	@name_hlist: 	Device name hash chain, please keep it close to name[]
1328  *	@ifalias:	SNMP alias
1329  *	@mem_end:	Shared memory end
1330  *	@mem_start:	Shared memory start
1331  *	@base_addr:	Device I/O address
1332  *	@irq:		Device IRQ number
1333  *
1334  *	@carrier_changes:	Stats to monitor carrier on<->off transitions
1335  *
1336  *	@state:		Generic network queuing layer state, see netdev_state_t
1337  *	@dev_list:	The global list of network devices
1338  *	@napi_list:	List entry, that is used for polling napi devices
1339  *	@unreg_list:	List entry, that is used, when we are unregistering the
1340  *			device, see the function unregister_netdev
1341  *	@close_list:	List entry, that is used, when we are closing the device
1342  *
1343  *	@adj_list:	Directly linked devices, like slaves for bonding
1344  *	@all_adj_list:	All linked devices, *including* neighbours
1345  *	@features:	Currently active device features
1346  *	@hw_features:	User-changeable features
1347  *
1348  *	@wanted_features:	User-requested features
1349  *	@vlan_features:		Mask of features inheritable by VLAN devices
1350  *
1351  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1352  *				This field indicates what encapsulation
1353  *				offloads the hardware is capable of doing,
1354  *				and drivers will need to set them appropriately.
1355  *
1356  *	@mpls_features:	Mask of features inheritable by MPLS
1357  *
1358  *	@ifindex:	interface index
1359  *	@group:		The group, that the device belongs to
1360  *
1361  *	@stats:		Statistics struct, which was left as a legacy, use
1362  *			rtnl_link_stats64 instead
1363  *
1364  *	@rx_dropped:	Dropped packets by core network,
1365  *			do not use this in drivers
1366  *	@tx_dropped:	Dropped packets by core network,
1367  *			do not use this in drivers
1368  *
1369  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1370  *				instead of ioctl,
1371  *				see <net/iw_handler.h> for details.
1372  *	@wireless_data:	Instance data managed by the core of wireless extensions
1373  *
1374  *	@netdev_ops:	Includes several pointers to callbacks,
1375  *			if one wants to override the ndo_*() functions
1376  *	@ethtool_ops:	Management operations
1377  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1378  *			of Layer 2 headers.
1379  *
1380  *	@flags:		Interface flags (a la BSD)
1381  *	@priv_flags:	Like 'flags' but invisible to userspace,
1382  *			see if.h for the definitions
1383  *	@gflags:	Global flags ( kept as legacy )
1384  *	@padded:	How much padding added by alloc_netdev()
1385  *	@operstate:	RFC2863 operstate
1386  *	@link_mode:	Mapping policy to operstate
1387  *	@if_port:	Selectable AUI, TP, ...
1388  *	@dma:		DMA channel
1389  *	@mtu:		Interface MTU value
1390  *	@type:		Interface hardware type
1391  *	@hard_header_len: Hardware header length
1392  *
1393  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1394  *			  cases can this be guaranteed
1395  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1396  *			  cases can this be guaranteed. Some cases also use
1397  *			  LL_MAX_HEADER instead to allocate the skb
1398  *
1399  *	interface address info:
1400  *
1401  * 	@perm_addr:		Permanent hw address
1402  * 	@addr_assign_type:	Hw address assignment type
1403  * 	@addr_len:		Hardware address length
1404  * 	@neigh_priv_len;	Used in neigh_alloc(),
1405  * 				initialized only in atm/clip.c
1406  * 	@dev_id:		Used to differentiate devices that share
1407  * 				the same link layer address
1408  * 	@dev_port:		Used to differentiate devices that share
1409  * 				the same function
1410  *	@addr_list_lock:	XXX: need comments on this one
1411  *	@uc_promisc:		Counter, that indicates, that promiscuous mode
1412  *				has been enabled due to the need to listen to
1413  *				additional unicast addresses in a device that
1414  *				does not implement ndo_set_rx_mode()
1415  *	@uc:			unicast mac addresses
1416  *	@mc:			multicast mac addresses
1417  *	@dev_addrs:		list of device hw addresses
1418  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1419  *	@promiscuity:		Number of times, the NIC is told to work in
1420  *				Promiscuous mode, if it becomes 0 the NIC will
1421  *				exit from working in Promiscuous mode
1422  *	@allmulti:		Counter, enables or disables allmulticast mode
1423  *
1424  *	@vlan_info:	VLAN info
1425  *	@dsa_ptr:	dsa specific data
1426  *	@tipc_ptr:	TIPC specific data
1427  *	@atalk_ptr:	AppleTalk link
1428  *	@ip_ptr:	IPv4 specific data
1429  *	@dn_ptr:	DECnet specific data
1430  *	@ip6_ptr:	IPv6 specific data
1431  *	@ax25_ptr:	AX.25 specific data
1432  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1433  *
1434  *	@last_rx:	Time of last Rx
1435  *	@dev_addr:	Hw address (before bcast,
1436  *			because most packets are unicast)
1437  *
1438  *	@_rx:			Array of RX queues
1439  *	@num_rx_queues:		Number of RX queues
1440  *				allocated at register_netdev() time
1441  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1442  *
1443  *	@rx_handler:		handler for received packets
1444  *	@rx_handler_data: 	XXX: need comments on this one
1445  *	@ingress_queue:		XXX: need comments on this one
1446  *	@broadcast:		hw bcast address
1447  *
1448  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1449  *			indexed by RX queue number. Assigned by driver.
1450  *			This must only be set if the ndo_rx_flow_steer
1451  *			operation is defined
1452  *	@index_hlist:		Device index hash chain
1453  *
1454  *	@_tx:			Array of TX queues
1455  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1456  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1457  *	@qdisc:			Root qdisc from userspace point of view
1458  *	@tx_queue_len:		Max frames per queue allowed
1459  *	@tx_global_lock: 	XXX: need comments on this one
1460  *
1461  *	@xps_maps:	XXX: need comments on this one
1462  *
1463  *	@offload_fwd_mark:	Offload device fwding mark
1464  *
1465  *	@trans_start:		Time (in jiffies) of last Tx
1466  *	@watchdog_timeo:	Represents the timeout that is used by
1467  *				the watchdog ( see dev_watchdog() )
1468  *	@watchdog_timer:	List of timers
1469  *
1470  *	@pcpu_refcnt:		Number of references to this device
1471  *	@todo_list:		Delayed register/unregister
1472  *	@link_watch_list:	XXX: need comments on this one
1473  *
1474  *	@reg_state:		Register/unregister state machine
1475  *	@dismantle:		Device is going to be freed
1476  *	@rtnl_link_state:	This enum represents the phases of creating
1477  *				a new link
1478  *
1479  *	@destructor:		Called from unregister,
1480  *				can be used to call free_netdev
1481  *	@npinfo:		XXX: need comments on this one
1482  * 	@nd_net:		Network namespace this network device is inside
1483  *
1484  * 	@ml_priv:	Mid-layer private
1485  * 	@lstats:	Loopback statistics
1486  * 	@tstats:	Tunnel statistics
1487  * 	@dstats:	Dummy statistics
1488  * 	@vstats:	Virtual ethernet statistics
1489  *
1490  *	@garp_port:	GARP
1491  *	@mrp_port:	MRP
1492  *
1493  *	@dev:		Class/net/name entry
1494  *	@sysfs_groups:	Space for optional device, statistics and wireless
1495  *			sysfs groups
1496  *
1497  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1498  *	@rtnl_link_ops:	Rtnl_link_ops
1499  *
1500  *	@gso_max_size:	Maximum size of generic segmentation offload
1501  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1502  *			NIC for GSO
1503  *	@gso_min_segs:	Minimum number of segments that can be passed to the
1504  *			NIC for GSO
1505  *
1506  *	@dcbnl_ops:	Data Center Bridging netlink ops
1507  *	@num_tc:	Number of traffic classes in the net device
1508  *	@tc_to_txq:	XXX: need comments on this one
1509  *	@prio_tc_map	XXX: need comments on this one
1510  *
1511  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1512  *
1513  *	@priomap:	XXX: need comments on this one
1514  *	@phydev:	Physical device may attach itself
1515  *			for hardware timestamping
1516  *
1517  *	@qdisc_tx_busylock:	XXX: need comments on this one
1518  *
1519  *	@proto_down:	protocol port state information can be sent to the
1520  *			switch driver and used to set the phys state of the
1521  *			switch port.
1522  *
1523  *	FIXME: cleanup struct net_device such that network protocol info
1524  *	moves out.
1525  */
1526 
1527 struct net_device {
1528 	char			name[IFNAMSIZ];
1529 	struct hlist_node	name_hlist;
1530 	char 			*ifalias;
1531 	/*
1532 	 *	I/O specific fields
1533 	 *	FIXME: Merge these and struct ifmap into one
1534 	 */
1535 	unsigned long		mem_end;
1536 	unsigned long		mem_start;
1537 	unsigned long		base_addr;
1538 	int			irq;
1539 
1540 	atomic_t		carrier_changes;
1541 
1542 	/*
1543 	 *	Some hardware also needs these fields (state,dev_list,
1544 	 *	napi_list,unreg_list,close_list) but they are not
1545 	 *	part of the usual set specified in Space.c.
1546 	 */
1547 
1548 	unsigned long		state;
1549 
1550 	struct list_head	dev_list;
1551 	struct list_head	napi_list;
1552 	struct list_head	unreg_list;
1553 	struct list_head	close_list;
1554 	struct list_head	ptype_all;
1555 	struct list_head	ptype_specific;
1556 
1557 	struct {
1558 		struct list_head upper;
1559 		struct list_head lower;
1560 	} adj_list;
1561 
1562 	struct {
1563 		struct list_head upper;
1564 		struct list_head lower;
1565 	} all_adj_list;
1566 
1567 	netdev_features_t	features;
1568 	netdev_features_t	hw_features;
1569 	netdev_features_t	wanted_features;
1570 	netdev_features_t	vlan_features;
1571 	netdev_features_t	hw_enc_features;
1572 	netdev_features_t	mpls_features;
1573 
1574 	int			ifindex;
1575 	int			group;
1576 
1577 	struct net_device_stats	stats;
1578 
1579 	atomic_long_t		rx_dropped;
1580 	atomic_long_t		tx_dropped;
1581 
1582 #ifdef CONFIG_WIRELESS_EXT
1583 	const struct iw_handler_def *	wireless_handlers;
1584 	struct iw_public_data *	wireless_data;
1585 #endif
1586 	const struct net_device_ops *netdev_ops;
1587 	const struct ethtool_ops *ethtool_ops;
1588 #ifdef CONFIG_NET_SWITCHDEV
1589 	const struct switchdev_ops *switchdev_ops;
1590 #endif
1591 #ifdef CONFIG_NET_L3_MASTER_DEV
1592 	const struct l3mdev_ops	*l3mdev_ops;
1593 #endif
1594 
1595 	const struct header_ops *header_ops;
1596 
1597 	unsigned int		flags;
1598 	unsigned int		priv_flags;
1599 
1600 	unsigned short		gflags;
1601 	unsigned short		padded;
1602 
1603 	unsigned char		operstate;
1604 	unsigned char		link_mode;
1605 
1606 	unsigned char		if_port;
1607 	unsigned char		dma;
1608 
1609 	unsigned int		mtu;
1610 	unsigned short		type;
1611 	unsigned short		hard_header_len;
1612 
1613 	unsigned short		needed_headroom;
1614 	unsigned short		needed_tailroom;
1615 
1616 	/* Interface address info. */
1617 	unsigned char		perm_addr[MAX_ADDR_LEN];
1618 	unsigned char		addr_assign_type;
1619 	unsigned char		addr_len;
1620 	unsigned short		neigh_priv_len;
1621 	unsigned short          dev_id;
1622 	unsigned short          dev_port;
1623 	spinlock_t		addr_list_lock;
1624 	unsigned char		name_assign_type;
1625 	bool			uc_promisc;
1626 	struct netdev_hw_addr_list	uc;
1627 	struct netdev_hw_addr_list	mc;
1628 	struct netdev_hw_addr_list	dev_addrs;
1629 
1630 #ifdef CONFIG_SYSFS
1631 	struct kset		*queues_kset;
1632 #endif
1633 	unsigned int		promiscuity;
1634 	unsigned int		allmulti;
1635 
1636 
1637 	/* Protocol specific pointers */
1638 
1639 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1640 	struct vlan_info __rcu	*vlan_info;
1641 #endif
1642 #if IS_ENABLED(CONFIG_NET_DSA)
1643 	struct dsa_switch_tree	*dsa_ptr;
1644 #endif
1645 #if IS_ENABLED(CONFIG_TIPC)
1646 	struct tipc_bearer __rcu *tipc_ptr;
1647 #endif
1648 	void 			*atalk_ptr;
1649 	struct in_device __rcu	*ip_ptr;
1650 	struct dn_dev __rcu     *dn_ptr;
1651 	struct inet6_dev __rcu	*ip6_ptr;
1652 	void			*ax25_ptr;
1653 	struct wireless_dev	*ieee80211_ptr;
1654 	struct wpan_dev		*ieee802154_ptr;
1655 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1656 	struct mpls_dev __rcu	*mpls_ptr;
1657 #endif
1658 
1659 /*
1660  * Cache lines mostly used on receive path (including eth_type_trans())
1661  */
1662 	unsigned long		last_rx;
1663 
1664 	/* Interface address info used in eth_type_trans() */
1665 	unsigned char		*dev_addr;
1666 
1667 
1668 #ifdef CONFIG_SYSFS
1669 	struct netdev_rx_queue	*_rx;
1670 
1671 	unsigned int		num_rx_queues;
1672 	unsigned int		real_num_rx_queues;
1673 
1674 #endif
1675 
1676 	unsigned long		gro_flush_timeout;
1677 	rx_handler_func_t __rcu	*rx_handler;
1678 	void __rcu		*rx_handler_data;
1679 
1680 #ifdef CONFIG_NET_CLS_ACT
1681 	struct tcf_proto __rcu  *ingress_cl_list;
1682 #endif
1683 	struct netdev_queue __rcu *ingress_queue;
1684 #ifdef CONFIG_NETFILTER_INGRESS
1685 	struct list_head	nf_hooks_ingress;
1686 #endif
1687 
1688 	unsigned char		broadcast[MAX_ADDR_LEN];
1689 #ifdef CONFIG_RFS_ACCEL
1690 	struct cpu_rmap		*rx_cpu_rmap;
1691 #endif
1692 	struct hlist_node	index_hlist;
1693 
1694 /*
1695  * Cache lines mostly used on transmit path
1696  */
1697 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1698 	unsigned int		num_tx_queues;
1699 	unsigned int		real_num_tx_queues;
1700 	struct Qdisc		*qdisc;
1701 	unsigned long		tx_queue_len;
1702 	spinlock_t		tx_global_lock;
1703 	int			watchdog_timeo;
1704 
1705 #ifdef CONFIG_XPS
1706 	struct xps_dev_maps __rcu *xps_maps;
1707 #endif
1708 
1709 #ifdef CONFIG_NET_SWITCHDEV
1710 	u32			offload_fwd_mark;
1711 #endif
1712 
1713 	/* These may be needed for future network-power-down code. */
1714 
1715 	/*
1716 	 * trans_start here is expensive for high speed devices on SMP,
1717 	 * please use netdev_queue->trans_start instead.
1718 	 */
1719 	unsigned long		trans_start;
1720 
1721 	struct timer_list	watchdog_timer;
1722 
1723 	int __percpu		*pcpu_refcnt;
1724 	struct list_head	todo_list;
1725 
1726 	struct list_head	link_watch_list;
1727 
1728 	enum { NETREG_UNINITIALIZED=0,
1729 	       NETREG_REGISTERED,	/* completed register_netdevice */
1730 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1731 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1732 	       NETREG_RELEASED,		/* called free_netdev */
1733 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1734 	} reg_state:8;
1735 
1736 	bool dismantle;
1737 
1738 	enum {
1739 		RTNL_LINK_INITIALIZED,
1740 		RTNL_LINK_INITIALIZING,
1741 	} rtnl_link_state:16;
1742 
1743 	void (*destructor)(struct net_device *dev);
1744 
1745 #ifdef CONFIG_NETPOLL
1746 	struct netpoll_info __rcu	*npinfo;
1747 #endif
1748 
1749 	possible_net_t			nd_net;
1750 
1751 	/* mid-layer private */
1752 	union {
1753 		void					*ml_priv;
1754 		struct pcpu_lstats __percpu		*lstats;
1755 		struct pcpu_sw_netstats __percpu	*tstats;
1756 		struct pcpu_dstats __percpu		*dstats;
1757 		struct pcpu_vstats __percpu		*vstats;
1758 	};
1759 
1760 	struct garp_port __rcu	*garp_port;
1761 	struct mrp_port __rcu	*mrp_port;
1762 
1763 	struct device	dev;
1764 	const struct attribute_group *sysfs_groups[4];
1765 	const struct attribute_group *sysfs_rx_queue_group;
1766 
1767 	const struct rtnl_link_ops *rtnl_link_ops;
1768 
1769 	/* for setting kernel sock attribute on TCP connection setup */
1770 #define GSO_MAX_SIZE		65536
1771 	unsigned int		gso_max_size;
1772 #define GSO_MAX_SEGS		65535
1773 	u16			gso_max_segs;
1774 	u16			gso_min_segs;
1775 #ifdef CONFIG_DCB
1776 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1777 #endif
1778 	u8 num_tc;
1779 	struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1780 	u8 prio_tc_map[TC_BITMASK + 1];
1781 
1782 #if IS_ENABLED(CONFIG_FCOE)
1783 	unsigned int		fcoe_ddp_xid;
1784 #endif
1785 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1786 	struct netprio_map __rcu *priomap;
1787 #endif
1788 	struct phy_device *phydev;
1789 	struct lock_class_key *qdisc_tx_busylock;
1790 	bool proto_down;
1791 };
1792 #define to_net_dev(d) container_of(d, struct net_device, dev)
1793 
1794 #define	NETDEV_ALIGN		32
1795 
1796 static inline
1797 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1798 {
1799 	return dev->prio_tc_map[prio & TC_BITMASK];
1800 }
1801 
1802 static inline
1803 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1804 {
1805 	if (tc >= dev->num_tc)
1806 		return -EINVAL;
1807 
1808 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1809 	return 0;
1810 }
1811 
1812 static inline
1813 void netdev_reset_tc(struct net_device *dev)
1814 {
1815 	dev->num_tc = 0;
1816 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1817 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1818 }
1819 
1820 static inline
1821 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1822 {
1823 	if (tc >= dev->num_tc)
1824 		return -EINVAL;
1825 
1826 	dev->tc_to_txq[tc].count = count;
1827 	dev->tc_to_txq[tc].offset = offset;
1828 	return 0;
1829 }
1830 
1831 static inline
1832 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1833 {
1834 	if (num_tc > TC_MAX_QUEUE)
1835 		return -EINVAL;
1836 
1837 	dev->num_tc = num_tc;
1838 	return 0;
1839 }
1840 
1841 static inline
1842 int netdev_get_num_tc(struct net_device *dev)
1843 {
1844 	return dev->num_tc;
1845 }
1846 
1847 static inline
1848 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1849 					 unsigned int index)
1850 {
1851 	return &dev->_tx[index];
1852 }
1853 
1854 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1855 						    const struct sk_buff *skb)
1856 {
1857 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1858 }
1859 
1860 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1861 					    void (*f)(struct net_device *,
1862 						      struct netdev_queue *,
1863 						      void *),
1864 					    void *arg)
1865 {
1866 	unsigned int i;
1867 
1868 	for (i = 0; i < dev->num_tx_queues; i++)
1869 		f(dev, &dev->_tx[i], arg);
1870 }
1871 
1872 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1873 				    struct sk_buff *skb,
1874 				    void *accel_priv);
1875 
1876 /*
1877  * Net namespace inlines
1878  */
1879 static inline
1880 struct net *dev_net(const struct net_device *dev)
1881 {
1882 	return read_pnet(&dev->nd_net);
1883 }
1884 
1885 static inline
1886 void dev_net_set(struct net_device *dev, struct net *net)
1887 {
1888 	write_pnet(&dev->nd_net, net);
1889 }
1890 
1891 static inline bool netdev_uses_dsa(struct net_device *dev)
1892 {
1893 #if IS_ENABLED(CONFIG_NET_DSA)
1894 	if (dev->dsa_ptr != NULL)
1895 		return dsa_uses_tagged_protocol(dev->dsa_ptr);
1896 #endif
1897 	return false;
1898 }
1899 
1900 /**
1901  *	netdev_priv - access network device private data
1902  *	@dev: network device
1903  *
1904  * Get network device private data
1905  */
1906 static inline void *netdev_priv(const struct net_device *dev)
1907 {
1908 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1909 }
1910 
1911 /* Set the sysfs physical device reference for the network logical device
1912  * if set prior to registration will cause a symlink during initialization.
1913  */
1914 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
1915 
1916 /* Set the sysfs device type for the network logical device to allow
1917  * fine-grained identification of different network device types. For
1918  * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1919  */
1920 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
1921 
1922 /* Default NAPI poll() weight
1923  * Device drivers are strongly advised to not use bigger value
1924  */
1925 #define NAPI_POLL_WEIGHT 64
1926 
1927 /**
1928  *	netif_napi_add - initialize a napi context
1929  *	@dev:  network device
1930  *	@napi: napi context
1931  *	@poll: polling function
1932  *	@weight: default weight
1933  *
1934  * netif_napi_add() must be used to initialize a napi context prior to calling
1935  * *any* of the other napi related functions.
1936  */
1937 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1938 		    int (*poll)(struct napi_struct *, int), int weight);
1939 
1940 /**
1941  *  netif_napi_del - remove a napi context
1942  *  @napi: napi context
1943  *
1944  *  netif_napi_del() removes a napi context from the network device napi list
1945  */
1946 void netif_napi_del(struct napi_struct *napi);
1947 
1948 struct napi_gro_cb {
1949 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1950 	void *frag0;
1951 
1952 	/* Length of frag0. */
1953 	unsigned int frag0_len;
1954 
1955 	/* This indicates where we are processing relative to skb->data. */
1956 	int data_offset;
1957 
1958 	/* This is non-zero if the packet cannot be merged with the new skb. */
1959 	u16	flush;
1960 
1961 	/* Save the IP ID here and check when we get to the transport layer */
1962 	u16	flush_id;
1963 
1964 	/* Number of segments aggregated. */
1965 	u16	count;
1966 
1967 	/* Start offset for remote checksum offload */
1968 	u16	gro_remcsum_start;
1969 
1970 	/* jiffies when first packet was created/queued */
1971 	unsigned long age;
1972 
1973 	/* Used in ipv6_gro_receive() and foo-over-udp */
1974 	u16	proto;
1975 
1976 	/* This is non-zero if the packet may be of the same flow. */
1977 	u8	same_flow:1;
1978 
1979 	/* Used in udp_gro_receive */
1980 	u8	udp_mark:1;
1981 
1982 	/* GRO checksum is valid */
1983 	u8	csum_valid:1;
1984 
1985 	/* Number of checksums via CHECKSUM_UNNECESSARY */
1986 	u8	csum_cnt:3;
1987 
1988 	/* Free the skb? */
1989 	u8	free:2;
1990 #define NAPI_GRO_FREE		  1
1991 #define NAPI_GRO_FREE_STOLEN_HEAD 2
1992 
1993 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
1994 	u8	is_ipv6:1;
1995 
1996 	/* 7 bit hole */
1997 
1998 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
1999 	__wsum	csum;
2000 
2001 	/* used in skb_gro_receive() slow path */
2002 	struct sk_buff *last;
2003 };
2004 
2005 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2006 
2007 struct packet_type {
2008 	__be16			type;	/* This is really htons(ether_type). */
2009 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2010 	int			(*func) (struct sk_buff *,
2011 					 struct net_device *,
2012 					 struct packet_type *,
2013 					 struct net_device *);
2014 	bool			(*id_match)(struct packet_type *ptype,
2015 					    struct sock *sk);
2016 	void			*af_packet_priv;
2017 	struct list_head	list;
2018 };
2019 
2020 struct offload_callbacks {
2021 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2022 						netdev_features_t features);
2023 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
2024 						 struct sk_buff *skb);
2025 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2026 };
2027 
2028 struct packet_offload {
2029 	__be16			 type;	/* This is really htons(ether_type). */
2030 	u16			 priority;
2031 	struct offload_callbacks callbacks;
2032 	struct list_head	 list;
2033 };
2034 
2035 struct udp_offload;
2036 
2037 struct udp_offload_callbacks {
2038 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
2039 						 struct sk_buff *skb,
2040 						 struct udp_offload *uoff);
2041 	int			(*gro_complete)(struct sk_buff *skb,
2042 						int nhoff,
2043 						struct udp_offload *uoff);
2044 };
2045 
2046 struct udp_offload {
2047 	__be16			 port;
2048 	u8			 ipproto;
2049 	struct udp_offload_callbacks callbacks;
2050 };
2051 
2052 /* often modified stats are per cpu, other are shared (netdev->stats) */
2053 struct pcpu_sw_netstats {
2054 	u64     rx_packets;
2055 	u64     rx_bytes;
2056 	u64     tx_packets;
2057 	u64     tx_bytes;
2058 	struct u64_stats_sync   syncp;
2059 };
2060 
2061 #define netdev_alloc_pcpu_stats(type)				\
2062 ({								\
2063 	typeof(type) __percpu *pcpu_stats = alloc_percpu(type); \
2064 	if (pcpu_stats)	{					\
2065 		int __cpu;					\
2066 		for_each_possible_cpu(__cpu) {			\
2067 			typeof(type) *stat;			\
2068 			stat = per_cpu_ptr(pcpu_stats, __cpu);	\
2069 			u64_stats_init(&stat->syncp);		\
2070 		}						\
2071 	}							\
2072 	pcpu_stats;						\
2073 })
2074 
2075 #include <linux/notifier.h>
2076 
2077 /* netdevice notifier chain. Please remember to update the rtnetlink
2078  * notification exclusion list in rtnetlink_event() when adding new
2079  * types.
2080  */
2081 #define NETDEV_UP	0x0001	/* For now you can't veto a device up/down */
2082 #define NETDEV_DOWN	0x0002
2083 #define NETDEV_REBOOT	0x0003	/* Tell a protocol stack a network interface
2084 				   detected a hardware crash and restarted
2085 				   - we can use this eg to kick tcp sessions
2086 				   once done */
2087 #define NETDEV_CHANGE	0x0004	/* Notify device state change */
2088 #define NETDEV_REGISTER 0x0005
2089 #define NETDEV_UNREGISTER	0x0006
2090 #define NETDEV_CHANGEMTU	0x0007 /* notify after mtu change happened */
2091 #define NETDEV_CHANGEADDR	0x0008
2092 #define NETDEV_GOING_DOWN	0x0009
2093 #define NETDEV_CHANGENAME	0x000A
2094 #define NETDEV_FEAT_CHANGE	0x000B
2095 #define NETDEV_BONDING_FAILOVER 0x000C
2096 #define NETDEV_PRE_UP		0x000D
2097 #define NETDEV_PRE_TYPE_CHANGE	0x000E
2098 #define NETDEV_POST_TYPE_CHANGE	0x000F
2099 #define NETDEV_POST_INIT	0x0010
2100 #define NETDEV_UNREGISTER_FINAL 0x0011
2101 #define NETDEV_RELEASE		0x0012
2102 #define NETDEV_NOTIFY_PEERS	0x0013
2103 #define NETDEV_JOIN		0x0014
2104 #define NETDEV_CHANGEUPPER	0x0015
2105 #define NETDEV_RESEND_IGMP	0x0016
2106 #define NETDEV_PRECHANGEMTU	0x0017 /* notify before mtu change happened */
2107 #define NETDEV_CHANGEINFODATA	0x0018
2108 #define NETDEV_BONDING_INFO	0x0019
2109 
2110 int register_netdevice_notifier(struct notifier_block *nb);
2111 int unregister_netdevice_notifier(struct notifier_block *nb);
2112 
2113 struct netdev_notifier_info {
2114 	struct net_device *dev;
2115 };
2116 
2117 struct netdev_notifier_change_info {
2118 	struct netdev_notifier_info info; /* must be first */
2119 	unsigned int flags_changed;
2120 };
2121 
2122 struct netdev_notifier_changeupper_info {
2123 	struct netdev_notifier_info info; /* must be first */
2124 	struct net_device *upper_dev; /* new upper dev */
2125 	bool master; /* is upper dev master */
2126 	bool linking; /* is the nofication for link or unlink */
2127 };
2128 
2129 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2130 					     struct net_device *dev)
2131 {
2132 	info->dev = dev;
2133 }
2134 
2135 static inline struct net_device *
2136 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2137 {
2138 	return info->dev;
2139 }
2140 
2141 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2142 
2143 
2144 extern rwlock_t				dev_base_lock;		/* Device list lock */
2145 
2146 #define for_each_netdev(net, d)		\
2147 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2148 #define for_each_netdev_reverse(net, d)	\
2149 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2150 #define for_each_netdev_rcu(net, d)		\
2151 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2152 #define for_each_netdev_safe(net, d, n)	\
2153 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2154 #define for_each_netdev_continue(net, d)		\
2155 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2156 #define for_each_netdev_continue_rcu(net, d)		\
2157 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2158 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2159 		for_each_netdev_rcu(&init_net, slave)	\
2160 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2161 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2162 
2163 static inline struct net_device *next_net_device(struct net_device *dev)
2164 {
2165 	struct list_head *lh;
2166 	struct net *net;
2167 
2168 	net = dev_net(dev);
2169 	lh = dev->dev_list.next;
2170 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2171 }
2172 
2173 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2174 {
2175 	struct list_head *lh;
2176 	struct net *net;
2177 
2178 	net = dev_net(dev);
2179 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2180 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2181 }
2182 
2183 static inline struct net_device *first_net_device(struct net *net)
2184 {
2185 	return list_empty(&net->dev_base_head) ? NULL :
2186 		net_device_entry(net->dev_base_head.next);
2187 }
2188 
2189 static inline struct net_device *first_net_device_rcu(struct net *net)
2190 {
2191 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2192 
2193 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2194 }
2195 
2196 int netdev_boot_setup_check(struct net_device *dev);
2197 unsigned long netdev_boot_base(const char *prefix, int unit);
2198 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2199 				       const char *hwaddr);
2200 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2201 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2202 void dev_add_pack(struct packet_type *pt);
2203 void dev_remove_pack(struct packet_type *pt);
2204 void __dev_remove_pack(struct packet_type *pt);
2205 void dev_add_offload(struct packet_offload *po);
2206 void dev_remove_offload(struct packet_offload *po);
2207 
2208 int dev_get_iflink(const struct net_device *dev);
2209 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2210 				      unsigned short mask);
2211 struct net_device *dev_get_by_name(struct net *net, const char *name);
2212 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2213 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2214 int dev_alloc_name(struct net_device *dev, const char *name);
2215 int dev_open(struct net_device *dev);
2216 int dev_close(struct net_device *dev);
2217 int dev_close_many(struct list_head *head, bool unlink);
2218 void dev_disable_lro(struct net_device *dev);
2219 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2220 int dev_queue_xmit(struct sk_buff *skb);
2221 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2222 int register_netdevice(struct net_device *dev);
2223 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2224 void unregister_netdevice_many(struct list_head *head);
2225 static inline void unregister_netdevice(struct net_device *dev)
2226 {
2227 	unregister_netdevice_queue(dev, NULL);
2228 }
2229 
2230 int netdev_refcnt_read(const struct net_device *dev);
2231 void free_netdev(struct net_device *dev);
2232 void netdev_freemem(struct net_device *dev);
2233 void synchronize_net(void);
2234 int init_dummy_netdev(struct net_device *dev);
2235 
2236 DECLARE_PER_CPU(int, xmit_recursion);
2237 static inline int dev_recursion_level(void)
2238 {
2239 	return this_cpu_read(xmit_recursion);
2240 }
2241 
2242 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2243 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2244 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2245 int netdev_get_name(struct net *net, char *name, int ifindex);
2246 int dev_restart(struct net_device *dev);
2247 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2248 
2249 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2250 {
2251 	return NAPI_GRO_CB(skb)->data_offset;
2252 }
2253 
2254 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2255 {
2256 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2257 }
2258 
2259 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2260 {
2261 	NAPI_GRO_CB(skb)->data_offset += len;
2262 }
2263 
2264 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2265 					unsigned int offset)
2266 {
2267 	return NAPI_GRO_CB(skb)->frag0 + offset;
2268 }
2269 
2270 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2271 {
2272 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2273 }
2274 
2275 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2276 					unsigned int offset)
2277 {
2278 	if (!pskb_may_pull(skb, hlen))
2279 		return NULL;
2280 
2281 	NAPI_GRO_CB(skb)->frag0 = NULL;
2282 	NAPI_GRO_CB(skb)->frag0_len = 0;
2283 	return skb->data + offset;
2284 }
2285 
2286 static inline void *skb_gro_network_header(struct sk_buff *skb)
2287 {
2288 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2289 	       skb_network_offset(skb);
2290 }
2291 
2292 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2293 					const void *start, unsigned int len)
2294 {
2295 	if (NAPI_GRO_CB(skb)->csum_valid)
2296 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2297 						  csum_partial(start, len, 0));
2298 }
2299 
2300 /* GRO checksum functions. These are logical equivalents of the normal
2301  * checksum functions (in skbuff.h) except that they operate on the GRO
2302  * offsets and fields in sk_buff.
2303  */
2304 
2305 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2306 
2307 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2308 {
2309 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2310 }
2311 
2312 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2313 						      bool zero_okay,
2314 						      __sum16 check)
2315 {
2316 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2317 		skb_checksum_start_offset(skb) <
2318 		 skb_gro_offset(skb)) &&
2319 		!skb_at_gro_remcsum_start(skb) &&
2320 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2321 		(!zero_okay || check));
2322 }
2323 
2324 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2325 							   __wsum psum)
2326 {
2327 	if (NAPI_GRO_CB(skb)->csum_valid &&
2328 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2329 		return 0;
2330 
2331 	NAPI_GRO_CB(skb)->csum = psum;
2332 
2333 	return __skb_gro_checksum_complete(skb);
2334 }
2335 
2336 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2337 {
2338 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2339 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2340 		NAPI_GRO_CB(skb)->csum_cnt--;
2341 	} else {
2342 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2343 		 * verified a new top level checksum or an encapsulated one
2344 		 * during GRO. This saves work if we fallback to normal path.
2345 		 */
2346 		__skb_incr_checksum_unnecessary(skb);
2347 	}
2348 }
2349 
2350 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2351 				    compute_pseudo)			\
2352 ({									\
2353 	__sum16 __ret = 0;						\
2354 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2355 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2356 				compute_pseudo(skb, proto));		\
2357 	if (__ret)							\
2358 		__skb_mark_checksum_bad(skb);				\
2359 	else								\
2360 		skb_gro_incr_csum_unnecessary(skb);			\
2361 	__ret;								\
2362 })
2363 
2364 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2365 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2366 
2367 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2368 					     compute_pseudo)		\
2369 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2370 
2371 #define skb_gro_checksum_simple_validate(skb)				\
2372 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2373 
2374 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2375 {
2376 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2377 		!NAPI_GRO_CB(skb)->csum_valid);
2378 }
2379 
2380 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2381 					      __sum16 check, __wsum pseudo)
2382 {
2383 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2384 	NAPI_GRO_CB(skb)->csum_valid = 1;
2385 }
2386 
2387 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2388 do {									\
2389 	if (__skb_gro_checksum_convert_check(skb))			\
2390 		__skb_gro_checksum_convert(skb, check,			\
2391 					   compute_pseudo(skb, proto));	\
2392 } while (0)
2393 
2394 struct gro_remcsum {
2395 	int offset;
2396 	__wsum delta;
2397 };
2398 
2399 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2400 {
2401 	grc->offset = 0;
2402 	grc->delta = 0;
2403 }
2404 
2405 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2406 					    unsigned int off, size_t hdrlen,
2407 					    int start, int offset,
2408 					    struct gro_remcsum *grc,
2409 					    bool nopartial)
2410 {
2411 	__wsum delta;
2412 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2413 
2414 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2415 
2416 	if (!nopartial) {
2417 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2418 		return ptr;
2419 	}
2420 
2421 	ptr = skb_gro_header_fast(skb, off);
2422 	if (skb_gro_header_hard(skb, off + plen)) {
2423 		ptr = skb_gro_header_slow(skb, off + plen, off);
2424 		if (!ptr)
2425 			return NULL;
2426 	}
2427 
2428 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2429 			       start, offset);
2430 
2431 	/* Adjust skb->csum since we changed the packet */
2432 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2433 
2434 	grc->offset = off + hdrlen + offset;
2435 	grc->delta = delta;
2436 
2437 	return ptr;
2438 }
2439 
2440 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2441 					   struct gro_remcsum *grc)
2442 {
2443 	void *ptr;
2444 	size_t plen = grc->offset + sizeof(u16);
2445 
2446 	if (!grc->delta)
2447 		return;
2448 
2449 	ptr = skb_gro_header_fast(skb, grc->offset);
2450 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2451 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
2452 		if (!ptr)
2453 			return;
2454 	}
2455 
2456 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
2457 }
2458 
2459 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2460 				  unsigned short type,
2461 				  const void *daddr, const void *saddr,
2462 				  unsigned int len)
2463 {
2464 	if (!dev->header_ops || !dev->header_ops->create)
2465 		return 0;
2466 
2467 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2468 }
2469 
2470 static inline int dev_parse_header(const struct sk_buff *skb,
2471 				   unsigned char *haddr)
2472 {
2473 	const struct net_device *dev = skb->dev;
2474 
2475 	if (!dev->header_ops || !dev->header_ops->parse)
2476 		return 0;
2477 	return dev->header_ops->parse(skb, haddr);
2478 }
2479 
2480 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2481 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2482 static inline int unregister_gifconf(unsigned int family)
2483 {
2484 	return register_gifconf(family, NULL);
2485 }
2486 
2487 #ifdef CONFIG_NET_FLOW_LIMIT
2488 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2489 struct sd_flow_limit {
2490 	u64			count;
2491 	unsigned int		num_buckets;
2492 	unsigned int		history_head;
2493 	u16			history[FLOW_LIMIT_HISTORY];
2494 	u8			buckets[];
2495 };
2496 
2497 extern int netdev_flow_limit_table_len;
2498 #endif /* CONFIG_NET_FLOW_LIMIT */
2499 
2500 /*
2501  * Incoming packets are placed on per-cpu queues
2502  */
2503 struct softnet_data {
2504 	struct list_head	poll_list;
2505 	struct sk_buff_head	process_queue;
2506 
2507 	/* stats */
2508 	unsigned int		processed;
2509 	unsigned int		time_squeeze;
2510 	unsigned int		cpu_collision;
2511 	unsigned int		received_rps;
2512 #ifdef CONFIG_RPS
2513 	struct softnet_data	*rps_ipi_list;
2514 #endif
2515 #ifdef CONFIG_NET_FLOW_LIMIT
2516 	struct sd_flow_limit __rcu *flow_limit;
2517 #endif
2518 	struct Qdisc		*output_queue;
2519 	struct Qdisc		**output_queue_tailp;
2520 	struct sk_buff		*completion_queue;
2521 
2522 #ifdef CONFIG_RPS
2523 	/* Elements below can be accessed between CPUs for RPS */
2524 	struct call_single_data	csd ____cacheline_aligned_in_smp;
2525 	struct softnet_data	*rps_ipi_next;
2526 	unsigned int		cpu;
2527 	unsigned int		input_queue_head;
2528 	unsigned int		input_queue_tail;
2529 #endif
2530 	unsigned int		dropped;
2531 	struct sk_buff_head	input_pkt_queue;
2532 	struct napi_struct	backlog;
2533 
2534 };
2535 
2536 static inline void input_queue_head_incr(struct softnet_data *sd)
2537 {
2538 #ifdef CONFIG_RPS
2539 	sd->input_queue_head++;
2540 #endif
2541 }
2542 
2543 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2544 					      unsigned int *qtail)
2545 {
2546 #ifdef CONFIG_RPS
2547 	*qtail = ++sd->input_queue_tail;
2548 #endif
2549 }
2550 
2551 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2552 
2553 void __netif_schedule(struct Qdisc *q);
2554 void netif_schedule_queue(struct netdev_queue *txq);
2555 
2556 static inline void netif_tx_schedule_all(struct net_device *dev)
2557 {
2558 	unsigned int i;
2559 
2560 	for (i = 0; i < dev->num_tx_queues; i++)
2561 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
2562 }
2563 
2564 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2565 {
2566 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2567 }
2568 
2569 /**
2570  *	netif_start_queue - allow transmit
2571  *	@dev: network device
2572  *
2573  *	Allow upper layers to call the device hard_start_xmit routine.
2574  */
2575 static inline void netif_start_queue(struct net_device *dev)
2576 {
2577 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2578 }
2579 
2580 static inline void netif_tx_start_all_queues(struct net_device *dev)
2581 {
2582 	unsigned int i;
2583 
2584 	for (i = 0; i < dev->num_tx_queues; i++) {
2585 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2586 		netif_tx_start_queue(txq);
2587 	}
2588 }
2589 
2590 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2591 
2592 /**
2593  *	netif_wake_queue - restart transmit
2594  *	@dev: network device
2595  *
2596  *	Allow upper layers to call the device hard_start_xmit routine.
2597  *	Used for flow control when transmit resources are available.
2598  */
2599 static inline void netif_wake_queue(struct net_device *dev)
2600 {
2601 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2602 }
2603 
2604 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2605 {
2606 	unsigned int i;
2607 
2608 	for (i = 0; i < dev->num_tx_queues; i++) {
2609 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2610 		netif_tx_wake_queue(txq);
2611 	}
2612 }
2613 
2614 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2615 {
2616 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2617 }
2618 
2619 /**
2620  *	netif_stop_queue - stop transmitted packets
2621  *	@dev: network device
2622  *
2623  *	Stop upper layers calling the device hard_start_xmit routine.
2624  *	Used for flow control when transmit resources are unavailable.
2625  */
2626 static inline void netif_stop_queue(struct net_device *dev)
2627 {
2628 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2629 }
2630 
2631 void netif_tx_stop_all_queues(struct net_device *dev);
2632 
2633 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2634 {
2635 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2636 }
2637 
2638 /**
2639  *	netif_queue_stopped - test if transmit queue is flowblocked
2640  *	@dev: network device
2641  *
2642  *	Test if transmit queue on device is currently unable to send.
2643  */
2644 static inline bool netif_queue_stopped(const struct net_device *dev)
2645 {
2646 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2647 }
2648 
2649 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2650 {
2651 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2652 }
2653 
2654 static inline bool
2655 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2656 {
2657 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2658 }
2659 
2660 static inline bool
2661 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2662 {
2663 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2664 }
2665 
2666 /**
2667  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2668  *	@dev_queue: pointer to transmit queue
2669  *
2670  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2671  * to give appropriate hint to the cpu.
2672  */
2673 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2674 {
2675 #ifdef CONFIG_BQL
2676 	prefetchw(&dev_queue->dql.num_queued);
2677 #endif
2678 }
2679 
2680 /**
2681  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2682  *	@dev_queue: pointer to transmit queue
2683  *
2684  * BQL enabled drivers might use this helper in their TX completion path,
2685  * to give appropriate hint to the cpu.
2686  */
2687 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2688 {
2689 #ifdef CONFIG_BQL
2690 	prefetchw(&dev_queue->dql.limit);
2691 #endif
2692 }
2693 
2694 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2695 					unsigned int bytes)
2696 {
2697 #ifdef CONFIG_BQL
2698 	dql_queued(&dev_queue->dql, bytes);
2699 
2700 	if (likely(dql_avail(&dev_queue->dql) >= 0))
2701 		return;
2702 
2703 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2704 
2705 	/*
2706 	 * The XOFF flag must be set before checking the dql_avail below,
2707 	 * because in netdev_tx_completed_queue we update the dql_completed
2708 	 * before checking the XOFF flag.
2709 	 */
2710 	smp_mb();
2711 
2712 	/* check again in case another CPU has just made room avail */
2713 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2714 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2715 #endif
2716 }
2717 
2718 /**
2719  * 	netdev_sent_queue - report the number of bytes queued to hardware
2720  * 	@dev: network device
2721  * 	@bytes: number of bytes queued to the hardware device queue
2722  *
2723  * 	Report the number of bytes queued for sending/completion to the network
2724  * 	device hardware queue. @bytes should be a good approximation and should
2725  * 	exactly match netdev_completed_queue() @bytes
2726  */
2727 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2728 {
2729 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2730 }
2731 
2732 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2733 					     unsigned int pkts, unsigned int bytes)
2734 {
2735 #ifdef CONFIG_BQL
2736 	if (unlikely(!bytes))
2737 		return;
2738 
2739 	dql_completed(&dev_queue->dql, bytes);
2740 
2741 	/*
2742 	 * Without the memory barrier there is a small possiblity that
2743 	 * netdev_tx_sent_queue will miss the update and cause the queue to
2744 	 * be stopped forever
2745 	 */
2746 	smp_mb();
2747 
2748 	if (dql_avail(&dev_queue->dql) < 0)
2749 		return;
2750 
2751 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2752 		netif_schedule_queue(dev_queue);
2753 #endif
2754 }
2755 
2756 /**
2757  * 	netdev_completed_queue - report bytes and packets completed by device
2758  * 	@dev: network device
2759  * 	@pkts: actual number of packets sent over the medium
2760  * 	@bytes: actual number of bytes sent over the medium
2761  *
2762  * 	Report the number of bytes and packets transmitted by the network device
2763  * 	hardware queue over the physical medium, @bytes must exactly match the
2764  * 	@bytes amount passed to netdev_sent_queue()
2765  */
2766 static inline void netdev_completed_queue(struct net_device *dev,
2767 					  unsigned int pkts, unsigned int bytes)
2768 {
2769 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2770 }
2771 
2772 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2773 {
2774 #ifdef CONFIG_BQL
2775 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2776 	dql_reset(&q->dql);
2777 #endif
2778 }
2779 
2780 /**
2781  * 	netdev_reset_queue - reset the packets and bytes count of a network device
2782  * 	@dev_queue: network device
2783  *
2784  * 	Reset the bytes and packet count of a network device and clear the
2785  * 	software flow control OFF bit for this network device
2786  */
2787 static inline void netdev_reset_queue(struct net_device *dev_queue)
2788 {
2789 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2790 }
2791 
2792 /**
2793  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
2794  * 	@dev: network device
2795  * 	@queue_index: given tx queue index
2796  *
2797  * 	Returns 0 if given tx queue index >= number of device tx queues,
2798  * 	otherwise returns the originally passed tx queue index.
2799  */
2800 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
2801 {
2802 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2803 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2804 				     dev->name, queue_index,
2805 				     dev->real_num_tx_queues);
2806 		return 0;
2807 	}
2808 
2809 	return queue_index;
2810 }
2811 
2812 /**
2813  *	netif_running - test if up
2814  *	@dev: network device
2815  *
2816  *	Test if the device has been brought up.
2817  */
2818 static inline bool netif_running(const struct net_device *dev)
2819 {
2820 	return test_bit(__LINK_STATE_START, &dev->state);
2821 }
2822 
2823 /*
2824  * Routines to manage the subqueues on a device.  We only need start
2825  * stop, and a check if it's stopped.  All other device management is
2826  * done at the overall netdevice level.
2827  * Also test the device if we're multiqueue.
2828  */
2829 
2830 /**
2831  *	netif_start_subqueue - allow sending packets on subqueue
2832  *	@dev: network device
2833  *	@queue_index: sub queue index
2834  *
2835  * Start individual transmit queue of a device with multiple transmit queues.
2836  */
2837 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2838 {
2839 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2840 
2841 	netif_tx_start_queue(txq);
2842 }
2843 
2844 /**
2845  *	netif_stop_subqueue - stop sending packets on subqueue
2846  *	@dev: network device
2847  *	@queue_index: sub queue index
2848  *
2849  * Stop individual transmit queue of a device with multiple transmit queues.
2850  */
2851 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2852 {
2853 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2854 	netif_tx_stop_queue(txq);
2855 }
2856 
2857 /**
2858  *	netif_subqueue_stopped - test status of subqueue
2859  *	@dev: network device
2860  *	@queue_index: sub queue index
2861  *
2862  * Check individual transmit queue of a device with multiple transmit queues.
2863  */
2864 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2865 					    u16 queue_index)
2866 {
2867 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2868 
2869 	return netif_tx_queue_stopped(txq);
2870 }
2871 
2872 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2873 					  struct sk_buff *skb)
2874 {
2875 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2876 }
2877 
2878 void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
2879 
2880 #ifdef CONFIG_XPS
2881 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2882 			u16 index);
2883 #else
2884 static inline int netif_set_xps_queue(struct net_device *dev,
2885 				      const struct cpumask *mask,
2886 				      u16 index)
2887 {
2888 	return 0;
2889 }
2890 #endif
2891 
2892 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2893 		  unsigned int num_tx_queues);
2894 
2895 /*
2896  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2897  * as a distribution range limit for the returned value.
2898  */
2899 static inline u16 skb_tx_hash(const struct net_device *dev,
2900 			      struct sk_buff *skb)
2901 {
2902 	return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2903 }
2904 
2905 /**
2906  *	netif_is_multiqueue - test if device has multiple transmit queues
2907  *	@dev: network device
2908  *
2909  * Check if device has multiple transmit queues
2910  */
2911 static inline bool netif_is_multiqueue(const struct net_device *dev)
2912 {
2913 	return dev->num_tx_queues > 1;
2914 }
2915 
2916 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
2917 
2918 #ifdef CONFIG_SYSFS
2919 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
2920 #else
2921 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2922 						unsigned int rxq)
2923 {
2924 	return 0;
2925 }
2926 #endif
2927 
2928 #ifdef CONFIG_SYSFS
2929 static inline unsigned int get_netdev_rx_queue_index(
2930 		struct netdev_rx_queue *queue)
2931 {
2932 	struct net_device *dev = queue->dev;
2933 	int index = queue - dev->_rx;
2934 
2935 	BUG_ON(index >= dev->num_rx_queues);
2936 	return index;
2937 }
2938 #endif
2939 
2940 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
2941 int netif_get_num_default_rss_queues(void);
2942 
2943 enum skb_free_reason {
2944 	SKB_REASON_CONSUMED,
2945 	SKB_REASON_DROPPED,
2946 };
2947 
2948 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
2949 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
2950 
2951 /*
2952  * It is not allowed to call kfree_skb() or consume_skb() from hardware
2953  * interrupt context or with hardware interrupts being disabled.
2954  * (in_irq() || irqs_disabled())
2955  *
2956  * We provide four helpers that can be used in following contexts :
2957  *
2958  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
2959  *  replacing kfree_skb(skb)
2960  *
2961  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
2962  *  Typically used in place of consume_skb(skb) in TX completion path
2963  *
2964  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
2965  *  replacing kfree_skb(skb)
2966  *
2967  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
2968  *  and consumed a packet. Used in place of consume_skb(skb)
2969  */
2970 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
2971 {
2972 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
2973 }
2974 
2975 static inline void dev_consume_skb_irq(struct sk_buff *skb)
2976 {
2977 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
2978 }
2979 
2980 static inline void dev_kfree_skb_any(struct sk_buff *skb)
2981 {
2982 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
2983 }
2984 
2985 static inline void dev_consume_skb_any(struct sk_buff *skb)
2986 {
2987 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
2988 }
2989 
2990 int netif_rx(struct sk_buff *skb);
2991 int netif_rx_ni(struct sk_buff *skb);
2992 int netif_receive_skb(struct sk_buff *skb);
2993 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
2994 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
2995 struct sk_buff *napi_get_frags(struct napi_struct *napi);
2996 gro_result_t napi_gro_frags(struct napi_struct *napi);
2997 struct packet_offload *gro_find_receive_by_type(__be16 type);
2998 struct packet_offload *gro_find_complete_by_type(__be16 type);
2999 
3000 static inline void napi_free_frags(struct napi_struct *napi)
3001 {
3002 	kfree_skb(napi->skb);
3003 	napi->skb = NULL;
3004 }
3005 
3006 int netdev_rx_handler_register(struct net_device *dev,
3007 			       rx_handler_func_t *rx_handler,
3008 			       void *rx_handler_data);
3009 void netdev_rx_handler_unregister(struct net_device *dev);
3010 
3011 bool dev_valid_name(const char *name);
3012 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3013 int dev_ethtool(struct net *net, struct ifreq *);
3014 unsigned int dev_get_flags(const struct net_device *);
3015 int __dev_change_flags(struct net_device *, unsigned int flags);
3016 int dev_change_flags(struct net_device *, unsigned int);
3017 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3018 			unsigned int gchanges);
3019 int dev_change_name(struct net_device *, const char *);
3020 int dev_set_alias(struct net_device *, const char *, size_t);
3021 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3022 int dev_set_mtu(struct net_device *, int);
3023 void dev_set_group(struct net_device *, int);
3024 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3025 int dev_change_carrier(struct net_device *, bool new_carrier);
3026 int dev_get_phys_port_id(struct net_device *dev,
3027 			 struct netdev_phys_item_id *ppid);
3028 int dev_get_phys_port_name(struct net_device *dev,
3029 			   char *name, size_t len);
3030 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3031 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3032 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3033 				    struct netdev_queue *txq, int *ret);
3034 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3035 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3036 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
3037 
3038 extern int		netdev_budget;
3039 
3040 /* Called by rtnetlink.c:rtnl_unlock() */
3041 void netdev_run_todo(void);
3042 
3043 /**
3044  *	dev_put - release reference to device
3045  *	@dev: network device
3046  *
3047  * Release reference to device to allow it to be freed.
3048  */
3049 static inline void dev_put(struct net_device *dev)
3050 {
3051 	this_cpu_dec(*dev->pcpu_refcnt);
3052 }
3053 
3054 /**
3055  *	dev_hold - get reference to device
3056  *	@dev: network device
3057  *
3058  * Hold reference to device to keep it from being freed.
3059  */
3060 static inline void dev_hold(struct net_device *dev)
3061 {
3062 	this_cpu_inc(*dev->pcpu_refcnt);
3063 }
3064 
3065 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3066  * and _off may be called from IRQ context, but it is caller
3067  * who is responsible for serialization of these calls.
3068  *
3069  * The name carrier is inappropriate, these functions should really be
3070  * called netif_lowerlayer_*() because they represent the state of any
3071  * kind of lower layer not just hardware media.
3072  */
3073 
3074 void linkwatch_init_dev(struct net_device *dev);
3075 void linkwatch_fire_event(struct net_device *dev);
3076 void linkwatch_forget_dev(struct net_device *dev);
3077 
3078 /**
3079  *	netif_carrier_ok - test if carrier present
3080  *	@dev: network device
3081  *
3082  * Check if carrier is present on device
3083  */
3084 static inline bool netif_carrier_ok(const struct net_device *dev)
3085 {
3086 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3087 }
3088 
3089 unsigned long dev_trans_start(struct net_device *dev);
3090 
3091 void __netdev_watchdog_up(struct net_device *dev);
3092 
3093 void netif_carrier_on(struct net_device *dev);
3094 
3095 void netif_carrier_off(struct net_device *dev);
3096 
3097 /**
3098  *	netif_dormant_on - mark device as dormant.
3099  *	@dev: network device
3100  *
3101  * Mark device as dormant (as per RFC2863).
3102  *
3103  * The dormant state indicates that the relevant interface is not
3104  * actually in a condition to pass packets (i.e., it is not 'up') but is
3105  * in a "pending" state, waiting for some external event.  For "on-
3106  * demand" interfaces, this new state identifies the situation where the
3107  * interface is waiting for events to place it in the up state.
3108  *
3109  */
3110 static inline void netif_dormant_on(struct net_device *dev)
3111 {
3112 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3113 		linkwatch_fire_event(dev);
3114 }
3115 
3116 /**
3117  *	netif_dormant_off - set device as not dormant.
3118  *	@dev: network device
3119  *
3120  * Device is not in dormant state.
3121  */
3122 static inline void netif_dormant_off(struct net_device *dev)
3123 {
3124 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3125 		linkwatch_fire_event(dev);
3126 }
3127 
3128 /**
3129  *	netif_dormant - test if carrier present
3130  *	@dev: network device
3131  *
3132  * Check if carrier is present on device
3133  */
3134 static inline bool netif_dormant(const struct net_device *dev)
3135 {
3136 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3137 }
3138 
3139 
3140 /**
3141  *	netif_oper_up - test if device is operational
3142  *	@dev: network device
3143  *
3144  * Check if carrier is operational
3145  */
3146 static inline bool netif_oper_up(const struct net_device *dev)
3147 {
3148 	return (dev->operstate == IF_OPER_UP ||
3149 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3150 }
3151 
3152 /**
3153  *	netif_device_present - is device available or removed
3154  *	@dev: network device
3155  *
3156  * Check if device has not been removed from system.
3157  */
3158 static inline bool netif_device_present(struct net_device *dev)
3159 {
3160 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3161 }
3162 
3163 void netif_device_detach(struct net_device *dev);
3164 
3165 void netif_device_attach(struct net_device *dev);
3166 
3167 /*
3168  * Network interface message level settings
3169  */
3170 
3171 enum {
3172 	NETIF_MSG_DRV		= 0x0001,
3173 	NETIF_MSG_PROBE		= 0x0002,
3174 	NETIF_MSG_LINK		= 0x0004,
3175 	NETIF_MSG_TIMER		= 0x0008,
3176 	NETIF_MSG_IFDOWN	= 0x0010,
3177 	NETIF_MSG_IFUP		= 0x0020,
3178 	NETIF_MSG_RX_ERR	= 0x0040,
3179 	NETIF_MSG_TX_ERR	= 0x0080,
3180 	NETIF_MSG_TX_QUEUED	= 0x0100,
3181 	NETIF_MSG_INTR		= 0x0200,
3182 	NETIF_MSG_TX_DONE	= 0x0400,
3183 	NETIF_MSG_RX_STATUS	= 0x0800,
3184 	NETIF_MSG_PKTDATA	= 0x1000,
3185 	NETIF_MSG_HW		= 0x2000,
3186 	NETIF_MSG_WOL		= 0x4000,
3187 };
3188 
3189 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3190 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3191 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3192 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3193 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3194 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3195 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3196 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3197 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3198 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3199 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3200 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3201 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3202 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3203 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3204 
3205 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3206 {
3207 	/* use default */
3208 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3209 		return default_msg_enable_bits;
3210 	if (debug_value == 0)	/* no output */
3211 		return 0;
3212 	/* set low N bits */
3213 	return (1 << debug_value) - 1;
3214 }
3215 
3216 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3217 {
3218 	spin_lock(&txq->_xmit_lock);
3219 	txq->xmit_lock_owner = cpu;
3220 }
3221 
3222 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3223 {
3224 	spin_lock_bh(&txq->_xmit_lock);
3225 	txq->xmit_lock_owner = smp_processor_id();
3226 }
3227 
3228 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3229 {
3230 	bool ok = spin_trylock(&txq->_xmit_lock);
3231 	if (likely(ok))
3232 		txq->xmit_lock_owner = smp_processor_id();
3233 	return ok;
3234 }
3235 
3236 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3237 {
3238 	txq->xmit_lock_owner = -1;
3239 	spin_unlock(&txq->_xmit_lock);
3240 }
3241 
3242 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3243 {
3244 	txq->xmit_lock_owner = -1;
3245 	spin_unlock_bh(&txq->_xmit_lock);
3246 }
3247 
3248 static inline void txq_trans_update(struct netdev_queue *txq)
3249 {
3250 	if (txq->xmit_lock_owner != -1)
3251 		txq->trans_start = jiffies;
3252 }
3253 
3254 /**
3255  *	netif_tx_lock - grab network device transmit lock
3256  *	@dev: network device
3257  *
3258  * Get network device transmit lock
3259  */
3260 static inline void netif_tx_lock(struct net_device *dev)
3261 {
3262 	unsigned int i;
3263 	int cpu;
3264 
3265 	spin_lock(&dev->tx_global_lock);
3266 	cpu = smp_processor_id();
3267 	for (i = 0; i < dev->num_tx_queues; i++) {
3268 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3269 
3270 		/* We are the only thread of execution doing a
3271 		 * freeze, but we have to grab the _xmit_lock in
3272 		 * order to synchronize with threads which are in
3273 		 * the ->hard_start_xmit() handler and already
3274 		 * checked the frozen bit.
3275 		 */
3276 		__netif_tx_lock(txq, cpu);
3277 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3278 		__netif_tx_unlock(txq);
3279 	}
3280 }
3281 
3282 static inline void netif_tx_lock_bh(struct net_device *dev)
3283 {
3284 	local_bh_disable();
3285 	netif_tx_lock(dev);
3286 }
3287 
3288 static inline void netif_tx_unlock(struct net_device *dev)
3289 {
3290 	unsigned int i;
3291 
3292 	for (i = 0; i < dev->num_tx_queues; i++) {
3293 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3294 
3295 		/* No need to grab the _xmit_lock here.  If the
3296 		 * queue is not stopped for another reason, we
3297 		 * force a schedule.
3298 		 */
3299 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3300 		netif_schedule_queue(txq);
3301 	}
3302 	spin_unlock(&dev->tx_global_lock);
3303 }
3304 
3305 static inline void netif_tx_unlock_bh(struct net_device *dev)
3306 {
3307 	netif_tx_unlock(dev);
3308 	local_bh_enable();
3309 }
3310 
3311 #define HARD_TX_LOCK(dev, txq, cpu) {			\
3312 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3313 		__netif_tx_lock(txq, cpu);		\
3314 	}						\
3315 }
3316 
3317 #define HARD_TX_TRYLOCK(dev, txq)			\
3318 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
3319 		__netif_tx_trylock(txq) :		\
3320 		true )
3321 
3322 #define HARD_TX_UNLOCK(dev, txq) {			\
3323 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3324 		__netif_tx_unlock(txq);			\
3325 	}						\
3326 }
3327 
3328 static inline void netif_tx_disable(struct net_device *dev)
3329 {
3330 	unsigned int i;
3331 	int cpu;
3332 
3333 	local_bh_disable();
3334 	cpu = smp_processor_id();
3335 	for (i = 0; i < dev->num_tx_queues; i++) {
3336 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3337 
3338 		__netif_tx_lock(txq, cpu);
3339 		netif_tx_stop_queue(txq);
3340 		__netif_tx_unlock(txq);
3341 	}
3342 	local_bh_enable();
3343 }
3344 
3345 static inline void netif_addr_lock(struct net_device *dev)
3346 {
3347 	spin_lock(&dev->addr_list_lock);
3348 }
3349 
3350 static inline void netif_addr_lock_nested(struct net_device *dev)
3351 {
3352 	int subclass = SINGLE_DEPTH_NESTING;
3353 
3354 	if (dev->netdev_ops->ndo_get_lock_subclass)
3355 		subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3356 
3357 	spin_lock_nested(&dev->addr_list_lock, subclass);
3358 }
3359 
3360 static inline void netif_addr_lock_bh(struct net_device *dev)
3361 {
3362 	spin_lock_bh(&dev->addr_list_lock);
3363 }
3364 
3365 static inline void netif_addr_unlock(struct net_device *dev)
3366 {
3367 	spin_unlock(&dev->addr_list_lock);
3368 }
3369 
3370 static inline void netif_addr_unlock_bh(struct net_device *dev)
3371 {
3372 	spin_unlock_bh(&dev->addr_list_lock);
3373 }
3374 
3375 /*
3376  * dev_addrs walker. Should be used only for read access. Call with
3377  * rcu_read_lock held.
3378  */
3379 #define for_each_dev_addr(dev, ha) \
3380 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3381 
3382 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3383 
3384 void ether_setup(struct net_device *dev);
3385 
3386 /* Support for loadable net-drivers */
3387 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3388 				    unsigned char name_assign_type,
3389 				    void (*setup)(struct net_device *),
3390 				    unsigned int txqs, unsigned int rxqs);
3391 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3392 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3393 
3394 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3395 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3396 			 count)
3397 
3398 int register_netdev(struct net_device *dev);
3399 void unregister_netdev(struct net_device *dev);
3400 
3401 /* General hardware address lists handling functions */
3402 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3403 		   struct netdev_hw_addr_list *from_list, int addr_len);
3404 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3405 		      struct netdev_hw_addr_list *from_list, int addr_len);
3406 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3407 		       struct net_device *dev,
3408 		       int (*sync)(struct net_device *, const unsigned char *),
3409 		       int (*unsync)(struct net_device *,
3410 				     const unsigned char *));
3411 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3412 			  struct net_device *dev,
3413 			  int (*unsync)(struct net_device *,
3414 					const unsigned char *));
3415 void __hw_addr_init(struct netdev_hw_addr_list *list);
3416 
3417 /* Functions used for device addresses handling */
3418 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3419 		 unsigned char addr_type);
3420 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3421 		 unsigned char addr_type);
3422 void dev_addr_flush(struct net_device *dev);
3423 int dev_addr_init(struct net_device *dev);
3424 
3425 /* Functions used for unicast addresses handling */
3426 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3427 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3428 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3429 int dev_uc_sync(struct net_device *to, struct net_device *from);
3430 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3431 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3432 void dev_uc_flush(struct net_device *dev);
3433 void dev_uc_init(struct net_device *dev);
3434 
3435 /**
3436  *  __dev_uc_sync - Synchonize device's unicast list
3437  *  @dev:  device to sync
3438  *  @sync: function to call if address should be added
3439  *  @unsync: function to call if address should be removed
3440  *
3441  *  Add newly added addresses to the interface, and release
3442  *  addresses that have been deleted.
3443  **/
3444 static inline int __dev_uc_sync(struct net_device *dev,
3445 				int (*sync)(struct net_device *,
3446 					    const unsigned char *),
3447 				int (*unsync)(struct net_device *,
3448 					      const unsigned char *))
3449 {
3450 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3451 }
3452 
3453 /**
3454  *  __dev_uc_unsync - Remove synchronized addresses from device
3455  *  @dev:  device to sync
3456  *  @unsync: function to call if address should be removed
3457  *
3458  *  Remove all addresses that were added to the device by dev_uc_sync().
3459  **/
3460 static inline void __dev_uc_unsync(struct net_device *dev,
3461 				   int (*unsync)(struct net_device *,
3462 						 const unsigned char *))
3463 {
3464 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
3465 }
3466 
3467 /* Functions used for multicast addresses handling */
3468 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3469 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3470 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3471 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3472 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3473 int dev_mc_sync(struct net_device *to, struct net_device *from);
3474 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3475 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3476 void dev_mc_flush(struct net_device *dev);
3477 void dev_mc_init(struct net_device *dev);
3478 
3479 /**
3480  *  __dev_mc_sync - Synchonize device's multicast list
3481  *  @dev:  device to sync
3482  *  @sync: function to call if address should be added
3483  *  @unsync: function to call if address should be removed
3484  *
3485  *  Add newly added addresses to the interface, and release
3486  *  addresses that have been deleted.
3487  **/
3488 static inline int __dev_mc_sync(struct net_device *dev,
3489 				int (*sync)(struct net_device *,
3490 					    const unsigned char *),
3491 				int (*unsync)(struct net_device *,
3492 					      const unsigned char *))
3493 {
3494 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3495 }
3496 
3497 /**
3498  *  __dev_mc_unsync - Remove synchronized addresses from device
3499  *  @dev:  device to sync
3500  *  @unsync: function to call if address should be removed
3501  *
3502  *  Remove all addresses that were added to the device by dev_mc_sync().
3503  **/
3504 static inline void __dev_mc_unsync(struct net_device *dev,
3505 				   int (*unsync)(struct net_device *,
3506 						 const unsigned char *))
3507 {
3508 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
3509 }
3510 
3511 /* Functions used for secondary unicast and multicast support */
3512 void dev_set_rx_mode(struct net_device *dev);
3513 void __dev_set_rx_mode(struct net_device *dev);
3514 int dev_set_promiscuity(struct net_device *dev, int inc);
3515 int dev_set_allmulti(struct net_device *dev, int inc);
3516 void netdev_state_change(struct net_device *dev);
3517 void netdev_notify_peers(struct net_device *dev);
3518 void netdev_features_change(struct net_device *dev);
3519 /* Load a device via the kmod */
3520 void dev_load(struct net *net, const char *name);
3521 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3522 					struct rtnl_link_stats64 *storage);
3523 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3524 			     const struct net_device_stats *netdev_stats);
3525 
3526 extern int		netdev_max_backlog;
3527 extern int		netdev_tstamp_prequeue;
3528 extern int		weight_p;
3529 extern int		bpf_jit_enable;
3530 
3531 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3532 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3533 						     struct list_head **iter);
3534 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3535 						     struct list_head **iter);
3536 
3537 /* iterate through upper list, must be called under RCU read lock */
3538 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3539 	for (iter = &(dev)->adj_list.upper, \
3540 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3541 	     updev; \
3542 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3543 
3544 /* iterate through upper list, must be called under RCU read lock */
3545 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3546 	for (iter = &(dev)->all_adj_list.upper, \
3547 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3548 	     updev; \
3549 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3550 
3551 void *netdev_lower_get_next_private(struct net_device *dev,
3552 				    struct list_head **iter);
3553 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3554 					struct list_head **iter);
3555 
3556 #define netdev_for_each_lower_private(dev, priv, iter) \
3557 	for (iter = (dev)->adj_list.lower.next, \
3558 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
3559 	     priv; \
3560 	     priv = netdev_lower_get_next_private(dev, &(iter)))
3561 
3562 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3563 	for (iter = &(dev)->adj_list.lower, \
3564 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3565 	     priv; \
3566 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3567 
3568 void *netdev_lower_get_next(struct net_device *dev,
3569 				struct list_head **iter);
3570 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3571 	for (iter = &(dev)->adj_list.lower, \
3572 	     ldev = netdev_lower_get_next(dev, &(iter)); \
3573 	     ldev; \
3574 	     ldev = netdev_lower_get_next(dev, &(iter)))
3575 
3576 void *netdev_adjacent_get_private(struct list_head *adj_list);
3577 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3578 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3579 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3580 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3581 int netdev_master_upper_dev_link(struct net_device *dev,
3582 				 struct net_device *upper_dev);
3583 int netdev_master_upper_dev_link_private(struct net_device *dev,
3584 					 struct net_device *upper_dev,
3585 					 void *private);
3586 void netdev_upper_dev_unlink(struct net_device *dev,
3587 			     struct net_device *upper_dev);
3588 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3589 void *netdev_lower_dev_get_private(struct net_device *dev,
3590 				   struct net_device *lower_dev);
3591 
3592 /* RSS keys are 40 or 52 bytes long */
3593 #define NETDEV_RSS_KEY_LEN 52
3594 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN];
3595 void netdev_rss_key_fill(void *buffer, size_t len);
3596 
3597 int dev_get_nest_level(struct net_device *dev,
3598 		       bool (*type_check)(struct net_device *dev));
3599 int skb_checksum_help(struct sk_buff *skb);
3600 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3601 				  netdev_features_t features, bool tx_path);
3602 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3603 				    netdev_features_t features);
3604 
3605 struct netdev_bonding_info {
3606 	ifslave	slave;
3607 	ifbond	master;
3608 };
3609 
3610 struct netdev_notifier_bonding_info {
3611 	struct netdev_notifier_info info; /* must be first */
3612 	struct netdev_bonding_info  bonding_info;
3613 };
3614 
3615 void netdev_bonding_info_change(struct net_device *dev,
3616 				struct netdev_bonding_info *bonding_info);
3617 
3618 static inline
3619 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3620 {
3621 	return __skb_gso_segment(skb, features, true);
3622 }
3623 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3624 
3625 static inline bool can_checksum_protocol(netdev_features_t features,
3626 					 __be16 protocol)
3627 {
3628 	return ((features & NETIF_F_GEN_CSUM) ||
3629 		((features & NETIF_F_V4_CSUM) &&
3630 		 protocol == htons(ETH_P_IP)) ||
3631 		((features & NETIF_F_V6_CSUM) &&
3632 		 protocol == htons(ETH_P_IPV6)) ||
3633 		((features & NETIF_F_FCOE_CRC) &&
3634 		 protocol == htons(ETH_P_FCOE)));
3635 }
3636 
3637 #ifdef CONFIG_BUG
3638 void netdev_rx_csum_fault(struct net_device *dev);
3639 #else
3640 static inline void netdev_rx_csum_fault(struct net_device *dev)
3641 {
3642 }
3643 #endif
3644 /* rx skb timestamps */
3645 void net_enable_timestamp(void);
3646 void net_disable_timestamp(void);
3647 
3648 #ifdef CONFIG_PROC_FS
3649 int __init dev_proc_init(void);
3650 #else
3651 #define dev_proc_init() 0
3652 #endif
3653 
3654 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3655 					      struct sk_buff *skb, struct net_device *dev,
3656 					      bool more)
3657 {
3658 	skb->xmit_more = more ? 1 : 0;
3659 	return ops->ndo_start_xmit(skb, dev);
3660 }
3661 
3662 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3663 					    struct netdev_queue *txq, bool more)
3664 {
3665 	const struct net_device_ops *ops = dev->netdev_ops;
3666 	int rc;
3667 
3668 	rc = __netdev_start_xmit(ops, skb, dev, more);
3669 	if (rc == NETDEV_TX_OK)
3670 		txq_trans_update(txq);
3671 
3672 	return rc;
3673 }
3674 
3675 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3676 				const void *ns);
3677 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3678 				 const void *ns);
3679 
3680 static inline int netdev_class_create_file(struct class_attribute *class_attr)
3681 {
3682 	return netdev_class_create_file_ns(class_attr, NULL);
3683 }
3684 
3685 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3686 {
3687 	netdev_class_remove_file_ns(class_attr, NULL);
3688 }
3689 
3690 extern struct kobj_ns_type_operations net_ns_type_operations;
3691 
3692 const char *netdev_drivername(const struct net_device *dev);
3693 
3694 void linkwatch_run_queue(void);
3695 
3696 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3697 							  netdev_features_t f2)
3698 {
3699 	if (f1 & NETIF_F_GEN_CSUM)
3700 		f1 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3701 	if (f2 & NETIF_F_GEN_CSUM)
3702 		f2 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3703 	f1 &= f2;
3704 	if (f1 & NETIF_F_GEN_CSUM)
3705 		f1 &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3706 
3707 	return f1;
3708 }
3709 
3710 static inline netdev_features_t netdev_get_wanted_features(
3711 	struct net_device *dev)
3712 {
3713 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
3714 }
3715 netdev_features_t netdev_increment_features(netdev_features_t all,
3716 	netdev_features_t one, netdev_features_t mask);
3717 
3718 /* Allow TSO being used on stacked device :
3719  * Performing the GSO segmentation before last device
3720  * is a performance improvement.
3721  */
3722 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3723 							netdev_features_t mask)
3724 {
3725 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3726 }
3727 
3728 int __netdev_update_features(struct net_device *dev);
3729 void netdev_update_features(struct net_device *dev);
3730 void netdev_change_features(struct net_device *dev);
3731 
3732 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3733 					struct net_device *dev);
3734 
3735 netdev_features_t passthru_features_check(struct sk_buff *skb,
3736 					  struct net_device *dev,
3737 					  netdev_features_t features);
3738 netdev_features_t netif_skb_features(struct sk_buff *skb);
3739 
3740 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3741 {
3742 	netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3743 
3744 	/* check flags correspondence */
3745 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3746 	BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3747 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3748 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3749 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3750 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3751 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
3752 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
3753 	BUILD_BUG_ON(SKB_GSO_IPIP    != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT));
3754 	BUILD_BUG_ON(SKB_GSO_SIT     != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT));
3755 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
3756 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
3757 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
3758 
3759 	return (features & feature) == feature;
3760 }
3761 
3762 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3763 {
3764 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3765 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3766 }
3767 
3768 static inline bool netif_needs_gso(struct sk_buff *skb,
3769 				   netdev_features_t features)
3770 {
3771 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3772 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3773 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3774 }
3775 
3776 static inline void netif_set_gso_max_size(struct net_device *dev,
3777 					  unsigned int size)
3778 {
3779 	dev->gso_max_size = size;
3780 }
3781 
3782 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3783 					int pulled_hlen, u16 mac_offset,
3784 					int mac_len)
3785 {
3786 	skb->protocol = protocol;
3787 	skb->encapsulation = 1;
3788 	skb_push(skb, pulled_hlen);
3789 	skb_reset_transport_header(skb);
3790 	skb->mac_header = mac_offset;
3791 	skb->network_header = skb->mac_header + mac_len;
3792 	skb->mac_len = mac_len;
3793 }
3794 
3795 static inline bool netif_is_macvlan(struct net_device *dev)
3796 {
3797 	return dev->priv_flags & IFF_MACVLAN;
3798 }
3799 
3800 static inline bool netif_is_macvlan_port(struct net_device *dev)
3801 {
3802 	return dev->priv_flags & IFF_MACVLAN_PORT;
3803 }
3804 
3805 static inline bool netif_is_ipvlan(struct net_device *dev)
3806 {
3807 	return dev->priv_flags & IFF_IPVLAN_SLAVE;
3808 }
3809 
3810 static inline bool netif_is_ipvlan_port(struct net_device *dev)
3811 {
3812 	return dev->priv_flags & IFF_IPVLAN_MASTER;
3813 }
3814 
3815 static inline bool netif_is_bond_master(struct net_device *dev)
3816 {
3817 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3818 }
3819 
3820 static inline bool netif_is_bond_slave(struct net_device *dev)
3821 {
3822 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3823 }
3824 
3825 static inline bool netif_supports_nofcs(struct net_device *dev)
3826 {
3827 	return dev->priv_flags & IFF_SUPP_NOFCS;
3828 }
3829 
3830 static inline bool netif_is_l3_master(const struct net_device *dev)
3831 {
3832 	return dev->priv_flags & IFF_L3MDEV_MASTER;
3833 }
3834 
3835 static inline bool netif_is_l3_slave(const struct net_device *dev)
3836 {
3837 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
3838 }
3839 
3840 static inline bool netif_is_bridge_master(const struct net_device *dev)
3841 {
3842 	return dev->priv_flags & IFF_EBRIDGE;
3843 }
3844 
3845 static inline bool netif_is_ovs_master(const struct net_device *dev)
3846 {
3847 	return dev->priv_flags & IFF_OPENVSWITCH;
3848 }
3849 
3850 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
3851 static inline void netif_keep_dst(struct net_device *dev)
3852 {
3853 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
3854 }
3855 
3856 extern struct pernet_operations __net_initdata loopback_net_ops;
3857 
3858 /* Logging, debugging and troubleshooting/diagnostic helpers. */
3859 
3860 /* netdev_printk helpers, similar to dev_printk */
3861 
3862 static inline const char *netdev_name(const struct net_device *dev)
3863 {
3864 	if (!dev->name[0] || strchr(dev->name, '%'))
3865 		return "(unnamed net_device)";
3866 	return dev->name;
3867 }
3868 
3869 static inline const char *netdev_reg_state(const struct net_device *dev)
3870 {
3871 	switch (dev->reg_state) {
3872 	case NETREG_UNINITIALIZED: return " (uninitialized)";
3873 	case NETREG_REGISTERED: return "";
3874 	case NETREG_UNREGISTERING: return " (unregistering)";
3875 	case NETREG_UNREGISTERED: return " (unregistered)";
3876 	case NETREG_RELEASED: return " (released)";
3877 	case NETREG_DUMMY: return " (dummy)";
3878 	}
3879 
3880 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
3881 	return " (unknown)";
3882 }
3883 
3884 __printf(3, 4)
3885 void netdev_printk(const char *level, const struct net_device *dev,
3886 		   const char *format, ...);
3887 __printf(2, 3)
3888 void netdev_emerg(const struct net_device *dev, const char *format, ...);
3889 __printf(2, 3)
3890 void netdev_alert(const struct net_device *dev, const char *format, ...);
3891 __printf(2, 3)
3892 void netdev_crit(const struct net_device *dev, const char *format, ...);
3893 __printf(2, 3)
3894 void netdev_err(const struct net_device *dev, const char *format, ...);
3895 __printf(2, 3)
3896 void netdev_warn(const struct net_device *dev, const char *format, ...);
3897 __printf(2, 3)
3898 void netdev_notice(const struct net_device *dev, const char *format, ...);
3899 __printf(2, 3)
3900 void netdev_info(const struct net_device *dev, const char *format, ...);
3901 
3902 #define MODULE_ALIAS_NETDEV(device) \
3903 	MODULE_ALIAS("netdev-" device)
3904 
3905 #if defined(CONFIG_DYNAMIC_DEBUG)
3906 #define netdev_dbg(__dev, format, args...)			\
3907 do {								\
3908 	dynamic_netdev_dbg(__dev, format, ##args);		\
3909 } while (0)
3910 #elif defined(DEBUG)
3911 #define netdev_dbg(__dev, format, args...)			\
3912 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
3913 #else
3914 #define netdev_dbg(__dev, format, args...)			\
3915 ({								\
3916 	if (0)							\
3917 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
3918 })
3919 #endif
3920 
3921 #if defined(VERBOSE_DEBUG)
3922 #define netdev_vdbg	netdev_dbg
3923 #else
3924 
3925 #define netdev_vdbg(dev, format, args...)			\
3926 ({								\
3927 	if (0)							\
3928 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
3929 	0;							\
3930 })
3931 #endif
3932 
3933 /*
3934  * netdev_WARN() acts like dev_printk(), but with the key difference
3935  * of using a WARN/WARN_ON to get the message out, including the
3936  * file/line information and a backtrace.
3937  */
3938 #define netdev_WARN(dev, format, args...)			\
3939 	WARN(1, "netdevice: %s%s\n" format, netdev_name(dev),	\
3940 	     netdev_reg_state(dev), ##args)
3941 
3942 /* netif printk helpers, similar to netdev_printk */
3943 
3944 #define netif_printk(priv, type, level, dev, fmt, args...)	\
3945 do {					  			\
3946 	if (netif_msg_##type(priv))				\
3947 		netdev_printk(level, (dev), fmt, ##args);	\
3948 } while (0)
3949 
3950 #define netif_level(level, priv, type, dev, fmt, args...)	\
3951 do {								\
3952 	if (netif_msg_##type(priv))				\
3953 		netdev_##level(dev, fmt, ##args);		\
3954 } while (0)
3955 
3956 #define netif_emerg(priv, type, dev, fmt, args...)		\
3957 	netif_level(emerg, priv, type, dev, fmt, ##args)
3958 #define netif_alert(priv, type, dev, fmt, args...)		\
3959 	netif_level(alert, priv, type, dev, fmt, ##args)
3960 #define netif_crit(priv, type, dev, fmt, args...)		\
3961 	netif_level(crit, priv, type, dev, fmt, ##args)
3962 #define netif_err(priv, type, dev, fmt, args...)		\
3963 	netif_level(err, priv, type, dev, fmt, ##args)
3964 #define netif_warn(priv, type, dev, fmt, args...)		\
3965 	netif_level(warn, priv, type, dev, fmt, ##args)
3966 #define netif_notice(priv, type, dev, fmt, args...)		\
3967 	netif_level(notice, priv, type, dev, fmt, ##args)
3968 #define netif_info(priv, type, dev, fmt, args...)		\
3969 	netif_level(info, priv, type, dev, fmt, ##args)
3970 
3971 #if defined(CONFIG_DYNAMIC_DEBUG)
3972 #define netif_dbg(priv, type, netdev, format, args...)		\
3973 do {								\
3974 	if (netif_msg_##type(priv))				\
3975 		dynamic_netdev_dbg(netdev, format, ##args);	\
3976 } while (0)
3977 #elif defined(DEBUG)
3978 #define netif_dbg(priv, type, dev, format, args...)		\
3979 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
3980 #else
3981 #define netif_dbg(priv, type, dev, format, args...)			\
3982 ({									\
3983 	if (0)								\
3984 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3985 	0;								\
3986 })
3987 #endif
3988 
3989 #if defined(VERBOSE_DEBUG)
3990 #define netif_vdbg	netif_dbg
3991 #else
3992 #define netif_vdbg(priv, type, dev, format, args...)		\
3993 ({								\
3994 	if (0)							\
3995 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3996 	0;							\
3997 })
3998 #endif
3999 
4000 /*
4001  *	The list of packet types we will receive (as opposed to discard)
4002  *	and the routines to invoke.
4003  *
4004  *	Why 16. Because with 16 the only overlap we get on a hash of the
4005  *	low nibble of the protocol value is RARP/SNAP/X.25.
4006  *
4007  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
4008  *             sure which should go first, but I bet it won't make much
4009  *             difference if we are running VLANs.  The good news is that
4010  *             this protocol won't be in the list unless compiled in, so
4011  *             the average user (w/out VLANs) will not be adversely affected.
4012  *             --BLG
4013  *
4014  *		0800	IP
4015  *		8100    802.1Q VLAN
4016  *		0001	802.3
4017  *		0002	AX.25
4018  *		0004	802.2
4019  *		8035	RARP
4020  *		0005	SNAP
4021  *		0805	X.25
4022  *		0806	ARP
4023  *		8137	IPX
4024  *		0009	Localtalk
4025  *		86DD	IPv6
4026  */
4027 #define PTYPE_HASH_SIZE	(16)
4028 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
4029 
4030 #endif	/* _LINUX_NETDEVICE_H */
4031